aboutsummaryrefslogtreecommitdiff
path: root/Documentation/trace/coresight/coresight.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace/coresight/coresight.rst')
-rw-r--r--Documentation/trace/coresight/coresight.rst498
1 files changed, 498 insertions, 0 deletions
diff --git a/Documentation/trace/coresight/coresight.rst b/Documentation/trace/coresight/coresight.rst
new file mode 100644
index 000000000000..a566719f8e7e
--- /dev/null
+++ b/Documentation/trace/coresight/coresight.rst
@@ -0,0 +1,498 @@
+======================================
+Coresight - HW Assisted Tracing on ARM
+======================================
+
+ :Author: Mathieu Poirier <mathieu.poirier@linaro.org>
+ :Date: September 11th, 2014
+
+Introduction
+------------
+
+Coresight is an umbrella of technologies allowing for the debugging of ARM
+based SoC. It includes solutions for JTAG and HW assisted tracing. This
+document is concerned with the latter.
+
+HW assisted tracing is becoming increasingly useful when dealing with systems
+that have many SoCs and other components like GPU and DMA engines. ARM has
+developed a HW assisted tracing solution by means of different components, each
+being added to a design at synthesis time to cater to specific tracing needs.
+Components are generally categorised as source, link and sinks and are
+(usually) discovered using the AMBA bus.
+
+"Sources" generate a compressed stream representing the processor instruction
+path based on tracing scenarios as configured by users. From there the stream
+flows through the coresight system (via ATB bus) using links that are connecting
+the emanating source to a sink(s). Sinks serve as endpoints to the coresight
+implementation, either storing the compressed stream in a memory buffer or
+creating an interface to the outside world where data can be transferred to a
+host without fear of filling up the onboard coresight memory buffer.
+
+At typical coresight system would look like this::
+
+ *****************************************************************
+ **************************** AMBA AXI ****************************===||
+ ***************************************************************** ||
+ ^ ^ | ||
+ | | * **
+ 0000000 ::::: 0000000 ::::: ::::: @@@@@@@ ||||||||||||
+ 0 CPU 0<-->: C : 0 CPU 0<-->: C : : C : @ STM @ || System ||
+ |->0000000 : T : |->0000000 : T : : T :<--->@@@@@ || Memory ||
+ | #######<-->: I : | #######<-->: I : : I : @@@<-| ||||||||||||
+ | # ETM # ::::: | # PTM # ::::: ::::: @ |
+ | ##### ^ ^ | ##### ^ ! ^ ! . | |||||||||
+ | |->### | ! | |->### | ! | ! . | || DAP ||
+ | | # | ! | | # | ! | ! . | |||||||||
+ | | . | ! | | . | ! | ! . | | |
+ | | . | ! | | . | ! | ! . | | *
+ | | . | ! | | . | ! | ! . | | SWD/
+ | | . | ! | | . | ! | ! . | | JTAG
+ *****************************************************************<-|
+ *************************** AMBA Debug APB ************************
+ *****************************************************************
+ | . ! . ! ! . |
+ | . * . * * . |
+ *****************************************************************
+ ******************** Cross Trigger Matrix (CTM) *******************
+ *****************************************************************
+ | . ^ . . |
+ | * ! * * |
+ *****************************************************************
+ ****************** AMBA Advanced Trace Bus (ATB) ******************
+ *****************************************************************
+ | ! =============== |
+ | * ===== F =====<---------|
+ | ::::::::: ==== U ====
+ |-->:: CTI ::<!! === N ===
+ | ::::::::: ! == N ==
+ | ^ * == E ==
+ | ! &&&&&&&&& IIIIIII == L ==
+ |------>&& ETB &&<......II I =======
+ | ! &&&&&&&&& II I .
+ | ! I I .
+ | ! I REP I<..........
+ | ! I I
+ | !!>&&&&&&&&& II I *Source: ARM ltd.
