aboutsummaryrefslogtreecommitdiff
path: root/arch/sh/mm/cache.c
blob: 616966a96cba61d6a680d4bc57cf71150a04fb3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * arch/sh/mm/cache.c
 *
 * Copyright (C) 1999, 2000, 2002  Niibe Yutaka
 * Copyright (C) 2002 - 2010  Paul Mundt
 *
 * Released under the terms of the GNU GPL v2.0.
 */
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/fs.h>
#include <linux/smp.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>

void (*local_flush_cache_all)(void *args) = cache_noop;
void (*local_flush_cache_mm)(void *args) = cache_noop;
void (*local_flush_cache_dup_mm)(void *args) = cache_noop;
void (*local_flush_cache_page)(void *args) = cache_noop;
void (*local_flush_cache_range)(void *args) = cache_noop;
void (*local_flush_dcache_page)(void *args) = cache_noop;
void (*local_flush_icache_range)(void *args) = cache_noop;
void (*local_flush_icache_page)(void *args) = cache_noop;
void (*local_flush_cache_sigtramp)(void *args) = cache_noop;

void (*__flush_wback_region)(void *start, int size);
EXPORT_SYMBOL(__flush_wback_region);
void (*__flush_purge_region)(void *start, int size);
EXPORT_SYMBOL(__flush_purge_region);
void (*__flush_invalidate_region)(void *start, int size);
EXPORT_SYMBOL(__flush_invalidate_region);

static inline void noop__flush_region(void *start, int size)
{
}

static inline void cacheop_on_each_cpu(void (*func) (void *info), void *info,
                                   int wait)
{
	preempt_disable();

	/*
	 * It's possible that this gets called early on when IRQs are
	 * still disabled due to ioremapping by the boot CPU, so don't
	 * even attempt IPIs unless there are other CPUs online.
	 */
	if (num_online_cpus() > 1)
		smp_call_function(func, info, wait);

	func(info);

	preempt_enable();
}

void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
		       unsigned long vaddr, void *dst, const void *src,
		       unsigned long len)
{
	if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
	    test_bit(PG_dcache_clean, &page->flags)) {
		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
		memcpy(vto, src, len);
		kunmap_coherent(vto);
	} else {
		memcpy(dst, src, len);
		if (boot_cpu_data.dcache.n_aliases)
			clear_bit(PG_dcache_clean, &page->flags);
	}

	if (vma->vm_flags & VM_EXEC)
		flush_cache_page(vma, vaddr, page_to_pfn(page));
}

void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
			 unsigned long vaddr, void *dst, const void *src,
			 unsigned long len)
{
	if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
	    test_bit(PG_dcache_clean, &page->flags)) {
		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
		memcpy(dst, vfrom, len);
		kunmap_coherent(vfrom);
	} else {
		memcpy(dst, src, len);
		if (boot_cpu_data.dcache.n_aliases)
			clear_bit(PG_dcache_clean, &page->flags);
	}
}

void copy_user_highpage(struct page *to, struct page *from,
			unsigned long vaddr, struct vm_area_struct *vma)
{
	void *vfrom, *vto;

	vto = kmap_atomic(to);

	if (boot_cpu_data.dcache.n_aliases && page_mapped(from) &&
	    test_bit(PG_dcache_clean, &from->flags)) {
		vfrom = kmap_coherent(from, vaddr);
		copy_page(vto, vfrom);
		kunmap_coherent(vfrom);
	} else {
		vfrom = kmap_atomic(from);
		copy_page(vto, vfrom);
		kunmap_atomic(vfrom);
	}

	if (pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK) ||
	    (vma->vm_flags & VM_EXEC))
		__flush_purge_region(vto, PAGE_SIZE);

	kunmap_atomic(vto);
	/* Make sure this page is cleared on other CPU's too before using it */
	smp_wmb();
}
EXPORT_SYMBOL(copy_user_highpage);

