/* * The Guest 9p transport driver * * This is a block based transport driver based on the lguest block driver * code. * */ /* * Copyright (C) 2007 Eric Van Hensbergen, IBM Corporation * * Based on virtio console driver * Copyright (C) 2006, 2007 Rusty Russell, IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to: * Free Software Foundation * 51 Franklin Street, Fifth Floor * Boston, MA 02111-1301 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define VIRTQUEUE_NUM 128 /* a single mutex to manage channel initialization and attachment */ static DECLARE_MUTEX(virtio_9p_lock); /* global which tracks highest initialized channel */ static int chan_index; #define P9_INIT_MAXTAG 16 #define REQ_STATUS_IDLE 0 #define REQ_STATUS_SENT 1 #define REQ_STATUS_RCVD 2 #define REQ_STATUS_FLSH 3 struct p9_req_t { int status; wait_queue_head_t *wq; }; /* We keep all per-channel information in a structure. * This structure is allocated within the devices dev->mem space. * A pointer to the structure will get put in the transport private. */ static struct virtio_chan { bool initialized; /* channel is initialized */ bool inuse; /* channel is in use */ spinlock_t lock; struct virtio_device *vdev; struct virtqueue *vq; struct p9_idpool *tagpool; struct p9_req_t *reqs; int max_tag; /* Scatterlist: can be too big for stack. */ struct scatterlist sg[VIRTQUEUE_NUM]; } channels[MAX_9P_CHAN]; /* Lookup requests by tag */ static struct p9_req_t *p9_lookup_tag(struct virtio_chan *c, u16 tag) { /* This looks up the original request by tag so we know which * buffer to read the data into */ tag++; while (tag >= c->max_tag) { int old_max = c->max_tag; int count; if (c->max_tag) c->max_tag *= 2; else c->max_tag = P9_INIT_MAXTAG; c->reqs = krealloc(c->reqs, sizeof(struct p9_req_t)*c->max_tag, GFP_ATOMIC); if (!c->reqs) { printk(KERN_ERR "Couldn't grow tag array\n"); BUG(); } for (count = old_max; count < c->max_tag; count++) { c->reqs[count].status = REQ_STATUS_IDLE; c->reqs[count].wq = kmalloc(sizeof(wait_queue_t), GFP_ATOMIC); if (!c->reqs[count].wq) { printk(KERN_ERR "Couldn't grow tag array\n"); BUG(); } init_waitqueue_head(c->reqs[count].wq); } } return &c->reqs[tag]; } /* How many bytes left in this page. */ static unsigned int rest_of_page(void *data) { return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE); } static int p9_virtio_write(struct p9_trans *trans, void *buf, int count) { /* Only use the rpc mechanism for now */ return count; } static int p9_virtio_read(struct p9_trans *trans, void *buf, int count) { /* Only use the rpc mechanism for now */ return 0; } /* The poll function is used by 9p transports to determine if there * is there is activity available on a particular channel. In our case * we use it to wait for a callback from the input routines. */ static unsigned int p9_virtio_poll(struct p9_trans *trans, struct poll_table_struct *pt) { /* Only use the rpc mechanism for now */ return 0; } static void p9_virtio_close(struct p9_trans *trans) { struct virtio_chan *chan = trans->priv; int count; unsigned int flags; spin_lock_irqsave(&chan->lock, flags); p9_idpool_destroy(chan->tagpool); for (count = 0; count < chan->max_tag; count++) kfree(chan->reqs[count].wq); kfree(chan->reqs); chan->max_tag = 0; spin_unlock_irqrestore(&chan->lock, flags); down(&virtio_9p_lock); chan->inuse = false; up(&virtio_9p_lock); kfree(trans); } static void req_done(struct virtqueue *vq) { struct virtio_chan *chan = vq->vdev->priv; struct p9_fcall *rc; unsigned int len; unsigned long flags; struct p9_req_t *req; spin_lock_irqsave(&chan->lock, flags); while ((rc = chan->vq->vq_ops->get_buf(chan->vq, &len)) != NULL) { req = p9_lookup_tag(chan, rc->tag); req->status = REQ_STATUS_RCVD; wake_up(req->wq); } /* In case queue is stopped waiting for more buffers. */ spin_unlock_irqrestore(&chan->lock, flags); } static int pack_sg_list(struct scatterlist *sg, int start, int limit, char *data, int count) { int s; int index = start; while (count) { s = rest_of_page(data); if (s > count) s = count; sg_set_buf(&sg[index++], data, s); count -= s; data += s; if (index > limit) BUG(); } return index-start; } static int p9_virtio_rpc(struct p9_trans *t, struct p9_fcall *tc, struct p9_fcall **rc, int msize, int dotu) { int in, out; int n, err, size; struct virtio_chan *chan = t->priv; char *rdata; struct p9_req_t *req; unsigned long flags; if (*rc == NULL) { *rc = kmalloc(sizeof(struct p9_fcall) + msize, GFP_KERNEL); if (!