summaryrefslogtreecommitdiff
path: root/Documentation/devicetree/bindings
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/devicetree/bindings')
-rw-r--r--Documentation/devicetree/bindings/arm/cpus.txt17
-rw-r--r--Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt31
-rw-r--r--Documentation/devicetree/bindings/display/hisilicon/dw-dsi.txt72
-rw-r--r--Documentation/devicetree/bindings/display/hisilicon/hisi-ade.txt64
-rw-r--r--Documentation/devicetree/bindings/mailbox/hisilicon,hi6220-mailbox.txt57
-rw-r--r--Documentation/devicetree/bindings/mfd/hisilicon,hi655x.txt27
-rw-r--r--Documentation/devicetree/bindings/misc/ramoops.txt43
-rw-r--r--Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt6
-rw-r--r--Documentation/devicetree/bindings/phy/phy-hi6220-usb.txt16
-rw-r--r--Documentation/devicetree/bindings/regulator/hisilicon,hi655x-regulator.txt28
-rw-r--r--Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt36
-rw-r--r--Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt360
-rw-r--r--Documentation/devicetree/bindings/usb/dwc2.txt1
-rw-r--r--Documentation/devicetree/bindings/vendor-prefixes.txt1
14 files changed, 758 insertions, 1 deletions
diff --git a/Documentation/devicetree/bindings/arm/cpus.txt b/Documentation/devicetree/bindings/arm/cpus.txt
index 3a07a87fef20..6aca64f289b6 100644
--- a/Documentation/devicetree/bindings/arm/cpus.txt
+++ b/Documentation/devicetree/bindings/arm/cpus.txt
@@ -242,6 +242,23 @@ nodes to be present and contain the properties described below.
Definition: Specifies the syscon node controlling the cpu core
power domains.
+ - dynamic-power-coefficient
+ Usage: optional
+ Value type: <prop-encoded-array>
+ Definition: A u32 value that represents the running time dynamic
+ power coefficient in units of mW/MHz/uVolt^2. The
+ coefficient can either be calculated from power
+ measurements or derived by analysis.
+
+ The dynamic power consumption of the CPU is
+ proportional to the square of the Voltage (V) and
+ the clock frequency (f). The coefficient is used to
+ calculate the dynamic power as below -
+
+ Pdyn = dynamic-power-coefficient * V^2 * f
+
+ where voltage is in uV, frequency is in MHz.
+
Example 1 (dual-cluster big.LITTLE system 32-bit):
cpus {
diff --git a/Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt b/Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt
new file mode 100644
index 000000000000..d38834c67dff
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/firmware/linaro,optee-tz.txt
@@ -0,0 +1,31 @@
+OP-TEE Device Tree Bindings
+
+OP-TEE is a piece of software using hardware features to provide a Trusted
+Execution Environment. The security can be provided with ARM TrustZone, but
+also by virtualization or a separate chip.
+
+We're using "linaro" as the first part of the compatible property for
+the reference implementation maintained by Linaro.
+
+* OP-TEE based on ARM TrustZone required properties:
+
+- compatible : should contain "linaro,optee-tz"
+
+- method : The method of calling the OP-TEE Trusted OS. Permitted
+ values are:
+
+ "smc" : SMC #0, with the register assignments specified
+ in drivers/tee/optee/optee_smc.h
+
+ "hvc" : HVC #0, with the register assignments specified
+ in drivers/tee/optee/optee_smc.h
+
+
+
+Example:
+ firmware {
+ optee {
+ compatible = "linaro,optee-tz";
+ method = "smc";
+ };
+ };
diff --git a/Documentation/devicetree/bindings/display/hisilicon/dw-dsi.txt b/Documentation/devicetree/bindings/display/hisilicon/dw-dsi.txt
new file mode 100644
index 000000000000..d270bfe4e4e0
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/hisilicon/dw-dsi.txt
@@ -0,0 +1,72 @@
+Device-Tree bindings for DesignWare DSI Host Controller v1.20a driver
+
+A DSI Host Controller resides in the middle of display controller and external
+HDMI converter or panel.
+
+Required properties:
+- compatible: value should be "hisilicon,hi6220-dsi".
+- reg: physical base address and length of dsi controller's registers.
+- clocks: contains APB clock phandle + clock-specifier pair.
