aboutsummaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cpufreq_times.c
blob: 6254f45ca9077cb4522316d86235d4025fc83a2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/* drivers/cpufreq/cpufreq_times.c
 *
 * Copyright (C) 2018 Google, Inc.
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 */

#include <linux/cpufreq.h>
#include <linux/cpufreq_times.h>
#include <linux/cputime.h>
#include <linux/hashtable.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/threads.h>

#define UID_HASH_BITS 10

static DECLARE_HASHTABLE(uid_hash_table, UID_HASH_BITS);

static DEFINE_SPINLOCK(task_time_in_state_lock); /* task->time_in_state */
static DEFINE_SPINLOCK(uid_lock); /* uid_hash_table */

struct uid_entry {
	uid_t uid;
	unsigned int max_state;
	struct hlist_node hash;
	struct rcu_head rcu;
	u64 time_in_state[0];
};

/**
 * struct cpu_freqs - per-cpu frequency information
 * @offset: start of these freqs' stats in task time_in_state array
 * @max_state: number of entries in freq_table
 * @last_index: index in freq_table of last frequency switched to
 * @freq_table: list of available frequencies
 */
struct cpu_freqs {
	unsigned int offset;
	unsigned int max_state;
	unsigned int last_index;
	unsigned int freq_table[0];
};

static struct cpu_freqs *all_freqs[NR_CPUS];

static unsigned int next_offset;


/* Caller must hold rcu_read_lock() */
static struct uid_entry *find_uid_entry_rcu(uid_t uid)
{
	struct uid_entry *uid_entry;

	hash_for_each_possible_rcu(uid_hash_table, uid_entry, hash, uid) {
		if (uid_entry->uid == uid)
			return uid_entry;
	}
	return NULL;
}

/* Caller must hold uid lock */
static struct uid_entry *find_uid_entry_locked(uid_t uid)
{
	struct uid_entry *uid_entry;

	hash_for_each_possible(uid_hash_table, uid_entry, hash, uid) {
		if (uid_entry->uid == uid)
			return uid_entry;
	}
	return NULL;
}

/* Caller must hold uid lock */
static struct uid_entry *find_or_register_uid_locked(uid_t uid)
{
	struct uid_entry *uid_entry, *temp;
	unsigned int max_state = READ_ONCE(next_offset);
	size_t alloc_size = sizeof(*uid_entry) + max_state *
		sizeof(uid_entry->time_in_state[0]);

	uid_entry = find_uid_entry_locked(uid);
	if (uid_entry) {
		if (uid_entry->max_state == max_state)
			return uid_entry;
		/* uid_entry->time_in_state is too small to track all freqs, so
		 * expand it.
		 */
		temp = __krealloc(uid_entry, alloc_size, GFP_ATOMIC);
		if (!temp)
			return uid_entry;
		temp->max_state = max_state;
		memset(temp->time_in_state + uid_entry->max_state, 0,
		       (max_state - uid_entry->max_state) *
		       sizeof(uid_entry->time_in_state[0]));
		if (temp != uid_entry) {
			hlist_replace_rcu(&uid_entry->hash, &temp->hash);
			kfree_rcu(uid_entry, rcu);
		}
		return temp;
	}

	uid_entry = kzalloc(alloc_size, GFP_ATOMIC);
	if (!uid_entry)
		return NULL;

	uid_entry->uid = uid;
	uid_entry->max_state = max_state;

	hash_add_rcu(uid_hash_table, &uid_entry->hash, uid);

	return uid_entry;
}

static bool freq_index_invalid(unsigned int index)
{
	unsigned int cpu;
	struct cpu_freqs *freqs;

	for_each_possible_cpu(cpu) {
		freqs = all_freqs[cpu];
		if (!freqs || index < freqs->offset ||
		    freqs->offset + freqs->max_state <= index)
			continue;
		return freqs->freq_table[index - freqs->offset] ==
			CPUFREQ_ENTRY_INVALID;
	}
	return true;
}

static int single_uid_time_in_state_show(struct seq_file *m, void *ptr)
{
	struct uid_entry *uid_entry;
	unsigned int i;
	u64 time;
	uid_t uid = from_kuid_munged(current_user_ns(), *(kuid_t *)m->private);

	if (uid == overflowuid)
		return -EINVAL;

	rcu_read_lock();