void clear_user_highpage(struct page *page, unsigned long vaddr)
{
	void *kaddr = kmap_atomic(page);

	clear_page(kaddr);

	if (pages_do_alias((unsigned long)kaddr, vaddr & PAGE_MASK))
		__flush_purge_region(kaddr, PAGE_SIZE);

	kunmap_atomic(kaddr);
}
EXPORT_SYMBOL(clear_user_highpage);

void __update_cache(struct vm_area_struct *vma,
		    unsigned long address, pte_t pte)
{
	struct page *page;
	unsigned long pfn = pte_pfn(pte);

	if (!boot_cpu_data.dcache.n_aliases)
		return;

	page = pfn_to_page(pfn);
	if (pfn_valid(pfn)) {
		int dirty = !test_and_set_bit(PG_dcache_clean, &page->flags);
		if (dirty)
			__flush_purge_region(page_address(page), PAGE_SIZE);
	}
}

void __flush_anon_page(struct page *page, unsigned long vmaddr)
{
	unsigned long addr = (unsigned long) page_address(page);

	if (pages_do_alias(addr, vmaddr)) {
		if (boot_cpu_data.dcache.n_aliases && page_mapped(page) &&
		    test_bit(PG_dcache_clean, &page->flags)) {
			void *kaddr;

			kaddr = kmap_coherent(page, vmaddr);
			/* XXX.. For now kunmap_coherent() does a purge */
			/* __flush_purge_region((void *)kaddr, PAGE_SIZE); */
			kunmap_coherent(kaddr);
		} else
			__flush_purge_region((void *)addr, PAGE_SIZE);
	}
}

void flush_cache_all(void)
{
	cacheop_on_each_cpu(local_flush_cache_all, NULL, 1);
}
EXPORT_SYMBOL(flush_cache_all);

void flush_cache_mm(struct mm_struct *mm)
{
	if (boot_cpu_data.dcache.n_aliases == 0)
		return;

	cacheop_on_each_cpu(local_flush_cache_mm, mm, 1);
}

void flush_cache_dup_mm(struct mm_struct *mm)
{
	if (boot_cpu_data.dcache.n_aliases == 0)
		return;

	cacheop_on_each_cpu(local_flush_cache_dup_mm, mm, 1);
}

void flush_cache_page(struct vm_area_struct *vma, unsigned long addr,
		      unsigned long pfn)
{
	struct flusher_data data;

	data.vma = vma;
	data.addr1 = addr;
	data.addr2 = pfn;

	cacheop_on_each_cpu(local_flush_cache_page, (void *)&data, 1);
}

void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
		       unsigned long end)
{
	struct flusher_data data;

	data.vma = vma;
	data.addr1 = start;
	data.addr2 = end;

	cacheop_on_each_cpu(local_flush_cache_range, (void *)&data, 1);
}
EXPORT_SYMBOL(flush_cache_range);

void flush_dcache_page(struct page *page)
{
	cacheop_on_each_cpu(local_flush_dcache_page, page, 1);
}
EXPORT_SYMBOL(flush_dcache_page);

void flush_icache_range(unsigned long start, unsigned long end)
{
	struct flusher_data data;

	data.vma = NULL;
	data.addr1 = start;
	data.addr2 = end;

	cacheop_on_each_cpu(local_flush_icache_range, (void *)&data, 1);
}

void flush_icache_page(struct vm_area_struct *vma, struct page *page)
{
	/* Nothing uses the VMA, so just pass the struct page along */
	cacheop_on_each_cpu(local_flush_icache_page, page, 1);
}

void flush_cache_sigtramp(unsigned long address)
{
	cacheop_on_each_cpu(local_flush_cache_sigtramp, (void *)address, 1);
}

static void compute_alias(struct cache_info *c)
{
	c->alias_mask = ((c->sets - 1) << c->entry_shift) & ~(PAGE_SIZE - 1);
	c->n_aliases = c->alias_mask ? (c->alias_mask >> PAGE_SHIFT) + 1 : 0;
}