+- clock-names: should be "pclk".
+- ports: contains DSI controller input and output sub port.
+ The input port connects to ADE output port with the reg value "0".
+ The output port with the reg value "1", it could connect to panel or
+ any other bridge endpoints.
+ See Documentation/devicetree/bindings/graph.txt for more device graph info.
+
+A example of HiKey board hi6220 SoC and board specific DT entry:
+Example:
+
+SoC specific:
+ dsi: dsi@f4107800 {
+ compatible = "hisilicon,hi6220-dsi";
+ reg = <0x0 0xf4107800 0x0 0x100>;
+ clocks = <&media_ctrl HI6220_DSI_PCLK>;
+ clock-names = "pclk";
+ status = "disabled";
+
+ ports {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ /* 0 for input port */
+ port@0 {
+ reg = <0>;
+ dsi_in: endpoint {
+ remote-endpoint = <&ade_out>;
+ };
+ };
+ };
+ };
+
+
+Board specific:
+ &dsi {
+ status = "ok";
+
+ ports {
+ /* 1 for output port */
+ port@1 {
+ reg = <1>;
+
+ dsi_out0: endpoint@0 {
+ remote-endpoint = <&adv7533_in>;
+ };
+ };
+ };
+ };
+
+ &i2c2 {
+ ...
+
+ adv7533: adv7533@39 {
+ ...
+
+ port {
+ adv7533_in: endpoint {
+ remote-endpoint = <&dsi_out0>;
+ };
+ };
+ };
+ };
+
diff --git a/Documentation/devicetree/bindings/display/hisilicon/hisi-ade.txt b/Documentation/devicetree/bindings/display/hisilicon/hisi-ade.txt
new file mode 100644
index 000000000000..38dc9d60eef8
--- /dev/null
+++ b/Documentation/devicetree/bindings/display/hisilicon/hisi-ade.txt
@@ -0,0 +1,64 @@
+Device-Tree bindings for hisilicon ADE display controller driver
+
+ADE (Advanced Display Engine) is the display controller which grab image
+data from memory, do composition, do post image processing, generate RGB
+timing stream and transfer to DSI.
+
+Required properties:
+- compatible: value should be "hisilicon,hi6220-ade".
+- reg: physical base address and length of the ADE controller's registers.
+- hisilicon,noc-syscon: ADE NOC QoS syscon.
+- resets: The ADE reset controller node.
+- interrupt: the ldi vblank interrupt number used.
+- clocks: a list of phandle + clock-specifier pairs, one for each entry
+ in clock-names.
+- clock-names: should contain:
+ "clk_ade_core" for the ADE core clock.
+ "clk_codec_jpeg" for the media NOC QoS clock, which use the same clock with
+ jpeg codec.
+ "clk_ade_pix" for the ADE pixel clok.
+- assigned-clocks: Should contain "clk_ade_core" and "clk_codec_jpeg" clocks'
+ phandle + clock-specifier pairs.
+- assigned-clock-rates: clock rates, one for each entry in assigned-clocks.
+ The rate of "clk_ade_core" could be "360000000" or "180000000";
+ The rate of "clk_codec_jpeg" could be or less than "1440000000".
+ These rate values could be configured according to performance and power
+ consumption.
+- port: the output port. This contains one endpoint subnode, with its
+ remote-endpoint set to the phandle of the connected DSI input endpoint.
+ See Documentation/devicetree/bindings/graph.txt for more device graph info.
+
+Optional properties:
+- dma-coherent: Present if dma operations are coherent.
