aboutsummaryrefslogtreecommitdiff
path: root/Documentation/vm/hmm.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/vm/hmm.rst')
-rw-r--r--Documentation/vm/hmm.rst386
1 files changed, 386 insertions, 0 deletions
diff --git a/Documentation/vm/hmm.rst b/Documentation/vm/hmm.rst
new file mode 100644
index 000000000000..cdf3911582c8
--- /dev/null
+++ b/Documentation/vm/hmm.rst
@@ -0,0 +1,386 @@
+.. hmm:
+
+=====================================
+Heterogeneous Memory Management (HMM)
+=====================================
+
+Provide infrastructure and helpers to integrate non-conventional memory (device
+memory like GPU on board memory) into regular kernel path, with the cornerstone
+of this being specialized struct page for such memory (see sections 5 to 7 of
+this document).
+
+HMM also provides optional helpers for SVM (Share Virtual Memory), i.e.,
+allowing a device to transparently access program address coherently with
+the CPU meaning that any valid pointer on the CPU is also a valid pointer
+for the device. This is becoming mandatory to simplify the use of advanced
+heterogeneous computing where GPU, DSP, or FPGA are used to perform various
+computations on behalf of a process.
+
+This document is divided as follows: in the first section I expose the problems
+related to using device specific memory allocators. In the second section, I
+expose the hardware limitations that are inherent to many platforms. The third
+section gives an overview of the HMM design. The fourth section explains how
+CPU page-table mirroring works and the purpose of HMM in this context. The
+fifth section deals with how device memory is represented inside the kernel.
+Finally, the last section presents a new migration helper that allows lever-
+aging the device DMA engine.
+
+.. contents:: :local:
+
+Problems of using a device specific memory allocator
+====================================================
+
+Devices with a large amount of on board memory (several gigabytes) like GPUs
+have historically managed their memory through dedicated driver specific APIs.
+This creates a disconnect between memory allocated and managed by a device
+driver and regular application memory (private anonymous, shared memory, or
+regular file backed memory). From here on I will refer to this aspect as split
+address space. I use shared address space to refer to the opposite situation:
+i.e., one in which any application memory region can be used by a device
+transparently.
+
+Split address space happens because device can only access memory allocated
+through device specific API. This implies that all memory objects in a program
+are not equal from the device point of view which complicates large programs
+that rely on a wide set of libraries.
+
+Concretely this means that code that wants to leverage devices like GPUs needs
+to copy object between generically allocated memory (malloc, mmap private, mmap
+share) and memory allocated through the device driver API (this still ends up
+with an mmap but of the device file).
+
+For flat data sets (array, grid, image, ...) this isn't too hard to achieve but
+complex data sets (list, tree, ...) are hard to get right. Duplicating a
+complex data set needs to re-map all the pointer relations between each of its
+elements. This is error prone and program gets harder to debug because of the
+duplicate data set and addresses.
+
+Split address space also means that libraries cannot transparently use data
+they are getting from the core program or another library and thus each library
+might have to duplicate its input data set using the device specific memory
+allocator. Large projects suffer from this and waste resources because of the
+various memory copies.
+
+Duplicating each library API to accept as input or output memory allocated by
+each device specific allocator is not a viable option. It would lead to a
+combinatorial explosion in the library entry points.
+
+Finally, with the advance of high level language constructs (in C++ but in
+other languages too) it is now possible for the compiler to leverage GPUs and
+other devices without programmer knowledge. Some compiler identified patterns
+are only do-able with a shared address space. It is also more reasonable to use
+a shared address space for all other patterns.
+
+
+I/O bus, device memory characteristics
+======================================
+
+I/O buses cripple shared address spaces due to a few limitations. Most I/O
+buses only allow basic memory access from device to main memory; even cache
+coherency is often optional. Access to device memory from CPU is even more
+limited. More often than not, it is not cache coherent.
