/* * linux/mm/swap.c * * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds */ /* * This file contains the default values for the operation of the * Linux VM subsystem. Fine-tuning documentation can be found in * Documentation/sysctl/vm.txt. * Started 18.12.91 * Swap aging added 23.2.95, Stephen Tweedie. * Buffermem limits added 12.3.98, Rik van Riel. */ #include #include #include #include #include #include #include #include #include #include #include /* for try_to_release_page() */ #include #include #include #include #include #include #include #include "internal.h" /* How many pages do we try to swap or page in/out together? */ int page_cluster; static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs); static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs); /* * This path almost never happens for VM activity - pages are normally * freed via pagevecs. But it gets used by networking. */ static void __page_cache_release(struct page *page) { if (PageLRU(page)) { unsigned long flags; struct zone *zone = page_zone(page); spin_lock_irqsave(&zone->lru_lock, flags); VM_BUG_ON(!PageLRU(page)); __ClearPageLRU(page); del_page_from_lru(zone, page); spin_unlock_irqrestore(&zone->lru_lock, flags); } } static void __put_single_page(struct page *page) { __page_cache_release(page); free_hot_cold_page(page, 0); } static void __put_compound_page(struct page *page) { compound_page_dtor *dtor; __page_cache_release(page); dtor = get_compound_page_dtor(page); (*dtor)(page); } static void put_compound_page(struct page *page) { if (unlikely(PageTail(page))) { /* __split_huge_page_refcount can run under us */ struct page *page_head = page->first_page; smp_rmb(); /* * If PageTail is still set after smp_rmb() we can be sure * that the page->first_page we read wasn't a dangling pointer. * See __split_huge_page_refcount() smp_wmb(). */ if (likely(PageTail(page) && get_page_unless_zero(page_head))) { unsigned long flags; /* * Verify that our page_head wasn't converted * to a a regular page before we got a * reference on it. */ if (unlikely(!PageHead(page_head))) { /* PageHead is cleared after PageTail */ smp_rmb(); VM_BUG_ON(PageTail(page)); goto out_put_head; } /* * Only run compound_lock on a valid PageHead, * after having it pinned with * get_page_unless_zero() above. */ smp_mb(); /* page_head wasn't a dangling pointer */ flags = compound_lock_irqsave(page_head); if (unlikely(!PageTail(page))) { /* __split_huge_page_refcount run before us */ compound_unlock_irqrestore(page_head, flags); VM_BUG_ON(PageHead(page_head)); out_put_head: if (put_page_testzero(page_head)) __put_single_page(page_head); out_put_single: if (put_page_testzero(page)) __put_single_page(page); return; } VM_BUG_ON(page_head != page->first_page); /* * We can release the refcount taken by * get_page_unless_zero now that * split_huge_page_refcount is blocked on the * compound_lock. */ if (put_page_testzero(page_head)) VM_BUG_ON(1); /* __split_huge_page_refcount will wait now */ VM_BUG_ON(atomic_read(&page->_count) <= 0); atomic_dec(&page->_count); VM_BUG_ON(atomic_read(&page_head->_count) <= 0); compound_unlock_irqrestore(page_head, flags); if (put_page_testzero(page_head)) { if (PageHead(page_head)) __put_compound_page(page_head); else __put_single_page(page_head); } } else { /* page_head is a dangling pointer */ VM_BUG_ON(PageTail(page)); goto out_put_single; } } else if (put_page_testzero(page)) { if (PageHead(page)) __put_compound_page(page); else __put_single_page(page); } } void put_page(struct page *page) { if (unlikely(PageCompound(page))) put_compound_page(page); else if (put_page_testzero(page)) __put_single_page(page); } EXPORT_SYMBOL(put_page); /** * put_pages_list() - release a list of pages * @pages: list of pages threaded on page->lru * * Release a list of pages which are strung together on page.lru. Currently * used by read_cache_pages() and related error recovery code. */ void put_pages_list(struct list_head *pages) { while (!list_empty(pages)) { struct page *victim; victim = list_entry(pages->prev, struct page, lru); list_del(&victim->lru); page_cache_release(victim); } } EXPORT_SYMBOL(put_pages_list); /* * pagevec_move_tail() must be called with IRQ disabled. * Otherwise this may cause nasty races. */ static void pagevec_move_tail(struct pagevec *pvec) { int i; int pgmoved = 0; struct zone *zone = NULL; for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; struct zone *pagezone = page_zone(page); if (pagezone != zone) { if (zone) spin_unlock(&zone->lru_lock); zone = pagezone; spin_lock(&zone->lru_lock); } if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { int lru = page_lru_base_type(page); list_move_tail(&page->lru, &zone->lru[lru].list); pgmoved++; } } if (zone) spin_unlock(&zone->lru_lock); __count_vm_events(PGROTATED, pgmoved); release_pages(pvec->pages, pvec->nr, pvec->cold); pagevec_reinit(pvec); } /* * Writeback is about to end against a page which has been marked for immediate * reclaim. If it still appears to be reclaimable, move it to the tail of the * inactive list. */ void rotate_reclaimable_page(struct page *page) { if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) && !PageUnevictable(page) && PageLRU(page)) { struct pagevec *pvec; unsigned long flags; page_cache_get(page); local_irq_save(flags); pvec = &__get_cpu_var(lru_rotate_pvecs); if (!pagevec_add(pvec, page)) pagevec_move_tail(pvec); local_irq_restore(flags); } } static void update_page_reclaim_stat(struct zone *zone, struct page *page, int file, int rotated) { struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat; struct zone_reclaim_stat *memcg_reclaim_stat; memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page); reclaim_stat->recent_scanned[file]++; if (rotated) reclaim_stat->recent_rotated[file]++; if (!memcg_reclaim_stat) return; memcg_reclaim_stat->recent_scanned[file]++; if (rotated) memcg_reclaim_stat->recent_rotated[file]++; } /* * FIXME: speed this up? */ void activate_page(struct page *page) { struct zone *zone = page_zone(page); spin_lock_irq(&zone->lru_lock); if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { int file = page_is_file_cache(page); int lru = page_lru_base_type(page); del_page_from_lru_list(zone, page, lru); SetPageActive(page); lru += LRU_ACTIVE; add_page_to_lru_list(zone, page, lru); __count_vm_event(PGACTIVATE); update_page_reclaim_stat(zone, page, file, 1); } spin_unlock_irq(&zone->lru_lock); } /* * Mark a page as having seen activity. * * inactive,unreferenced -> inactive,referenced * inactive,referenced -> active,unreferenced * active,unreferenced -> active,referenced */ void mark_page_accessed(struct page *page) { if (!PageActive(page) && !PageUnevictable(page) && PageReferenced(page) && PageLRU(page)) { activate_page(page); ClearPageReferenced(page); } else if (!PageReferenced(page)) { SetPageReferenced(page); } } EXPORT_SYMBOL(mark_page_accessed); void __lru_cache_add(struct page *page, enum lru_list lru) { struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru]; page_cache_get(page); if (!pagevec_add(pvec, page)) ____pagevec_lru_add(pvec, lru); put_cpu_var(lru_add_pvecs); } EXPORT_SYMBOL(__lru_cache_add); /** * lru_cache_add_lru - add a page to a page list * @page: the page to be added to the LRU. * @lru: the LRU list to which the page is added. */ void lru_cache_add_lru(struct page *page, enum lru_list lru) { if (PageActive(page)) { VM_BUG_ON(PageUnevictable(page)); ClearPageActive(page); } else if (PageUnevictable(page)) { VM_BUG_ON(PageActive(page)); ClearPageUnevictable(page); } VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page)); __lru_cache_add(page, lru); } /** * add_page_to_unevictable_list - add a page to the unevictable list * @page: the page to be added to the unevictable list * * Add page directly to its zone's unevictable list. To avoid races with * tasks that might be making the page evictable, through eg. munlock, * munmap or exit, while it's not on the lru, we want to add the page * while it's locked or otherwise "invisible" to