	uid_entry = find_uid_entry_rcu(uid);
	if (!uid_entry) {
		rcu_read_unlock();
		return 0;
	}

	for (i = 0; i < uid_entry->max_state; ++i) {
		if (freq_index_invalid(i))
			continue;
		time = cputime_to_clock_t(uid_entry->time_in_state[i]);
		seq_write(m, &time, sizeof(time));
	}

	rcu_read_unlock();

	return 0;
}

static void *uid_seq_start(struct seq_file *seq, loff_t *pos)
{
	if (*pos >= HASH_SIZE(uid_hash_table))
		return NULL;

	return &uid_hash_table[*pos];
}

static void *uid_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
	(*pos)++;

	if (*pos >= HASH_SIZE(uid_hash_table))
		return NULL;

	return &uid_hash_table[*pos];
}

static void uid_seq_stop(struct seq_file *seq, void *v) { }

static int uid_time_in_state_seq_show(struct seq_file *m, void *v)
{
	struct uid_entry *uid_entry;
	struct cpu_freqs *freqs, *last_freqs = NULL;
	int i, cpu;

	if (v == uid_hash_table) {
		seq_puts(m, "uid:");
		for_each_possible_cpu(cpu) {
			freqs = all_freqs[cpu];
			if (!freqs || freqs == last_freqs)
				continue;
			last_freqs = freqs;
			for (i = 0; i < freqs->max_state; i++) {
				if (freqs->freq_table[i] ==
				    CPUFREQ_ENTRY_INVALID)
					continue;
				seq_printf(m, " %d", freqs->freq_table[i]);
			}
		}
		seq_putc(m, '\n');
	}

	rcu_read_lock();

	hlist_for_each_entry_rcu(uid_entry, (struct hlist_head *)v, hash) {
		if (uid_entry->max_state)
			seq_printf(m, "%d:", uid_entry->uid);
		for (i = 0; i < uid_entry->max_state; ++i) {
			if (freq_index_invalid(i))
				continue;
			seq_printf(m, " %lu", (unsigned long)cputime_to_clock_t(
					   uid_entry->time_in_state[i]));
		}
		if (uid_entry->max_state)
			seq_putc(m, '\n');
	}

	rcu_read_unlock();
	return 0;
}

void cpufreq_task_times_init(struct task_struct *p)
{
	void *temp;
	unsigned long flags;
	unsigned int max_state;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	p->time_in_state = NULL;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	p->max_state = 0;

	max_state = READ_ONCE(next_offset);

	/* We use one array to avoid multiple allocs per task */
	temp = kcalloc(max_state, sizeof(p->time_in_state[0]), GFP_ATOMIC);
	if (!temp)
		return;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	p->time_in_state = temp;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	p->max_state = max_state;
}

/* Caller must hold task_time_in_state_lock */
static int cpufreq_task_times_realloc_locked(struct task_struct *p)
{
	void *temp;
	unsigned int max_state = READ_ONCE(next_offset);

	temp = krealloc(p->time_in_state, max_state * sizeof(u64), GFP_ATOMIC);
	if (!temp)
		return -ENOMEM;
	p->time_in_state = temp;
	memset(p->time_in_state + p->max_state, 0,
	       (max_state - p->max_state) * sizeof(u64));
	p->max_state = max_state;
	return 0;
}

void cpufreq_task_times_exit(struct task_struct *p)
{
	unsigned long flags;
	void *temp;

	if (!p->time_in_state)
		return;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	temp = p->time_in_state;
	p->time_in_state = NULL;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	kfree(temp);
}

int proc_time_in_state_show(struct seq_file *m, struct pid_namespace *ns,
	struct pid *pid, struct task_struct *p)
{
	unsigned int cpu, i;
	cputime_t cputime;
	unsigned long flags;
	struct cpu_freqs *freqs;
	struct cpu_freqs *last_freqs = NULL;