+
+If we only consider the PCIE bus, then a device can access main memory (often
+through an IOMMU) and be cache coherent with the CPUs. However, it only allows
+a limited set of atomic operations from device on main memory. This is worse
+in the other direction: the CPU can only access a limited range of the device
+memory and cannot perform atomic operations on it. Thus device memory cannot
+be considered the same as regular memory from the kernel point of view.
+
+Another crippling factor is the limited bandwidth (~32GBytes/s with PCIE 4.0
+and 16 lanes). This is 33 times less than the fastest GPU memory (1 TBytes/s).
+The final limitation is latency. Access to main memory from the device has an
+order of magnitude higher latency than when the device accesses its own memory.
+
+Some platforms are developing new I/O buses or additions/modifications to PCIE
+to address some of these limitations (OpenCAPI, CCIX). They mainly allow two-
+way cache coherency between CPU and device and allow all atomic operations the
+architecture supports. Sadly, not all platforms are following this trend and
+some major architectures are left without hardware solutions to these problems.
+
+So for shared address space to make sense, not only must we allow devices to
+access any memory but we must also permit any memory to be migrated to device
+memory while device is using it (blocking CPU access while it happens).
+
+
+Shared address space and migration
+==================================
+
+HMM intends to provide two main features. First one is to share the address
+space by duplicating the CPU page table in the device page table so the same
+address points to the same physical memory for any valid main memory address in
+the process address space.
+
+To achieve this, HMM offers a set of helpers to populate the device page table
+while keeping track of CPU page table updates. Device page table updates are
+not as easy as CPU page table updates. To update the device page table, you must
+allocate a buffer (or use a pool of pre-allocated buffers) and write GPU
+specific commands in it to perform the update (unmap, cache invalidations, and
+flush, ...). This cannot be done through common code for all devices. Hence
+why HMM provides helpers to factor out everything that can be while leaving the
+hardware specific details to the device driver.
+
+The second mechanism HMM provides is a new kind of ZONE_DEVICE memory that
+allows allocating a struct page for each page of the device memory. Those pages
+are special because the CPU cannot map them. However, they allow migrating
+main memory to device memory using existing migration mechanisms and everything
+looks like a page is swapped out to disk from the CPU point of view. Using a
+struct page gives the easiest and cleanest integration with existing mm mech-
+anisms. Here again, HMM only provides helpers, first to hotplug new ZONE_DEVICE
+memory for the device memory and second to perform migration. Policy decisions
+of what and when to migrate things is left to the device driver.
+
+Note that any CPU access to a device page triggers a page fault and a migration
+back to main memory. For example, when a page backing a given CPU address A is
+migrated from a main memory page to a device page, then any CPU access to
+address A triggers a page fault and initiates a migration back to main memory.
+
+With these two features, HMM not only allows a device to mirror process address
+space and keeping both CPU and device page table synchronized, but also lever-
+ages device memory by migrating the part of the data set that is actively being
+used by the device.
+
+
+Address space mirroring implementation and API
+==============================================
+
+Address space mirroring's main objective is to allow duplication of a range of
+CPU page table into a device page table; HMM helps keep both synchronized. A
+device driver that wants to mirror a process address space must start with the
+registration of an hmm_mirror struct::
+
+ int hmm_mirror_register(struct hmm_mirror *mirror,
+ struct mm_struct *mm);
+ int hmm_mirror_register_locked(struct hmm_mirror *mirror,
+ struct mm_struct *mm);
+
+
+The locked variant is to be used when the driver is already holding mmap_sem
+of the mm in write mode. The mirror struct has a set of callbacks that are used
+to propagate CPU page tables::
+
+ struct hmm_mirror_ops {
+ /* sync_cpu_device_pagetables() - synchronize page tables
+ *
+ * @mirror: pointer to struct hmm_mirror
+ * @update_type: type of update that occurred to the CPU page table
+ * @start: virtual start address of the range to update
+ * @end: virtual end address of the range to update
+ *
+ * This callback ultimately originates from mmu_notifiers when the CPU
+ * page table is updated. The device driver must update its page table
+ * in response to this callback. The update argument tells what action
+ * to perform.