static void __init emit_cache_params(void)
{
	printk(KERN_NOTICE "I-cache : n_ways=%d n_sets=%d way_incr=%d\n",
		boot_cpu_data.icache.ways,
		boot_cpu_data.icache.sets,
		boot_cpu_data.icache.way_incr);
	printk(KERN_NOTICE "I-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
		boot_cpu_data.icache.entry_mask,
		boot_cpu_data.icache.alias_mask,
		boot_cpu_data.icache.n_aliases);
	printk(KERN_NOTICE "D-cache : n_ways=%d n_sets=%d way_incr=%d\n",
		boot_cpu_data.dcache.ways,
		boot_cpu_data.dcache.sets,
		boot_cpu_data.dcache.way_incr);
	printk(KERN_NOTICE "D-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
		boot_cpu_data.dcache.entry_mask,
		boot_cpu_data.dcache.alias_mask,
		boot_cpu_data.dcache.n_aliases);

	/*
	 * Emit Secondary Cache parameters if the CPU has a probed L2.
	 */
	if (boot_cpu_data.flags & CPU_HAS_L2_CACHE) {
		printk(KERN_NOTICE "S-cache : n_ways=%d n_sets=%d way_incr=%d\n",
			boot_cpu_data.scache.ways,
			boot_cpu_data.scache.sets,
			boot_cpu_data.scache.way_incr);
		printk(KERN_NOTICE "S-cache : entry_mask=0x%08x alias_mask=0x%08x n_aliases=%d\n",
			boot_cpu_data.scache.entry_mask,
			boot_cpu_data.scache.alias_mask,
			boot_cpu_data.scache.n_aliases);
	}
}

void __init cpu_cache_init(void)
{
	unsigned int cache_disabled = 0;

#ifdef CCR
	cache_disabled = !(__raw_readl(CCR) & CCR_CACHE_ENABLE);
#endif

	compute_alias(&boot_cpu_data.icache);
	compute_alias(&boot_cpu_data.dcache);
	compute_alias(&boot_cpu_data.scache);

	__flush_wback_region		= noop__flush_region;
	__flush_purge_region		= noop__flush_region;
	__flush_invalidate_region	= noop__flush_region;

	/*
	 * No flushing is necessary in the disabled cache case so we can
	 * just keep the noop functions in local_flush_..() and __flush_..()
	 */
	if (unlikely(cache_disabled))
		goto skip;

	if (boot_cpu_data.family == CPU_FAMILY_SH2) {
		extern void __weak sh2_cache_init(void);

		sh2_cache_init();
	}

	if (boot_cpu_data.family == CPU_FAMILY_SH2A) {
		extern void __weak sh2a_cache_init(void);

		sh2a_cache_init();
	}

	if (boot_cpu_data.family == CPU_FAMILY_SH3) {
		extern void __weak sh3_cache_init(void);

		sh3_cache_init();

		if ((boot_cpu_data.type == CPU_SH7705) &&
		    (boot_cpu_data.dcache.sets == 512)) {
			extern void __weak sh7705_cache_init(void);

			sh7705_cache_init();
		}
	}

	if ((boot_cpu_data.family == CPU_FAMILY_SH4) ||
	    (boot_cpu_data.family == CPU_FAMILY_SH4A) ||
	    (boot_cpu_data.family == CPU_FAMILY_SH4AL_DSP)) {
		extern void __weak sh4_cache_init(void);

		sh4_cache_init();

		if ((boot_cpu_data.type == CPU_SH7786) ||
		    (boot_cpu_data.type == CPU_SHX3)) {
			extern void __weak shx3_cache_init(void);

			shx3_cache_init();
		}
	}

	if (boot_cpu_data.family == CPU_FAMILY_SH5) {
		extern void __weak sh5_cache_init(void);

		sh5_cache_init();
	}

skip:
	emit_cache_params();
}