+
+
+A example of HiKey board hi6220 SoC specific DT entry:
+Example:
+
+ ade: ade@f4100000 {
+ compatible = "hisilicon,hi6220-ade";
+ reg = <0x0 0xf4100000 0x0 0x7800>;
+ reg-names = "ade_base";
+ hisilicon,noc-syscon = <&medianoc_ade>;
+ resets = <&media_ctrl MEDIA_ADE>;
+ interrupts = <0 115 4>; /* ldi interrupt */
+
+ clocks = <&media_ctrl HI6220_ADE_CORE>,
+ <&media_ctrl HI6220_CODEC_JPEG>,
+ <&media_ctrl HI6220_ADE_PIX_SRC>;
+ /*clock name*/
+ clock-names = "clk_ade_core",
+ "clk_codec_jpeg",
+ "clk_ade_pix";
+
+ assigned-clocks = <&media_ctrl HI6220_ADE_CORE>,
+ <&media_ctrl HI6220_CODEC_JPEG>;
+ assigned-clock-rates = <360000000>, <288000000>;
+ dma-coherent;
+
+ port {
+ ade_out: endpoint {
+ remote-endpoint = <&dsi_in>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mailbox/hisilicon,hi6220-mailbox.txt b/Documentation/devicetree/bindings/mailbox/hisilicon,hi6220-mailbox.txt
new file mode 100644
index 000000000000..3dfb0b0ecd33
--- /dev/null
+++ b/Documentation/devicetree/bindings/mailbox/hisilicon,hi6220-mailbox.txt
@@ -0,0 +1,57 @@
+Hisilicon Hi6220 Mailbox Driver
+===============================
+
+Hisilicon Hi6220 mailbox supports up to 32 channels. Each channel
+is unidirectional with a maximum message size of 8 words. I/O is
+performed using register access (there is no DMA) and the cell
+raises an interrupt when messages are received.
+
+Mailbox Device Node:
+====================
+
+Required properties:
+--------------------
+- compatible: Shall be "hisilicon,hi6220-mbox"
+- reg: Contains the mailbox register address range (base
+ address and length); the first item is for IPC
+ registers, the second item is shared buffer for
+ slots.
+- #mbox-cells Common mailbox binding property to identify the number
+ of cells required for the mailbox specifier. Should be 1.
+- interrupts: Contains the interrupt information for the mailbox
+ device. The format is dependent on which interrupt
+ controller the SoCs use.
+
+Example:
+--------
+
+ mailbox: mailbox@F7510000 {
+ #mbox-cells = <1>;
+ compatible = "hisilicon,hi6220-mbox";
+ reg = <0x0 0xF7510000 0x0 0x1000>, /* IPC_S */
+ <0x0 0x06DFF800 0x0 0x0800>; /* Mailbox */
+ interrupt-parent = <&gic>;
+ interrupts = <0 94 4>;
+ };
+
+
+Mailbox client
+===============
+
+"mboxes" and the optional "mbox-names" (please see
+Documentation/devicetree/bindings/mailbox/mailbox.txt for details). Each value
+of the mboxes property should contain a phandle to the mailbox controller
+device node and second argument is the channel index. It must be 0 (hardware
+support only one channel). The equivalent "mbox-names" property value can be
+used to give a name to the communication channel to be used by the client user.
+
+Example:
+--------
+
+ stub_clock: stub_clock {
+ compatible = "hisilicon,hi6220-stub-clk";
+ hisilicon,hi6220-clk-sram = <&sram>;
+ #clock-cells = <1>;
+ mbox-names = "mbox-tx";
+ mboxes = <&mailbox 1>;
+ };
diff --git a/Documentation/devicetree/bindings/mfd/hisilicon,hi655x.txt b/Documentation/devicetree/bindings/mfd/hisilicon,hi655x.txt
new file mode 100644
index 000000000000..5edc310470b6
--- /dev/null
+++ b/Documentation/devicetree/bindings/mfd/hisilicon,hi655x.txt
@@ -0,0 +1,27 @@
+Hisilicon hi655x Power Management Integrated Circuit (PMIC)
+
+The hardware layout for access PMIC Hi655x from AP SoC Hi6220.
+Between PMIC Hi655x and Hi6220, the physical signal channel is SSI.
+We can use memory-mapped I/O to communicate.
+
++----------------+ +-------------+
+| | | |
+| Hi6220 | SSI bus | Hi655x |
+| |-------------| |
+| |(REGMAP_MMIO)| |
++----------------+ +-------------+
+
+Required properties:
+- compatible: Should be "hisilicon,hi655x-pmic"
+- reg: Base address of PMIC on hi6220 soc
+- interrupt-controller: Hi655x has internal IRQs (has own IRQ domain).
+- pmic-gpios: The gpio used by PMIC irq.