+ |------>& TPIU &<......II I DAP = Debug Access Port
+ &&&&&&&&& IIIIIII ETM = Embedded Trace Macrocell
+ ; PTM = Program Trace Macrocell
+ ; CTI = Cross Trigger Interface
+ * ETB = Embedded Trace Buffer
+ To trace port TPIU= Trace Port Interface Unit
+ SWD = Serial Wire Debug
+
+While on target configuration of the components is done via the APB bus,
+all trace data are carried out-of-band on the ATB bus. The CTM provides
+a way to aggregate and distribute signals between CoreSight components.
+
+The coresight framework provides a central point to represent, configure and
+manage coresight devices on a platform. This first implementation centers on
+the basic tracing functionality, enabling components such ETM/PTM, funnel,
+replicator, TMC, TPIU and ETB. Future work will enable more
+intricate IP blocks such as STM and CTI.
+
+
+Acronyms and Classification
+---------------------------
+
+Acronyms:
+
+PTM:
+ Program Trace Macrocell
+ETM:
+ Embedded Trace Macrocell
+STM:
+ System trace Macrocell
+ETB:
+ Embedded Trace Buffer
+ITM:
+ Instrumentation Trace Macrocell
+TPIU:
+ Trace Port Interface Unit
+TMC-ETR:
+ Trace Memory Controller, configured as Embedded Trace Router
+TMC-ETF:
+ Trace Memory Controller, configured as Embedded Trace FIFO
+CTI:
+ Cross Trigger Interface
+
+Classification:
+
+Source:
+ ETMv3.x ETMv4, PTMv1.0, PTMv1.1, STM, STM500, ITM
+Link:
+ Funnel, replicator (intelligent or not), TMC-ETR
+Sinks:
+ ETBv1.0, ETB1.1, TPIU, TMC-ETF
+Misc:
+ CTI
+
+
+Device Tree Bindings
+--------------------
+
+See Documentation/devicetree/bindings/arm/coresight.txt for details.
+
+As of this writing drivers for ITM, STMs and CTIs are not provided but are
+expected to be added as the solution matures.
+
+
+Framework and implementation
+----------------------------
+
+The coresight framework provides a central point to represent, configure and
+manage coresight devices on a platform. Any coresight compliant device can
+register with the framework for as long as they use the right APIs:
+
+.. c:function:: struct coresight_device *coresight_register(struct coresight_desc *desc);
+.. c:function:: void coresight_unregister(struct coresight_device *csdev);
+
+The registering function is taking a ``struct coresight_desc *desc`` and
+register the device with the core framework. The unregister function takes
+a reference to a ``struct coresight_device *csdev`` obtained at registration time.
+
+If everything goes well during the registration process the new devices will
+show up under /sys/bus/coresight/devices, as showns here for a TC2 platform::
+
+ root:~# ls /sys/bus/coresight/devices/
+ replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
+ 20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
+ root:~#
+
+The functions take a ``struct coresight_device``, which looks like this::
+
+ struct coresight_desc {
+ enum coresight_dev_type type;
+ struct coresight_dev_subtype subtype;
+ const struct coresight_ops *ops;
+ struct coresight_platform_data *pdata;
+ struct device *dev;
+ const struct attribute_group **groups;
+ };
+
+
+The "coresight_dev_type" identifies what the device is, i.e, source link or
+sink while the "coresight_dev_subtype" will characterise that type further.
+
+The ``struct coresight_ops`` is mandatory and will tell the framework how to
+perform base operations related to the components, each component having
+a different set of requirement. For that ``struct coresight_ops_sink``,
+``struct coresight_ops_link`` and ``struct coresight_ops_source`` have been
+provided.
+
+The next field ``struct coresight_platform_data *pdata`` is acquired by calling
+``of_get_coresight_platform_data()``, as part of the driver's _probe routine and
+``struct device *dev`` gets the device reference embedded in the ``amba_device``::
+
+ static int etm_probe(struct amba_device *adev, const struct amba_id *id)
+ {
+ ...
+ ...
+ drvdata->dev = &adev->dev;
+ ...
+ }
+
+Specific class of device (source, link, or sink) have generic operations
+that can be performed on them (see ``struct coresight_ops``). The ``**groups``
+is a list of sysfs entries pertaining to operations
+specific to that component only. "Implementation defined" customisations are
+expected to be accessed and controlled using those entries.
