aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/net
diff options
context:
space:
mode:
authorAlexei Starovoitov <ast@kernel.org>2019-11-14 10:57:04 -0800
committerDaniel Borkmann <daniel@iogearbox.net>2019-11-15 23:41:51 +0100
commitfec56f5890d93fc2ed74166c397dc186b1c25951 (patch)
tree19aa5a4cd136bf87ec0068be2b83c3ab592c2686 /arch/x86/net
parent5964b2000f283ff5df366f718e0f083ebbaae977 (diff)
bpf: Introduce BPF trampoline
Introduce BPF trampoline concept to allow kernel code to call into BPF programs with practically zero overhead. The trampoline generation logic is architecture dependent. It's converting native calling convention into BPF calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The registers R1 to R5 are used to pass arguments into BPF functions. The main BPF program accepts only single argument "ctx" in R1. Whereas CPU native calling convention is different. x86-64 is passing first 6 arguments in registers and the rest on the stack. x86-32 is passing first 3 arguments in registers. sparc64 is passing first 6 in registers. And so on. The trampolines between BPF and kernel already exist. BPF_CALL_x macros in include/linux/filter.h statically compile trampolines from BPF into kernel helpers. They convert up to five u64 arguments into kernel C pointers and integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On 32-bit architecture they're meaningful. The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and __bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert kernel function arguments into array of u64s that BPF program consumes via R1=ctx pointer. This patch set is doing the same job as __bpf_trace_##call() static trampolines, but dynamically for any kernel function. There are ~22k global kernel functions that are attachable via nop at function entry. The function arguments and types are described in BTF. The job of btf_distill_func_proto() function is to extract useful information from BTF into "function model" that architecture dependent trampoline generators will use to generate assembly code to cast kernel function arguments into array of u64s. For example the kernel function eth_type_trans has two pointers. They will be casted to u64 and stored into stack of generated trampoline. The pointer to that stack space will be passed into BPF program in R1. On x86-64 such generated trampoline will consume 16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will make sure that only two u64 are accessed read-only by BPF program. The verifier will also recognize the precise type of the pointers being accessed and will not allow typecasting of the pointer to a different type within BPF program. The tracing use case in the datacenter demonstrated that certain key kernel functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always active. Other functions have both kprobe and kretprobe. So it is essential to keep both kernel code and BPF programs executing at maximum speed. Hence generated BPF trampoline is re-generated every time new program is attached or detached to maintain maximum performance. To avoid the high cost of retpoline the attached BPF programs are called directly. __bpf_prog_enter/exit() are used to support per-program execution stats. In the future this logic will be optimized further by adding support for bpf_stats_enabled_key inside generated assembly code. Introduction of preemptible and sleepable BPF programs will completely remove the need to call to __bpf_prog_enter/exit(). Detach of a BPF program from the trampoline should not fail. To avoid memory allocation in detach path the half of the page is used as a reserve and flipped after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly which is enough for BPF tracing use cases. This limit can be increased in the future. BPF_TRACE_FENTRY programs have access to raw kernel function arguments while BPF_TRACE_FEXIT programs have access to kernel return value as well. Often kprobe BPF program remembers function arguments in a map while kretprobe fetches arguments from a map and analyzes them together with return value. BPF_TRACE_FEXIT accelerates this typical use case. Recursion prevention for kprobe BPF programs is done via per-cpu bpf_prog_active counter. In practice that turned out to be a mistake. It caused programs to randomly skip execution. The tracing tools missed results they were looking for. Hence BPF trampoline doesn't provide builtin recursion prevention. It's a job of BPF program itself and will be addressed in the follow up patches. BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases in the future. For example to remove retpoline cost from XDP programs. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
Diffstat (limited to 'arch/x86/net')
-rw-r--r--arch/x86/net/bpf_jit_comp.c211
1 files changed, 209 insertions, 2 deletions
diff --git a/arch/x86/net/bpf_jit_comp.c b/arch/x86/net/bpf_jit_comp.c
index 254b2889e881..be2b43a894f6 100644
--- a/arch/x86/net/bpf_jit_comp.c
+++ b/arch/x86/net/bpf_jit_comp.c
@@ -98,6 +98,7 @@ static int bpf_size_to_x86_bytes(int bpf_size)
/* Pick a register outside of BPF range for JIT internal work */
#define AUX_REG (MAX_BPF_JIT_REG + 1)
+#define X86_REG_R9 (MAX_BPF_JIT_REG + 2)
/*
* The following table maps BPF registers to x86-64 registers.
