/* * Microblaze support for cache consistent memory. * Copyright (C) 2010 Michal Simek * Copyright (C) 2010 PetaLogix * Copyright (C) 2005 John Williams * * Based on PowerPC version derived from arch/arm/mm/consistent.c * Copyright (C) 2001 Dan Malek (dmalek@jlc.net) * Copyright (C) 2000 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CONFIG_MMU /* I have to use dcache values because I can't relate on ram size */ # define UNCACHED_SHADOW_MASK (cpuinfo.dcache_high - cpuinfo.dcache_base + 1) #endif /* * Consistent memory allocators. Used for DMA devices that want to * share uncached memory with the processor core. * My crufty no-MMU approach is simple. In the HW platform we can optionally * mirror the DDR up above the processor cacheable region. So, memory accessed * in this mirror region will not be cached. It's alloced from the same * pool as normal memory, but the handle we return is shifted up into the * uncached region. This will no doubt cause big problems if memory allocated * here is not also freed properly. -- JW */ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { unsigned long order, vaddr; void *ret; unsigned int i, err = 0; struct page *page, *end; #ifdef CONFIG_MMU phys_addr_t pa; struct vm_struct *area; unsigned long va; #endif if (in_interrupt()) BUG(); /* Only allocate page size areas. */ size = PAGE_ALIGN(size); order = get_order(size); vaddr = __get_free_pages(gfp, order); if (!vaddr) return NULL; /* * we need to ensure that there are no cachelines in use, * or worse dirty in this area. */ flush_dcache_range(virt_to_phys((void *)vaddr), virt_to_phys((void *)vaddr) + size); #ifndef CONFIG_MMU ret = (void *)vaddr; /* * Here's the magic! Note if the uncached shadow is not implemented, * it's up to the calling code to also test that condition and make * other arranegments, such as manually flushing the cache and so on. */ # ifdef CONFIG_XILINX_UNCACHED_SHADOW ret = (void *)((unsigned) ret | UNCACHED_SHADOW_MASK); # endif if ((unsigned int)ret > cpuinfo.dcache_base && (unsigned int)ret < cpuinfo.dcache_high) pr_warn("ERROR: Your cache coherent area is CACHED!!!\n"); /* dma_handle is same as physical (shadowed) address */ *dma_handle = (dma_addr_t)ret; #else /* Allocate some common virtual space to map the new pages. */ area = get_vm_area(size, VM_ALLOC); if (!area) { free_pages(vaddr, order); return NULL; } va = (unsigned long) area->addr; ret = (void *)va; /* This gives us the real physical address of the first page. */ *dma_handle = pa = __virt_to_phys(vaddr); #endif /* * free wasted pages. We skip the first page since we know * that it will have count = 1 and won't require freeing. * We also mark the pages in use as reserved so that * remap_page_range works. */ page = virt_to_page(vaddr); end = page + (1 << order); split_page(page, order); for (i = 0; i < size && err == 0; i += PAGE_SIZE) { #ifdef CONFIG_MMU /* MS: This is the whole magic - use cache inhibit pages */ err = map_page(va + i, pa + i, _PAGE_KERNEL | _PAGE_NO_CACHE); #endif SetPageReserved(page); page++; } /* Free the otherwise unused pages. */ while (page < end) { __free_page(page); page++; } if (err) { free_pages(vaddr, order); return NULL; } return ret; } #ifdef CONFIG_MMU static pte_t *consistent_virt_to_pte(void *vaddr) { unsigned long addr = (unsigned long)vaddr; return pte_offset_kernel(pmd_offset(pgd_offset_k(addr), addr), addr); } long arch_dma_coherent_to_pfn(struct device *dev, void *vaddr, dma_addr_t dma_addr) { pte_t *ptep = consistent_virt_to_pte(vaddr); if (pte_none(*ptep) || !pte_present(*ptep)) return 0; return pte_pfn(*ptep); } #endif /* * free page(s) as defined by the above mapping. */ void arch_dma_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_addr, unsigned long attrs) { struct page *page; if (in_interrupt()) BUG(); size = PAGE_ALIGN(size); #ifndef CONFIG_MMU /* Clear SHADOW_MASK bit in address, and free as per usual */ # ifdef CONFIG_XILINX_UNCACHED_SHADOW vaddr = (void *)((unsigned)vaddr & ~UNCACHED_SHADOW_MASK); # endif page = virt_to_page(vaddr); do { __free_reserved_page(page); page++; } while (size -= PAGE_SIZE); #else do { pte_t *ptep = consistent_virt_to_pte(vaddr); unsigned long pfn; if (!pte_none(*ptep) && pte_present(*ptep)) { pfn = pte_pfn(*ptep); pte_clear(&init_mm, (unsigned int)vaddr, ptep); if (pfn_valid(pfn)) { page = pfn_to_page(pfn); __free_reserved_page(page); } } vaddr += PAGE_SIZE; } while (size -= PAGE_SIZE); /* flush tlb */ flush_tlb_all(); #endif }