+ *
+ * The device driver must not return from this callback until the device
+ * page tables are completely updated (TLBs flushed, etc); this is a
+ * synchronous call.
+ */
+ void (*update)(struct hmm_mirror *mirror,
+ enum hmm_update action,
+ unsigned long start,
+ unsigned long end);
+ };
+
+The device driver must perform the update action to the range (mark range
+read only, or fully unmap, ...). The device must be done with the update before
+the driver callback returns.
+
+When the device driver wants to populate a range of virtual addresses, it can
+use either::
+
+ int hmm_vma_get_pfns(struct vm_area_struct *vma,
+ struct hmm_range *range,
+ unsigned long start,
+ unsigned long end,
+ hmm_pfn_t *pfns);
+ int hmm_vma_fault(struct vm_area_struct *vma,
+ struct hmm_range *range,
+ unsigned long start,
+ unsigned long end,
+ hmm_pfn_t *pfns,
+ bool write,
+ bool block);
+
+The first one (hmm_vma_get_pfns()) will only fetch present CPU page table
+entries and will not trigger a page fault on missing or non-present entries.
+The second one does trigger a page fault on missing or read-only entry if the
+write parameter is true. Page faults use the generic mm page fault code path
+just like a CPU page fault.
+
+Both functions copy CPU page table entries into their pfns array argument. Each
+entry in that array corresponds to an address in the virtual range. HMM
+provides a set of flags to help the driver identify special CPU page table
+entries.
+
+Locking with the update() callback is the most important aspect the driver must
+respect in order to keep things properly synchronized. The usage pattern is::
+
+ int driver_populate_range(...)
+ {
+ struct hmm_range range;
+ ...
+ again:
+ ret = hmm_vma_get_pfns(vma, &range, start, end, pfns);
+ if (ret)
+ return ret;
+ take_lock(driver->update);
+ if (!hmm_vma_range_done(vma, &range)) {
+ release_lock(driver->update);
+ goto again;
+ }
+
+ // Use pfns array content to update device page table
+
+ release_lock(driver->update);
+ return 0;
+ }
+
+The driver->update lock is the same lock that the driver takes inside its
+update() callback. That lock must be held before hmm_vma_range_done() to avoid
+any race with a concurrent CPU page table update.
+
+HMM implements all this on top of the mmu_notifier API because we wanted a
+simpler API and also to be able to perform optimizations latter on like doing
+concurrent device updates in multi-devices scenario.
+
+HMM also serves as an impedance mismatch between how CPU page table updates
+are done (by CPU write to the page table and TLB flushes) and how devices
+update their own page table. Device updates are a multi-step process. First,
+appropriate commands are written to a buffer, then this buffer is scheduled for
+execution on the device. It is only once the device has executed commands in
+the buffer that the update is done. Creating and scheduling the update command
+buffer can happen concurrently for multiple devices. Waiting for each device to
+report commands as executed is serialized (there is no point in doing this
+concurrently).
+
+
+Represent and manage device memory from core kernel point of view
+=================================================================
+
+Several different designs were tried to support device memory. First one used
+a device specific data structure to keep information about migrated memory and
+HMM hooked itself in various places of mm code to handle any access to
+addresses that were backed by device memory. It turns out that this ended up
+replicating most of the fields of struct page and also needed many kernel code
+paths to be updated to understand this new kind of memory.
+
+Most kernel code paths never try to access the memory behind a page
+but only care about struct page contents. Because of this, HMM switched to
+directly using struct page for device memory which left most kernel code paths
+unaware of the difference. We only need to make sure that no one ever tries to
+map those pages from the CPU side.