@@ -106,8 +107,8 @@ static int bpf_size_to_x86_bytes(int bpf_size)
* register in load/store instructions, it always needs an
* extra byte of encoding and is callee saved.
*
- * Also x86-64 register R9 is unused. x86-64 register R10 is
- * used for blinding (if enabled).
+ * x86-64 register R9 is not used by BPF programs, but can be used by BPF
+ * trampoline. x86-64 register R10 is used for blinding (if enabled).
*/
static const int reg2hex[] = {
[BPF_REG_0] = 0, /* RAX */
@@ -123,6 +124,7 @@ static const int reg2hex[] = {
[BPF_REG_FP] = 5, /* RBP readonly */
[BPF_REG_AX] = 2, /* R10 temp register */
[AUX_REG] = 3, /* R11 temp register */
+ [X86_REG_R9] = 1, /* R9 register, 6th function argument */
};
static const int reg2pt_regs[] = {
@@ -150,6 +152,7 @@ static bool is_ereg(u32 reg)
BIT(BPF_REG_7) |
BIT(BPF_REG_8) |
BIT(BPF_REG_9) |
+ BIT(X86_REG_R9) |
BIT(BPF_REG_AX));
}
@@ -1233,6 +1236,210 @@ emit_jmp:
return proglen;
}
+static void save_regs(struct btf_func_model *m, u8 **prog, int nr_args,
+ int stack_size)
+{
+ int i;
+ /* Store function arguments to stack.
+ * For a function that accepts two pointers the sequence will be:
+ * mov QWORD PTR [rbp-0x10],rdi
+ * mov QWORD PTR [rbp-0x8],rsi
+ */
+ for (i = 0; i < min(nr_args, 6); i++)
+ emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]),
+ BPF_REG_FP,
+ i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
+ -(stack_size - i * 8));
+}
+
+static void restore_regs(struct btf_func_model *m, u8 **prog, int nr_args,
+ int stack_size)
+{
+ int i;
+
+ /* Restore function arguments from stack.
+ * For a function that accepts two pointers the sequence will be:
+ * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10]
+ * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8]
+ */
+ for (i = 0; i < min(nr_args, 6); i++)
+ emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]),
+ i == 5 ? X86_REG_R9 : BPF_REG_1 + i,
+ BPF_REG_FP,
+ -(stack_size - i * 8));
+}
+
+static int invoke_bpf(struct btf_func_model *m, u8 **pprog,
+ struct bpf_prog **progs, int prog_cnt, int stack_size)
+{
+ u8 *prog = *pprog;
+ int cnt = 0, i;
+
+ for (i = 0; i < prog_cnt; i++) {
+ if (emit_call(&prog, __bpf_prog_enter, prog))
+ return -EINVAL;
+ /* remember prog start time returned by __bpf_prog_enter */
+ emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0);
+
+ /* arg1: lea rdi, [rbp - stack_size] */
+ EMIT4(0x48, 0x8D, 0x7D, -stack_size);
+ /* arg2: progs[i]->insnsi for interpreter */
+ if (!progs[i]->jited)
+ emit_mov_imm64(&prog, BPF_REG_2,
+ (long) progs[i]->insnsi >> 32,
+ (u32) (long) progs[i]->insnsi);
+ /* call JITed bpf program or interpreter */
+ if (emit_call(&prog, progs[i]->bpf_func, prog))
+ return -EINVAL;
+
+ /* arg1: mov rdi, progs[i] */
+ emit_mov_imm64(&prog, BPF_REG_1, (long) progs[i] >> 32,
+ (u32) (long) progs[i]);
+ /* arg2: mov rsi, rbx <- start time in nsec */
+ emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6);
+ if (emit_call(&prog, __bpf_prog_exit, prog))
+ return -EINVAL;
+ }
+ *pprog = prog;
+ return 0;
+}
+
+/* Example:
+ * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev);
+ * its 'struct btf_func_model' will be nr_args=2
+ * The assembly code when eth_type_trans is executing after trampoline:
+ *
+ * push rbp
+ * mov rbp, rsp
+ * sub rsp, 16 // space for skb and dev
+ * push rbx // temp regs to pass start time
+ * mov qword ptr [rbp - 16], rdi // save skb pointer to stack
+ * mov qword ptr [rbp - 8], rsi // save dev pointer to stack
+ * call __bpf_prog_enter // rcu_read_lock and preempt_disable
+ * mov rbx, rax // remember start time in bpf stats are enabled
+ * lea rdi, [rbp - 16] // R1==ctx of bpf prog
+ * call addr_of_jited_FENTRY_prog
+ * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
+ * mov rsi, rbx // prog start time
+ * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
+ * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack
+ * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack
+ * pop rbx
+ * leave
+ * ret
+ *
+ * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be
+ * replaced with 'call generated_bpf_trampoline'. When it returns
+ * eth_type_trans will continue executing with original skb and dev pointers.