+
+Example:
+ pmic: pmic@f8000000 {
+ compatible = "hisilicon,hi655x-pmic";
+ reg = <0x0 0xf8000000 0x0 0x1000>;
+ interrupt-controller;
+ #interrupt-cells = <2>;
+ pmic-gpios = <&gpio1 2 GPIO_ACTIVE_HIGH>;
+ }
diff --git a/Documentation/devicetree/bindings/misc/ramoops.txt b/Documentation/devicetree/bindings/misc/ramoops.txt
new file mode 100644
index 000000000000..5a475fae4aab
--- /dev/null
+++ b/Documentation/devicetree/bindings/misc/ramoops.txt
@@ -0,0 +1,43 @@
+Ramoops oops/panic logger
+=========================
+
+ramoops provides persistent RAM storage for oops and panics, so they can be
+recovered after a reboot.
+
+Parts of this storage may be set aside for other persistent log buffers, such
+as kernel log messages, or for optional ECC error-correction data. The total
+size of these optional buffers must fit in the reserved region.
+
+Any remaining space will be used for a circular buffer of oops and panic
+records. These records have a configurable size, with a size of 0 indicating
+that they should be disabled.
+
+
+Required properties:
+
+- compatible: must be "ramoops"
+
+- memory-region: phandle to a region of memory that is preserved between reboots
+
+
+Optional properties:
+
+- ecc-size: enables ECC support and specifies ECC buffer size in bytes
+ (defaults to no ECC)
+
+- record-size: maximum size in bytes of each dump done on oops/panic
+ (defaults to 0)
+
+- console-size: size in bytes of log buffer reserved for kernel messages
+ (defaults to 0)
+
+- ftrace-size: size in bytes of log buffer reserved for function tracing and
+ profiling (defaults to 0)
+
+- pmsg-size: size in bytes of log buffer reserved for userspace messages
+ (defaults to 0)
+
+- unbuffered: if present, use unbuffered mappings to map the reserved region
+ (defaults to buffered mappings)
+
+- no-dump-oops: if present, only dump panics (defaults to panics and oops)
diff --git a/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt
index 8636f5ae97e5..9b4896c11716 100644
--- a/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt
+++ b/Documentation/devicetree/bindings/mmc/synopsys-dw-mshc.txt
@@ -39,6 +39,10 @@ Required Properties:
Optional properties:
+* resets: phandle + reset specifier pair, intended to represent hardware
+ reset signal present internally in some host controller IC designs.
+ See Documentation/devicetree/bindings/reset/reset.txt for details.
+
* clocks: from common clock binding: handle to biu and ciu clocks for the
bus interface unit clock and the card interface unit clock.
@@ -48,7 +52,7 @@ Optional properties:
clock-frequency. It is an error to omit both the ciu clock and the
clock-frequency.
-* clock-frequency: should be the frequency (in Hz) of the ciu clock. If this
+* clock-frequency: should be tke frequency (in Hz) of the ciu clock. If this
is specified and the ciu clock is specified then we'll try to set the ciu
clock to this at probe time.
diff --git a/Documentation/devicetree/bindings/phy/phy-hi6220-usb.txt b/Documentation/devicetree/bindings/phy/phy-hi6220-usb.txt
new file mode 100644
index 000000000000..f17a56e2152f
--- /dev/null
+++ b/Documentation/devicetree/bindings/phy/phy-hi6220-usb.txt
@@ -0,0 +1,16 @@
+Hisilicon hi6220 usb PHY
+-----------------------
+
+Required properties:
+- compatible: should be "hisilicon,hi6220-usb-phy"
+- #phy-cells: must be 0
+- hisilicon,peripheral-syscon: phandle of syscon used to control phy.
+Refer to phy/phy-bindings.txt for the generic PHY binding properties
+
+Example:
+ usb_phy: usbphy {
+ compatible = "hisilicon,hi6220-usb-phy";
+ #phy-cells = <0>;
+ phy-supply = <&fixed_5v_hub>;
+ hisilicon,peripheral-syscon = <&sys_ctrl>;
+ };
diff --git a/Documentation/devicetree/bindings/regulator/hisilicon,hi655x-regulator.txt b/Documentation/devicetree/bindings/regulator/hisilicon,hi655x-regulator.txt
new file mode 100644
index 000000000000..09d3884e7cc2
--- /dev/null
+++ b/Documentation/devicetree/bindings/regulator/hisilicon,hi655x-regulator.txt
@@ -0,0 +1,28 @@
+Hisilicon Hi655x Voltage regulators
+
+Note:
+The hi655x regulator control is managed by hi655x Power IC.