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	for_each_possible_cpu(cpu) {
		freqs = all_freqs[cpu];
		if (!freqs || freqs == last_freqs)
			continue;
		last_freqs = freqs;

		seq_printf(m, "cpu%u\n", cpu);
		for (i = 0; i < freqs->max_state; i++) {
			if (freqs->freq_table[i] == CPUFREQ_ENTRY_INVALID)
				continue;
			cputime = 0;
			if (freqs->offset + i < p->max_state &&
			    p->time_in_state)
				cputime = p->time_in_state[freqs->offset + i];
			seq_printf(m, "%u %lu\n", freqs->freq_table[i],
				   (unsigned long)cputime_to_clock_t(cputime));
		}
	}
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);
	return 0;
}

void cpufreq_acct_update_power(struct task_struct *p, cputime_t cputime)
{
	unsigned long flags;
	unsigned int state;
	struct uid_entry *uid_entry;
	struct cpu_freqs *freqs = all_freqs[task_cpu(p)];
	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));

	if (!freqs || p->flags & PF_EXITING)
		return;

	state = freqs->offset + READ_ONCE(freqs->last_index);

	spin_lock_irqsave(&task_time_in_state_lock, flags);
	if ((state < p->max_state || !cpufreq_task_times_realloc_locked(p)) &&
	    p->time_in_state)
		p->time_in_state[state] += cputime;
	spin_unlock_irqrestore(&task_time_in_state_lock, flags);

	spin_lock_irqsave(&uid_lock, flags);
	uid_entry = find_or_register_uid_locked(uid);
	if (uid_entry && state < uid_entry->max_state)
		uid_entry->time_in_state[state] += cputime;
	spin_unlock_irqrestore(&uid_lock, flags);
}

void cpufreq_times_create_policy(struct cpufreq_policy *policy)
{
	int cpu, index;
	unsigned int count = 0;
	struct cpufreq_frequency_table *pos, *table;
	struct cpu_freqs *freqs;
	void *tmp;

	if (all_freqs[policy->cpu])
		return;

	table = policy->freq_table;
	if (!table)
		return;

	cpufreq_for_each_entry(pos, table)
		count++;

	tmp =  kzalloc(sizeof(*freqs) + sizeof(freqs->freq_table[0]) * count,
		       GFP_KERNEL);
	if (!tmp)
		return;

	freqs = tmp;
	freqs->max_state = count;

	index = cpufreq_frequency_table_get_index(policy, policy->cur);
	if (index >= 0)
		WRITE_ONCE(freqs->last_index, index);

	cpufreq_for_each_entry(pos, table)
		freqs->freq_table[pos - table] = pos->frequency;

	freqs->offset = next_offset;
	WRITE_ONCE(next_offset, freqs->offset + count);
	for_each_cpu(cpu, policy->related_cpus)
		all_freqs[cpu] = freqs;
}

void cpufreq_task_times_remove_uids(uid_t uid_start, uid_t uid_end)
{
	struct uid_entry *uid_entry;
	struct hlist_node *tmp;
	unsigned long flags;

	spin_lock_irqsave(&uid_lock, flags);

	for (; uid_start <= uid_end; uid_start++) {
		hash_for_each_possible_safe(uid_hash_table, uid_entry, tmp,
			hash, uid_start) {
			if (uid_start == uid_entry->uid) {
				hash_del_rcu(&uid_entry->hash);
				kfree_rcu(uid_entry, rcu);
			}
		}
	}

	spin_unlock_irqrestore(&uid_lock, flags);
}

void cpufreq_times_record_transition(struct cpufreq_freqs *freq)
{
	int index;
	struct cpu_freqs *freqs = all_freqs[freq->cpu];
	struct cpufreq_policy *policy;

	if (!freqs)
		return;

	policy = cpufreq_cpu_get(freq->cpu);
	if (!policy)
		return;

	index = cpufreq_frequency_table_get_index(policy, freq->new);
	if (index >= 0)
		WRITE_ONCE(freqs->last_index, index);

	cpufreq_cpu_put(policy);
}

static const struct seq_operations uid_time_in_state_seq_ops = {
	.start = uid_seq_start,
	.next = uid_seq_next,
	.stop = uid_seq_stop,
	.show = uid_time_in_state_seq_show,
};

static int uid_time_in_state_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &uid_time_in_state_seq_ops);
}

int single_uid_time_in_state_open(struct inode *inode, struct file *file)
{
	return single_open(file, single_uid_time_in_state_show,
			&(inode->i_uid));
}

static const struct file_operations uid_time_in_state_fops = {
	.open		= uid_time_in_state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init cpufreq_times_init(void)
{
	proc_create_data("uid_time_in_state", 0444, NULL,
			 &uid_time_in_state_fops, NULL);

	return 0;
}

early_initcall(cpufreq_times_init);