+ *
+ * The assembly code when eth_type_trans is called from trampoline:
+ *
+ * push rbp
+ * mov rbp, rsp
+ * sub rsp, 24 // space for skb, dev, return value
+ * push rbx // temp regs to pass start time
+ * mov qword ptr [rbp - 24], rdi // save skb pointer to stack
+ * mov qword ptr [rbp - 16], rsi // save dev pointer to stack
+ * call __bpf_prog_enter // rcu_read_lock and preempt_disable
+ * mov rbx, rax // remember start time if bpf stats are enabled
+ * lea rdi, [rbp - 24] // R1==ctx of bpf prog
+ * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev
+ * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
+ * mov rsi, rbx // prog start time
+ * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
+ * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack
+ * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack
+ * call eth_type_trans+5 // execute body of eth_type_trans
+ * mov qword ptr [rbp - 8], rax // save return value
+ * call __bpf_prog_enter // rcu_read_lock and preempt_disable
+ * mov rbx, rax // remember start time in bpf stats are enabled
+ * lea rdi, [rbp - 24] // R1==ctx of bpf prog
+ * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value
+ * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off
+ * mov rsi, rbx // prog start time
+ * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math
+ * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value
+ * pop rbx
+ * leave
+ * add rsp, 8 // skip eth_type_trans's frame
+ * ret // return to its caller
+ */
+int arch_prepare_bpf_trampoline(void *image, struct btf_func_model *m, u32 flags,
+ struct bpf_prog **fentry_progs, int fentry_cnt,
+ struct bpf_prog **fexit_progs, int fexit_cnt,
+ void *orig_call)
+{
+ int cnt = 0, nr_args = m->nr_args;
+ int stack_size = nr_args * 8;
+ u8 *prog;
+
+ /* x86-64 supports up to 6 arguments. 7+ can be added in the future */
+ if (nr_args > 6)
+ return -ENOTSUPP;
+
+ if ((flags & BPF_TRAMP_F_RESTORE_REGS) &&
+ (flags & BPF_TRAMP_F_SKIP_FRAME))
+ return -EINVAL;
+
+ if (flags & BPF_TRAMP_F_CALL_ORIG)
+ stack_size += 8; /* room for return value of orig_call */
+
+ if (flags & BPF_TRAMP_F_SKIP_FRAME)
+ /* skip patched call instruction and point orig_call to actual
+ * body of the kernel function.
+ */
+ orig_call += X86_CALL_SIZE;
+
+ prog = image;
+
+ EMIT1(0x55); /* push rbp */
+ EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
+ EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */
+ EMIT1(0x53); /* push rbx */
+
+ save_regs(m, &prog, nr_args, stack_size);
+
+ if (fentry_cnt)
+ if (invoke_bpf(m, &prog, fentry_progs, fentry_cnt, stack_size))
+ return -EINVAL;
+
+ if (flags & BPF_TRAMP_F_CALL_ORIG) {
+ if (fentry_cnt)
+ restore_regs(m, &prog, nr_args, stack_size);
+
+ /* call original function */
+ if (emit_call(&prog, orig_call, prog))
+ return -EINVAL;
+ /* remember return value in a stack for bpf prog to access */
+ emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8);
+ }
+
+ if (fexit_cnt)
+ if (invoke_bpf(m, &prog, fexit_progs, fexit_cnt, stack_size))
+ return -EINVAL;
+
+ if (flags & BPF_TRAMP_F_RESTORE_REGS)
+ restore_regs(m, &prog, nr_args, stack_size);
+
+ if (flags & BPF_TRAMP_F_CALL_ORIG)
+ /* restore original return value back into RAX */
+ emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8);
+
+ EMIT1(0x5B); /* pop rbx */
+ EMIT1(0xC9); /* leave */
+ if (flags & BPF_TRAMP_F_SKIP_FRAME)
+ /* skip our return address and return to parent */
+ EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */
+ EMIT1(0xC3); /* ret */
+ /* One half of the page has active running trampoline.
+ * Another half is an area for next trampoline.
+ * Make sure the trampoline generation logic doesn't overflow.
+ */
+ if (WARN_ON_ONCE(prog - (u8 *)image > PAGE_SIZE / 2 - BPF_INSN_SAFETY))
+ return -EFAULT;
+ return 0;
+}
+
struct x64_jit_data {
struct bpf_binary_header *header;
int *addrs;