+
+Device Naming scheme
+--------------------
+
+The devices that appear on the "coresight" bus were named the same as their
+parent devices, i.e, the real devices that appears on AMBA bus or the platform bus.
+Thus the names were based on the Linux Open Firmware layer naming convention,
+which follows the base physical address of the device followed by the device
+type. e.g::
+
+ root:~# ls /sys/bus/coresight/devices/
+ 20010000.etf 20040000.funnel 20100000.stm 22040000.etm
+ 22140000.etm 230c0000.funnel 23240000.etm 20030000.tpiu
+ 20070000.etr 20120000.replicator 220c0000.funnel
+ 23040000.etm 23140000.etm 23340000.etm
+
+However, with the introduction of ACPI support, the names of the real
+devices are a bit cryptic and non-obvious. Thus, a new naming scheme was
+introduced to use more generic names based on the type of the device. The
+following rules apply::
+
+ 1) Devices that are bound to CPUs, are named based on the CPU logical
+ number.
+
+ e.g, ETM bound to CPU0 is named "etm0"
+
+ 2) All other devices follow a pattern, "<device_type_prefix>N", where :
+
+ <device_type_prefix> - A prefix specific to the type of the device
+ N - a sequential number assigned based on the order
+ of probing.
+
+ e.g, tmc_etf0, tmc_etr0, funnel0, funnel1
+
+Thus, with the new scheme the devices could appear as ::
+
+ root:~# ls /sys/bus/coresight/devices/
+ etm0 etm1 etm2 etm3 etm4 etm5 funnel0
+ funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0
+
+Some of the examples below might refer to old naming scheme and some
+to the newer scheme, to give a confirmation that what you see on your
+system is not unexpected. One must use the "names" as they appear on
+the system under specified locations.
+
+How to use the tracer modules
+-----------------------------
+
+There are two ways to use the Coresight framework:
+
+1. using the perf cmd line tools.
+2. interacting directly with the Coresight devices using the sysFS interface.
+
+Preference is given to the former as using the sysFS interface
+requires a deep understanding of the Coresight HW. The following sections
+provide details on using both methods.
+
+1) Using the sysFS interface:
+
+Before trace collection can start, a coresight sink needs to be identified.
+There is no limit on the amount of sinks (nor sources) that can be enabled at
+any given moment. As a generic operation, all device pertaining to the sink
+class will have an "active" entry in sysfs::
+
+ root:/sys/bus/coresight/devices# ls
+ replicator 20030000.tpiu 2201c000.ptm 2203c000.etm 2203e000.etm
+ 20010000.etb 20040000.funnel 2201d000.ptm 2203d000.etm
+ root:/sys/bus/coresight/devices# ls 20010000.etb
+ enable_sink status trigger_cntr
+ root:/sys/bus/coresight/devices# echo 1 > 20010000.etb/enable_sink
+ root:/sys/bus/coresight/devices# cat 20010000.etb/enable_sink
+ 1
+ root:/sys/bus/coresight/devices#
+
+At boot time the current etm3x driver will configure the first address
+comparator with "_stext" and "_etext", essentially tracing any instruction
+that falls within that range. As such "enabling" a source will immediately
+trigger a trace capture::
+
+ root:/sys/bus/coresight/devices# echo 1 > 2201c000.ptm/enable_source
+ root:/sys/bus/coresight/devices# cat 2201c000.ptm/enable_source
+ 1
+ root:/sys/bus/coresight/devices# cat 20010000.etb/status
+ Depth: 0x2000
+ Status: 0x1
+ RAM read ptr: 0x0
+ RAM wrt ptr: 0x19d3 <----- The write pointer is moving
+ Trigger cnt: 0x0
+ Control: 0x1
+ Flush status: 0x0
+ Flush ctrl: 0x2001
+ root:/sys/bus/coresight/devices#
+
+Trace collection is stopped the same way::
+
+ root:/sys/bus/coresight/devices# echo 0 > 2201c000.ptm/enable_source
+ root:/sys/bus/coresight/devices#
+
+The content of the ETB buffer can be harvested directly from /dev::
+
+ root:/sys/bus/coresight/devices# dd if=/dev/20010000.etb \
+ of=~/cstrace.bin
+ 64+0 records in
+ 64+0 records out
+ 32768 bytes (33 kB) copied, 0.00125258 s, 26.2 MB/s
+ root:/sys/bus/coresight/devices#
+
+The file cstrace.bin can be decompressed using "ptm2human", DS-5 or Trace32.