+
+HMM provides a set of helpers to register and hotplug device memory as a new
+region needing a struct page. This is offered through a very simple API::
+
+ struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
+ struct device *device,
+ unsigned long size);
+ void hmm_devmem_remove(struct hmm_devmem *devmem);
+
+The hmm_devmem_ops is where most of the important things are::
+
+ struct hmm_devmem_ops {
+ void (*free)(struct hmm_devmem *devmem, struct page *page);
+ int (*fault)(struct hmm_devmem *devmem,
+ struct vm_area_struct *vma,
+ unsigned long addr,
+ struct page *page,
+ unsigned flags,
+ pmd_t *pmdp);
+ };
+
+The first callback (free()) happens when the last reference on a device page is
+dropped. This means the device page is now free and no longer used by anyone.
+The second callback happens whenever the CPU tries to access a device page
+which it cannot do. This second callback must trigger a migration back to
+system memory.
+
+
+Migration to and from device memory
+===================================
+
+Because the CPU cannot access device memory, migration must use the device DMA
+engine to perform copy from and to device memory. For this we need a new
+migration helper::
+
+ int migrate_vma(const struct migrate_vma_ops *ops,
+ struct vm_area_struct *vma,
+ unsigned long mentries,
+ unsigned long start,
+ unsigned long end,
+ unsigned long *src,
+ unsigned long *dst,
+ void *private);
+
+Unlike other migration functions it works on a range of virtual address, there
+are two reasons for that. First, device DMA copy has a high setup overhead cost
+and thus batching multiple pages is needed as otherwise the migration overhead
+makes the whole exercise pointless. The second reason is because the
+migration might be for a range of addresses the device is actively accessing.
+
+The migrate_vma_ops struct defines two callbacks. First one (alloc_and_copy())
+controls destination memory allocation and copy operation. Second one is there
+to allow the device driver to perform cleanup operations after migration::
+
+ struct migrate_vma_ops {
+ void (*alloc_and_copy)(struct vm_area_struct *vma,
+ const unsigned long *src,
+ unsigned long *dst,
+ unsigned long start,
+ unsigned long end,
+ void *private);
+ void (*finalize_and_map)(struct vm_area_struct *vma,
+ const unsigned long *src,
+ const unsigned long *dst,
+ unsigned long start,
+ unsigned long end,
+ void *private);
+ };
+
+It is important to stress that these migration helpers allow for holes in the
+virtual address range. Some pages in the range might not be migrated for all
+the usual reasons (page is pinned, page is locked, ...). This helper does not
+fail but just skips over those pages.
+
+The alloc_and_copy() might decide to not migrate all pages in the
+range (for reasons under the callback control). For those, the callback just
+has to leave the corresponding dst entry empty.
+
+Finally, the migration of the struct page might fail (for file backed page) for
+various reasons (failure to freeze reference, or update page cache, ...). If
+that happens, then the finalize_and_map() can catch any pages that were not
+migrated. Note those pages were still copied to a new page and thus we wasted
+bandwidth but this is considered as a rare event and a price that we are
+willing to pay to keep all the code simpler.
+
+
+Memory cgroup (memcg) and rss accounting
+========================================
+
+For now device memory is accounted as any regular page in rss counters (either
+anonymous if device page is used for anonymous, file if device page is used for
+file backed page or shmem if device page is used for shared memory). This is a
+deliberate choice to keep existing applications, that might start using device
+memory without knowing about it, running unimpacted.
+
+A drawback is that the OOM killer might kill an application using a lot of
+device memory and not a lot of regular system memory and thus not freeing much
+system memory. We want to gather more real world experience on how applications
+and system react under memory pressure in the presence of device memory before
+deciding to account device memory differently.
+
+
+Same decision was made for memory cgroup. Device memory pages are accounted
+against same memory cgroup a regular page would be accounted to. This does
+simplify migration to and from device memory. This also means that migration
+back from device memory to regular memory cannot fail because it would
+go above memory cgroup limit. We might revisit this choice latter on once we
+get more experience in how device memory is used and its impact on memory
+resource control.
+
+
+Note that device memory can never be pinned by device driver nor through GUP
+and thus such memory is always free upon process exit. Or when last reference
+is dropped in case of shared memory or file backed memory.