+So the node of this regulator must be child node of hi655x
+PMIC node.
+
+The driver uses the regulator core framework, so please also
+take the bindings of regulator.txt for reference.
+
+The valid names for regulators are:
+
+LDO2 LDO7 LDO10 LDO13 LDO14 LDO15 LDO17 LDO19 LDO21 LDO22
+
+Example:
+ pmic: pmic@f8000000 {
+ compatible = "hisilicon,hi655x-pmic";
+ ...
+ regulators {
+ ldo2: LDO2@a21 {
+ regulator-compatible = "LDO2_2V8";
+ regulator-min-microvolt = <2500000>;
+ regulator-max-microvolt = <3200000>;
+ regulator-enable-ramp-delay = <120>;
+ };
+ ...
+ }
+ }
diff --git a/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt b/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt
new file mode 100644
index 000000000000..d0f91c557e27
--- /dev/null
+++ b/Documentation/devicetree/bindings/reset/hisilicon,hi6220-reset.txt
@@ -0,0 +1,36 @@
+Hisilicon System Reset Controller
+======================================
+
+Please also refer to reset.txt in this directory for common reset
+controller binding usage.
+
+The reset controller registers are part of the system-ctl block on
+hi6220 SoC.
+
+Required properties:
+- compatible: should be one of the following:
+ "hisilicon,hi6220-sysctrl", "syscon" for peritheral reset,
+ "hisilicon,hi6220-pmctrl", "syscon" for media system reset.
+- reg: should be register base and length as documented in the
+ datasheet
+- #reset-cells: 1, see below
+
+Example:
+sys_ctrl: sys_ctrl@f7030000 {
+ compatible = "hisilicon,hi6220-sysctrl", "syscon";
+ reg = <0x0 0xf7030000 0x0 0x2000>;
+ #clock-cells = <1>;
+ #reset-cells = <1>;
+};
+
+Specifying reset lines connected to IP modules
+==============================================
+example:
+
+ uart1: serial@..... {
+ ...
+ resets = <&sys_ctrl PERIPH_RSTEN3_UART1>;
+ ...
+ };
+
+The index could be found in <dt-bindings/reset/hisi,hi6220-resets.h>.
diff --git a/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
new file mode 100644
index 000000000000..11216f09e596
--- /dev/null
+++ b/Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt
@@ -0,0 +1,360 @@
+===========================================================
+Energy cost bindings for Energy Aware Scheduling
+===========================================================
+
+===========================================================
+1 - Introduction
+===========================================================
+
+This note specifies bindings required for energy-aware scheduling
+(EAS)[1]. Historically, the scheduler's primary objective has been
+performance. EAS aims to provide an alternative objective - energy
+efficiency. EAS relies on a simple platform energy cost model to
+guide scheduling decisions. The model only considers the CPU
+subsystem.
+
+This note is aligned with the definition of the layout of physical
+CPUs in the system as described in the ARM topology binding
+description [2]. The concept is applicable to any system so long as
+the cost model data is provided for those processing elements in
+that system's topology that EAS is required to service.
+
+Processing elements refer to hardware threads, CPUs and clusters of
+related CPUs in increasing order of hierarchy.
+
+EAS requires two key cost metrics - busy costs and idle costs. Busy
+costs comprise of a list of compute capacities for the processing
+element in question and the corresponding power consumption at that
+capacity. Idle costs comprise of a list of power consumption values
+for each idle state [C-state] that the processing element supports.
+For a detailed description of these metrics, their derivation and
+their use see [3].
+
+These cost metrics are required for processing elements in all
+scheduling domain levels that EAS is required to service.
+
+===========================================================
+2 - energy-costs node
+===========================================================
+
+Energy costs for the processing elements in scheduling domains that
+EAS is required to service are defined in the energy-costs node
+which acts as a container for the actual per processing element cost
+nodes. A single energy-costs node is required for a given system.
+
+- energy-costs node
+
+ Usage: Required
+
+ Description: The energy-costs node is a container node and
+ it's sub-nodes describe costs for each processing element at
+ all scheduling domain levels that EAS is required to
+ service.
+
+ Node name must be "energy-costs".
+
+ The energy-costs node's parent node must be the cpus node.