+
+Following is a DS-5 output of an experimental loop that increments a variable up
+to a certain value. The example is simple and yet provides a glimpse of the
+wealth of possibilities that coresight provides.
+::
+
+ Info Tracing enabled
+ Instruction 106378866 0x8026B53C E52DE004 false PUSH {lr}
+ Instruction 0 0x8026B540 E24DD00C false SUB sp,sp,#0xc
+ Instruction 0 0x8026B544 E3A03000 false MOV r3,#0
+ Instruction 0 0x8026B548 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Timestamp Timestamp: 17106715833
+ Instruction 319 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 9 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 7 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 10 0x8026B54C E59D3004 false LDR r3,[sp,#4]
+ Instruction 0 0x8026B550 E3530004 false CMP r3,#4
+ Instruction 0 0x8026B554 E2833001 false ADD r3,r3,#1
+ Instruction 0 0x8026B558 E58D3004 false STR r3,[sp,#4]
+ Instruction 0 0x8026B55C DAFFFFFA true BLE {pc}-0x10 ; 0x8026b54c
+ Instruction 6 0x8026B560 EE1D3F30 false MRC p15,#0x0,r3,c13,c0,#1
+ Instruction 0 0x8026B564 E1A0100D false MOV r1,sp
+ Instruction 0 0x8026B568 E3C12D7F false BIC r2,r1,#0x1fc0
+ Instruction 0 0x8026B56C E3C2203F false BIC r2,r2,#0x3f
+ Instruction 0 0x8026B570 E59D1004 false LDR r1,[sp,#4]
+ Instruction 0 0x8026B574 E59F0010 false LDR r0,[pc,#16] ; [0x8026B58C] = 0x80550368
+ Instruction 0 0x8026B578 E592200C false LDR r2,[r2,#0xc]
+ Instruction 0 0x8026B57C E59221D0 false LDR r2,[r2,#0x1d0]
+ Instruction 0 0x8026B580 EB07A4CF true BL {pc}+0x1e9344 ; 0x804548c4
+ Info Tracing enabled
+ Instruction 13570831 0x8026B584 E28DD00C false ADD sp,sp,#0xc
+ Instruction 0 0x8026B588 E8BD8000 true LDM sp!,{pc}
+ Timestamp Timestamp: 17107041535
+
+2) Using perf framework:
+
+Coresight tracers are represented using the Perf framework's Performance
+Monitoring Unit (PMU) abstraction. As such the perf framework takes charge of
+controlling when tracing gets enabled based on when the process of interest is
+scheduled. When configured in a system, Coresight PMUs will be listed when
+queried by the perf command line tool:
+
+ linaro@linaro-nano:~$ ./perf list pmu
+
+ List of pre-defined events (to be used in -e):
+
+ cs_etm// [Kernel PMU event]
+
+ linaro@linaro-nano:~$
+
+Regardless of the number of tracers available in a system (usually equal to the
+amount of processor cores), the "cs_etm" PMU will be listed only once.
+
+A Coresight PMU works the same way as any other PMU, i.e the name of the PMU is
+listed along with configuration options within forward slashes '/'. Since a
+Coresight system will typically have more than one sink, the name of the sink to
+work with needs to be specified as an event option.
+On newer kernels the available sinks are listed in sysFS under
+($SYSFS)/bus/event_source/devices/cs_etm/sinks/::
+
+ root@localhost:/sys/bus/event_source/devices/cs_etm/sinks# ls
+ tmc_etf0 tmc_etr0 tpiu0
+
+On older kernels, this may need to be found from the list of coresight devices,
+available under ($SYSFS)/bus/coresight/devices/::
+
+ root:~# ls /sys/bus/coresight/devices/
+ etm0 etm1 etm2 etm3 etm4 etm5 funnel0
+ funnel1 funnel2 replicator0 stm0 tmc_etf0 tmc_etr0 tpiu0
+ root@linaro-nano:~# perf record -e cs_etm/@tmc_etr0/u --per-thread program
+
+As mentioned above in section "Device Naming scheme", the names of the devices could
+look different from what is used in the example above. One must use the device names
+as it appears under the sysFS.