*rc) return -ENOMEM; } rdata = (char *)*rc+sizeof(struct p9_fcall); spin_lock_irqsave(&chan->lock, flags); n = P9_NOTAG; if (tc->id != P9_TVERSION) { n = p9_idpool_get(chan->tagpool); if (n < 0) return -ENOMEM; } req = p9_lookup_tag(chan, n); spin_unlock_irqrestore(&chan->lock, flags); p9_set_tag(tc, n); P9_DPRINTK(P9_DEBUG_TRANS, "9p debug: virtio rpc tag %d\n", n); out = pack_sg_list(chan->sg, 0, VIRTQUEUE_NUM, tc->sdata, tc->size); in = pack_sg_list(chan->sg, out, VIRTQUEUE_NUM-out, rdata, msize); req->status = REQ_STATUS_SENT; if (chan->vq->vq_ops->add_buf(chan->vq, chan->sg, out, in, tc)) { P9_DPRINTK(P9_DEBUG_TRANS, "9p debug: virtio rpc add_buf returned failure"); return -EIO; } chan->vq->vq_ops->kick(chan->vq); wait_event(*req->wq, req->status == REQ_STATUS_RCVD); size = le32_to_cpu(*(__le32 *) rdata); err = p9_deserialize_fcall(rdata, size, *rc, dotu); if (err < 0) { P9_DPRINTK(P9_DEBUG_TRANS, "9p debug: virtio rpc deserialize returned %d\n", err); return err; } #ifdef CONFIG_NET_9P_DEBUG if ((p9_debug_level&P9_DEBUG_FCALL) == P9_DEBUG_FCALL) { char buf[150]; p9_printfcall(buf, sizeof(buf), *rc, dotu); printk(KERN_NOTICE ">>> %p %s\n", t, buf); } #endif if (n != P9_NOTAG && p9_idpool_check(n, chan->tagpool)) p9_idpool_put(n, chan->tagpool); req->status = REQ_STATUS_IDLE; return 0; } static int p9_virtio_probe(struct virtio_device *vdev) { int err; struct virtio_chan *chan; int index; down(&virtio_9p_lock); index = chan_index++; chan = &channels[index]; up(&virtio_9p_lock); if (chan_index > MAX_9P_CHAN) { printk(KERN_ERR "9p: virtio: Maximum channels exceeded\n"); BUG(); err = -ENOMEM; goto fail; } chan->vdev = vdev; /* We expect one virtqueue, for requests. */ chan->vq = vdev->config->find_vq(vdev, 0, req_done); if (IS_ERR(chan->vq)) { err = PTR_ERR(chan->vq); goto out_free_vq; } chan->vq->vdev->priv = chan; spin_lock_init(&chan->lock); sg_init_table(chan->sg, VIRTQUEUE_NUM); chan->inuse = false; chan->initialized = true; return 0; out_free_vq: vdev->config->del_vq(chan->vq); fail: down(&virtio_9p_lock); chan_index--; up(&virtio_9p_lock); return err; } /* This sets up a transport channel for 9p communication. Right now * we only match the first available channel, but eventually we couldlook up * alternate channels by matching devname versus a virtio_config entry. * We use a simple reference count mechanism to ensure that only a single * mount has a channel open at a time. */ static struct p9_trans *p9_virtio_create(const char *devname, char *args) { struct p9_trans *trans; struct virtio_chan *chan = channels; int index = 0; down(&virtio_9p_lock); while (index < MAX_9P_CHAN) { if (chan->initialized && !chan->inuse) { chan->inuse = true; break; } else { index++; chan = &channels[index]; } } up(&virtio_9p_lock); if (index >= MAX_9P_CHAN) { printk(KERN_ERR "9p: no channels available\n"); return ERR_PTR(-ENODEV); } chan->tagpool = p9_idpool_create(); if (IS_ERR(chan->tagpool)) { printk(KERN_ERR "9p: couldn't allocate tagpool\n"); return ERR_PTR(-ENOMEM); } p9_idpool_get(chan->tagpool); /* reserve tag 0 */ chan->max_tag = 0; chan->reqs = NULL; trans = kmalloc(sizeof(struct p9_trans), GFP_KERNEL); if (!trans) { printk(KERN_ERR "9p: couldn't allocate transport\n"); return ERR_PTR(-ENOMEM); } trans->write = p9_virtio_write; trans->read = p9_virtio_read; trans->close = p9_virtio_close; trans->poll = p9_virtio_poll; trans->rpc = p9_virtio_rpc; trans->priv = chan; return trans; } #define VIRTIO_ID_9P 9 static struct virtio_device_id id_table[] = { { VIRTIO_ID_9P, VIRTIO_DEV_ANY_ID }, { 0 }, }; /* The standard "struct lguest_driver": */ static struct virtio_driver p9_virtio_drv = { .driver.name = KBUILD_MODNAME, .driver.owner = THIS_MODULE, .id_table = id_table, .probe = p9_virtio_probe, }; static struct p9_trans_module p9_virtio_trans = { .name = "virtio", .create = p9_virtio_create, .maxsize = PAGE_SIZE*16, .def = 0, }; /* The standard init function */ static int __init p9_virtio_init(void) { int count; for (count = 0; count < MAX_9P_CHAN; count++) channels[count].initialized = false; v9fs_register_trans(&p9_virtio_trans); return register_virtio_driver(&p9_virtio_drv); } module_init(p9_virtio_init); MODULE_DEVICE_TABLE(virtio, id_table); MODULE_AUTHOR("Eric Van Hensbergen "); MODULE_DESCRIPTION("Virtio 9p Transport"); MODULE_LICENSE("GPL");