aboutsummaryrefslogtreecommitdiff
path: root/include/asm-ia64/uv/uv_hub.h
blob: f607018af4a19397691212e7074a55455a2f3cd2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV architectural definitions
 *
 * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved.
 */

#ifndef __ASM_IA64_UV_HUB_H__
#define __ASM_IA64_UV_HUB_H__

#include <linux/numa.h>
#include <linux/percpu.h>
#include <asm/types.h>
#include <asm/percpu.h>


/*
 * Addressing Terminology
 *
 *	M       - The low M bits of a physical address represent the offset
 *		  into the blade local memory. RAM memory on a blade is physically
 *		  contiguous (although various IO spaces may punch holes in
 *		  it)..
 *
 * 	N	- Number of bits in the node portion of a socket physical
 * 		  address.
 *
 * 	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
 * 	 	  routers always have low bit of 1, C/MBricks have low bit
 * 		  equal to 0. Most addressing macros that target UV hub chips
 * 		  right shift the NASID by 1 to exclude the always-zero bit.
 * 		  NASIDs contain up to 15 bits.
 *
 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
 *		  of nasids.
 *
 * 	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
 * 		  of the nasid for socket usage.
 *
 *
 *  NumaLink Global Physical Address Format:
 *  +--------------------------------+---------------------+
 *  |00..000|      GNODE             |      NodeOffset     |
 *  +--------------------------------+---------------------+
 *          |<-------53 - M bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
 *
 *
 *  Memory/UV-HUB Processor Socket Address Format:
 *  +----------------+---------------+---------------------+
 *  |00..000000000000|   PNODE       |      NodeOffset     |
 *  +----------------+---------------+---------------------+
 *                   <--- N bits --->|<--------M bits ----->
 *
 *	M - number of node offset bits (35 .. 40)
 *	N - number of PNODE bits (0 .. 10)
 *
 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
 *		The actual values are configuration dependent and are set at
 *		boot time. M & N values are set by the hardware/BIOS at boot.
 */


/*
 * Maximum number of bricks in all partitions and in all coherency domains.
 * This is the total number of bricks accessible in the numalink fabric. It
 * includes all C & M bricks. Routers are NOT included.
 *
 * This value is also the value of the maximum number of non-router NASIDs
 * in the numalink fabric.
 *
 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 */
#define UV_MAX_NUMALINK_BLADES	16384

/*
 * Maximum number of C/Mbricks within a software SSI (hardware may support
 * more).
 */
#define UV_MAX_SSI_BLADES	1

/*
 * The largest possible NASID of a C or M brick (+ 2)
 */
#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_NODES * 2)

/*
 * The following defines attributes of the HUB chip. These attributes are
 * frequently referenced and are kept in the per-cpu data areas of each cpu.
 * They are kept together in a struct to minimize cache misses.
 */
struct uv_hub_info_s {
	unsigned long	global_mmr_base;
	unsigned long	gpa_mask;
	unsigned long	gnode_upper;
	unsigned long	lowmem_remap_top;
	unsigned long	lowmem_remap_base;
	unsigned short	pnode;
	unsigned short	pnode_mask;
	unsigned short	coherency_domain_number;
	unsigned short	numa_blade_id;
	unsigned char	blade_processor_id;
	unsigned char	m_val;
	unsigned char	n_val;
};
DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
#define uv_hub_info 		(&__get_cpu_var(__uv_hub_info))
#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))

/*
 * Local & Global MMR space macros.
 * 	Note: macros are intended to be used ONLY by inline functions
 * 	in this file - not by other kernel code.
 * 		n -  NASID (full 15-bit global nasid)
 * 		g -  GNODE (full 15-bit global nasid, right shifted 1)
 * 		p -  PNODE (local part of nsids, right shifted 1)
 */
#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_NASID(p)		(((p) << 1) | uv_hub_info->gnode_upper)

#define UV_LOCAL_MMR_BASE		0xf4000000UL
#define UV_GLOBAL_MMR32_BASE		0xf8000000UL
#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)

#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
#define UV_GLOBAL_MMR64_PNODE_SHIFT	26

#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))

#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
	((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)

/*
 * Macros for converting between kernel virtual addresses, socket local physical
 * addresses, and UV global physical addresses.
 * 	Note: use the standard __pa() & __va() macros for converting
 * 	      between socket virtual and socket physical addresses.
 */

/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
	if (paddr < uv_hub_info->lowmem_remap_top)
		paddr += uv_hub_info->lowmem_remap_base;
	return paddr | uv_hub_info->gnode_upper;
}


/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
	return __pa(v) | uv_hub_info->gnode_upper;
}

/* socket virtual --> UV global physical address */
static inline void *uv_vgpa(void *v)
{
	return (void *)uv_gpa(v);
}

/* UV global physical address --> socket virtual */
static inline void *uv_va(unsigned long gpa)
{
	return __va(gpa & uv_hub_info->gpa_mask);
}

/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
}


/*
 * Access global MMRs using the low memory MMR32 space. This region supports
 * faster MMR access but not all MMRs are accessible in this space.
 */
static inline unsigned long *uv_global_mmr32_address(int pnode,
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR32_BASE |
		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
}

static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
				 unsigned long val)
{
	*uv_global_mmr32_address(pnode, offset) = val;
}

static inline unsigned long uv_read_global_mmr32(int pnode,
						 unsigned long offset)
{
	return *uv_global_mmr32_address(pnode, offset);
}

/*
 * Access Global MMR space using the MMR space located at the top of physical
 * memory.
 */
static inline unsigned long *uv_global_mmr64_address(int pnode,
				unsigned long offset)
{
	return __va(UV_GLOBAL_MMR64_BASE |
		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
}

static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
				unsigned long val)
{
	*uv_global_mmr64_address(pnode, offset) = val;
}

static inline unsigned long uv_read_global_mmr64(int pnode,
						 unsigned long offset)
{
	return *uv_global_mmr64_address(pnode, offset);
}

/*
 * Access hub local MMRs. Faster than using global space but only local MMRs
 * are accessible.
 */
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
	return __va(UV_LOCAL_MMR_BASE | offset);
}

static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
	return *uv_local_mmr_address(offset);
}

static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
	*uv_local_mmr_address(offset) = val;
}

/*
 * Structures and definitions for converting between cpu, node, pnode, and blade
 * numbers.
 */

/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
	return smp_processor_id();
}

/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
	return 0;
}

/* Convert a cpu number to the the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
	return 0;
}

/* Convert linux node number to the UV blade number */
static inline int uv_node_to_blade_id(int nid)
{
	return 0;
}

/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
{
	return 0;
}

/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
	return num_possible_cpus();
}

/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
	return num_online_cpus();
}

/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
{
	return 0;
}

/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
{
	return 0;
}

/* Maximum possible number of blades */
static inline int uv_num_possible_blades(void)
{
	return 1;
}

#endif /* __ASM_IA64_UV_HUB__ */