+
+The syntax within the forward slashes '/' is important. The '@' character
+tells the parser that a sink is about to be specified and that this is the sink
+to use for the trace session.
+
+More information on the above and other example on how to use Coresight with
+the perf tools can be found in the "HOWTO.md" file of the openCSD gitHub
+repository [#third]_.
+
+2.1) AutoFDO analysis using the perf tools:
+
+perf can be used to record and analyze trace of programs.
+
+Execution can be recorded using 'perf record' with the cs_etm event,
+specifying the name of the sink to record to, e.g::
+
+ perf record -e cs_etm/@tmc_etr0/u --per-thread
+
+The 'perf report' and 'perf script' commands can be used to analyze execution,
+synthesizing instruction and branch events from the instruction trace.
+'perf inject' can be used to replace the trace data with the synthesized events.
+The --itrace option controls the type and frequency of synthesized events
+(see perf documentation).
+
+Note that only 64-bit programs are currently supported - further work is
+required to support instruction decode of 32-bit Arm programs.
+
+
+Generating coverage files for Feedback Directed Optimization: AutoFDO
+---------------------------------------------------------------------
+
+'perf inject' accepts the --itrace option in which case tracing data is
+removed and replaced with the synthesized events. e.g.
+::
+
+ perf inject --itrace --strip -i perf.data -o perf.data.new
+
+Below is an example of using ARM ETM for autoFDO. It requires autofdo
+(https://github.com/google/autofdo) and gcc version 5. The bubble
+sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial).
+::
+
+ $ gcc-5 -O3 sort.c -o sort
+ $ taskset -c 2 ./sort
+ Bubble sorting array of 30000 elements
+ 5910 ms
+
+ $ perf record -e cs_etm/@tmc_etr0/u --per-thread taskset -c 2 ./sort
+ Bubble sorting array of 30000 elements
+ 12543 ms
+ [ perf record: Woken up 35 times to write data ]
+ [ perf record: Captured and wrote 69.640 MB perf.data ]
+
+ $ perf inject -i perf.data -o inj.data --itrace=il64 --strip
+ $ create_gcov --binary=./sort --profile=inj.data --gcov=sort.gcov -gcov_version=1
+ $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
+ $ taskset -c 2 ./sort_autofdo
+ Bubble sorting array of 30000 elements
+ 5806 ms
+
+
+How to use the STM module
+-------------------------
+
+Using the System Trace Macrocell module is the same as the tracers - the only
+difference is that clients are driving the trace capture rather
+than the program flow through the code.
+
+As with any other CoreSight component, specifics about the STM tracer can be
+found in sysfs with more information on each entry being found in [#first]_::
+
+ root@genericarmv8:~# ls /sys/bus/coresight/devices/stm0
+ enable_source hwevent_select port_enable subsystem uevent
+ hwevent_enable mgmt port_select traceid
+ root@genericarmv8:~#
+
+Like any other source a sink needs to be identified and the STM enabled before
+being used::
+
+ root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/tmc_etf0/enable_sink
+ root@genericarmv8:~# echo 1 > /sys/bus/coresight/devices/stm0/enable_source
+
+From there user space applications can request and use channels using the devfs
+interface provided for that purpose by the generic STM API::
+
+ root@genericarmv8:~# ls -l /dev/stm0
+ crw------- 1 root root 10, 61 Jan 3 18:11 /dev/stm0
+ root@genericarmv8:~#
+
+Details on how to use the generic STM API can be found here:- :doc:`../stm` [#second]_.
+
+.. [#first] Documentation/ABI/testing/sysfs-bus-coresight-devices-stm
+
+.. [#second] Documentation/trace/stm.rst
+
+.. [#third] https://github.com/Linaro/perf-opencsd