+
+ The energy-costs node's child nodes can be:
+
+ - one or more cost nodes.
+
+ Any other configuration is considered invalid.
+
+The energy-costs node can only contain a single type of child node
+whose bindings are described in paragraph 4.
+
+===========================================================
+3 - energy-costs node child nodes naming convention
+===========================================================
+
+energy-costs child nodes must follow a naming convention where the
+node name must be "thread-costN", "core-costN", "cluster-costN"
+depending on whether the costs in the node are for a thread, core or
+cluster. N (where N = {0, 1, ...}) is the node number and has no
+bearing to the OS' logical thread, core or cluster index.
+
+===========================================================
+4 - cost node bindings
+===========================================================
+
+Bindings for cost nodes are defined as follows:
+
+- cluster-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple clusters and each cluster
+ serviced by EAS must have a corresponding cluster-costs
+ node.
+
+ The cluster-cost node name must be "cluster-costN" as
+ described in 3 above.
+
+ A cluster-cost node must be a leaf node with no children.
+
+ Properties for cluster-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- core-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain multiple cores and each core serviced by
+ EAS must have a corresponding core-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for core-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+- thread-cost node
+
+ Description: must be declared within an energy-costs node. A
+ system can contain cores with multiple hardware threads and
+ each thread serviced by EAS must have a corresponding
+ thread-cost node.
+
+ The core-cost node name must be "core-costN" as described in
+ 3 above.
+
+ A core-cost node must be a leaf node with no children.
+
+ Properties for thread-cost nodes are described in paragraph
+ 5 below.
+
+ Any other configuration is considered invalid.
+
+===========================================================
+5 - Cost node properties
+==========================================================
+
+All cost node types must have only the following properties:
+
+- busy-cost-data
+
+ Usage: required
+ Value type: An array of 2-item tuples. Each item is of type
+ u32.
+ Definition: The first item in the tuple is the capacity
+ value as described in [3]. The second item in the tuple is
+ the energy cost value as described in [3].
+
+- idle-cost-data
+
+ Usage: required
+ Value type: An array of 1-item tuples. The item is of type
+ u32.
+ Definition: The item in the tuple is the energy cost value
+ as described in [3].
+
+===========================================================
+4 - Extensions to the cpu node
+===========================================================
+
+The cpu node is extended with a property that establishes the
+connection between the processing element represented by the cpu
+node and the cost-nodes associated with this processing element.
+
+The connection is expressed in line with the topological hierarchy
+that this processing element belongs to starting with the level in
+the hierarchy that this processing element itself belongs to through
+to the highest level that EAS is required to service. The
+connection cannot be sparse and must be contiguous from the
+processing element's level through to the highest desired level. The
+highest desired level must be the same for all processing elements.
+
+Example: Given that a cpu node may represent a thread that is a part
+of a core, this property may contain multiple elements which
+associate the thread with cost nodes describing the costs for the
+thread itself, the core the thread belongs to, the cluster the core
+belongs to and so on. The elements must be ordered from the lowest
+level nodes to the highest desired level that EAS must service. The
+highest desired level must be the same for all cpu nodes. The
+elements must not be sparse: there must be elements for the current
+thread, the next level of hierarchy (core) and so on without any
+'holes'.
+
+Example: Given that a cpu node may represent a core that is a part
+of a cluster of related cpus this property may contain multiple
+elements which associate the core with cost nodes describing the
+costs for the core itself, the cluster the core belongs to and so
+on. The elements must be ordered from the lowest level nodes to the
+highest desired level that EAS must service. The highest desired
+level must be the same for all cpu nodes. The elements must not be
+sparse: there must be elements for the current thread, the next
+level of hierarchy (core) and so on without any 'holes'.
+
+If the system comprises of hierarchical clusters of clusters, this
+property will contain multiple associations with the relevant number
+of cluster elements in hierarchical order.
+
+Property added to the cpu node:
+
+- sched-energy-costs
+
+ Usage: required
+ Value type: List of phandles
+ Definition: a list of phandles to specific cost nodes in the
+ energy-costs parent node that correspond to the processing
+ element represented by this cpu node in hierarchical order
+ of topology.
+
+ The order of phandles in the list is significant. The first
+ phandle is to the current processing element's own cost
+ node. Subsequent phandles are to higher hierarchical level
+ cost nodes up until the maximum level that EAS is to
+ service.
+
+ All cpu nodes must have the same highest level cost node.
+
+ The phandle list must not be sparsely populated with handles
+ to non-contiguous hierarchical levels. See commentary above
+ for clarity.
+
+ Any other configuration is invalid.
+
+===========================================================
+5 - Example dts
+===========================================================
+
+Example 1 (ARM 64-bit, 6-cpu system, two clusters of cpus, one
+cluster of 2 Cortex-A57 cpus, one cluster of 4 Cortex-A53 cpus):
+
+cpus {
+ #address-cells = <2>;
+ #size-cells = <0>;
+ .
+ .
+ .
+ A57_0: cpu@0 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x0>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A57_1: cpu@1 {
+ compatible = "arm,cortex-a57","arm,armv8";
+ reg = <0x0 0x1>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A57_L2>;
+ clocks = <&scpi_dvfs 0>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;
+ };
+
+ A53_0: cpu@100 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x100>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_1: cpu@101 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x101>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_2: cpu@102 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x102>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ A53_3: cpu@103 {
+ compatible = "arm,cortex-a53","arm,armv8";
+ reg = <0x0 0x103>;
+ device_type = "cpu";
+ enable-method = "psci";
+ next-level-cache = <&A53_L2>;
+ clocks = <&scpi_dvfs 1>;
+ cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>;
+ sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;
+ };
+
+ energy-costs {
+ CPU_COST_0: core-cost0 {
+ busy-cost-data = <
+ 417 168
+ 579 251
+ 744 359
+ 883 479
+ 1024 616
+ >;
+ idle-cost-data = <
+ 15
+ 0
+ >;
+ };
+ CPU_COST_1: core-cost1 {
+ busy-cost-data = <
+ 235 33
+ 302 46
+ 368 61
+ 406 76
+ 447 93
+ >;
+ idle-cost-data = <
+ 6
+ 0
+ >;
+ };
+ CLUSTER_COST_0: cluster-cost0 {
+ busy-cost-data = <
+ 417 24
+ 579 32
+ 744 43
+ 883 49
+ 1024 64
+ >;
+ idle-cost-data = <
+ 65
+ 24
+ >;
+ };
+ CLUSTER_COST_1: cluster-cost1 {
+ busy-cost-data = <
+ 235 26
+ 303 30
+ 368 39
+ 406 47
+ 447 57
+ >;
+ idle-cost-data = <
+ 56
+ 17
+ >;
+ };
+ };
+};
+
+===============================================================================
+[1] https://lkml.org/lkml/2015/5/12/728
+[2] Documentation/devicetree/bindings/topology.txt
+[3] Documentation/scheduler/sched-energy.txt
diff --git a/Documentation/devicetree/bindings/usb/dwc2.txt b/Documentation/devicetree/bindings/usb/dwc2.txt
index fd132cbee70e..221368207ca4 100644
--- a/Documentation/devicetree/bindings/usb/dwc2.txt
+++ b/Documentation/devicetree/bindings/usb/dwc2.txt
@@ -4,6 +4,7 @@ Platform DesignWare HS OTG USB 2.0 controller
Required properties:
- compatible : One of:
- brcm,bcm2835-usb: The DWC2 USB controller instance in the BCM2835 SoC.
+ - hisilicon,hi6220-usb: The DWC2 USB controller instance in the hi6220 SoC.
- rockchip,rk3066-usb: The DWC2 USB controller instance in the rk3066 Soc;
- "rockchip,rk3188-usb", "rockchip,rk3066-usb", "snps,dwc2": for rk3188 Soc;
- "rockchip,rk3288-usb", "rockchip,rk3066-usb", "snps,dwc2": for rk3288 Soc;
diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt
index 55df1d444e9f..569e9c89080f 100644
--- a/Documentation/devicetree/bindings/vendor-prefixes.txt
+++ b/Documentation/devicetree/bindings/vendor-prefixes.txt
@@ -127,6 +127,7 @@ lacie LaCie
lantiq Lantiq Semiconductor
lenovo Lenovo Group Ltd.
lg LG Corporation
+linaro Linaro Limited
linux Linux-specific binding
lsi LSI Corp. (LSI Logic)
lltc Linear Technology Corporation