other tasks. This is * difficult to do when using the pagevec cache, so bypass that. */ void add_page_to_unevictable_list(struct page *page) { struct zone *zone = page_zone(page); spin_lock_irq(&zone->lru_lock); SetPageUnevictable(page); SetPageLRU(page); add_page_to_lru_list(zone, page, LRU_UNEVICTABLE); spin_unlock_irq(&zone->lru_lock); } /* * Drain pages out of the cpu's pagevecs. * Either "cpu" is the current CPU, and preemption has already been * disabled; or "cpu" is being hot-unplugged, and is already dead. */ static void drain_cpu_pagevecs(int cpu) { struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu); struct pagevec *pvec; int lru; for_each_lru(lru) { pvec = &pvecs[lru - LRU_BASE]; if (pagevec_count(pvec)) ____pagevec_lru_add(pvec, lru); } pvec = &per_cpu(lru_rotate_pvecs, cpu); if (pagevec_count(pvec)) { unsigned long flags; /* No harm done if a racing interrupt already did this */ local_irq_save(flags); pagevec_move_tail(pvec); local_irq_restore(flags); } } void lru_add_drain(void) { drain_cpu_pagevecs(get_cpu()); put_cpu(); } static void lru_add_drain_per_cpu(struct work_struct *dummy) { lru_add_drain(); } /* * Returns 0 for success */ int lru_add_drain_all(void) { return schedule_on_each_cpu(lru_add_drain_per_cpu); } /* * Batched page_cache_release(). Decrement the reference count on all the * passed pages. If it fell to zero then remove the page from the LRU and * free it. * * Avoid taking zone->lru_lock if possible, but if it is taken, retain it * for the remainder of the operation. * * The locking in this function is against shrink_inactive_list(): we recheck * the page count inside the lock to see whether shrink_inactive_list() * grabbed the page via the LRU. If it did, give up: shrink_inactive_list() * will free it. */ void release_pages(struct page **pages, int nr, int cold) { int i; struct pagevec pages_to_free; struct zone *zone = NULL; unsigned long uninitialized_var(flags); pagevec_init(&pages_to_free, cold); for (i = 0; i < nr; i++) { struct page *page = pages[i]; if (unlikely(PageCompound(page))) { if (zone) { spin_unlock_irqrestore(&zone->lru_lock, flags); zone = NULL; } put_compound_page(page); continue; } if (!put_page_testzero(page)) continue; if (PageLRU(page)) { struct zone *pagezone = page_zone(page); if (pagezone != zone) { if (zone) spin_unlock_irqrestore(&zone->lru_lock, flags); zone = pagezone; spin_lock_irqsave(&zone->lru_lock, flags); } VM_BUG_ON(!PageLRU(page)); __ClearPageLRU(page); del_page_from_lru(zone, page); } if (!pagevec_add(&pages_to_free, page)) { if (zone) { spin_unlock_irqrestore(&zone->lru_lock, flags); zone = NULL; } __pagevec_free(&pages_to_free); pagevec_reinit(&pages_to_free); } } if (zone) spin_unlock_irqrestore(&zone->lru_lock, flags); pagevec_free(&pages_to_free); } EXPORT_SYMBOL(release_pages); /* * The pages which we're about to release may be in the deferred lru-addition * queues. That would prevent them from really being freed right now. That's * OK from a correctness point of view but is inefficient - those pages may be * cache-warm and we want to give them back to the page allocator ASAP. * * So __pagevec_release() will drain those queues here. __pagevec_lru_add() * and __pagevec_lru_add_active() call release_pages() directly to avoid * mutual recursion. */ void __pagevec_release(struct pagevec *pvec) { lru_add_drain(); release_pages(pvec->pages, pagevec_count(pvec), pvec->cold); pagevec_reinit(pvec); } EXPORT_SYMBOL(__pagevec_release); /* used by __split_huge_page_refcount() */ void lru_add_page_tail(struct zone* zone, struct page *page, struct page *page_tail) { int active; enum lru_list lru; const int file = 0; struct list_head *head; VM_BUG_ON(!PageHead(page)); VM_BUG_ON(PageCompound(page_tail)); VM_BUG_ON(PageLRU(page_tail)); VM_BUG_ON(!spin_is_locked(&zone->lru_lock)); SetPageLRU(page_tail); if (page_evictable(page_tail, NULL)) { if (PageActive(page)) { SetPageActive(page_tail); active = 1; lru = LRU_ACTIVE_ANON; } else { active = 0; lru = LRU_INACTIVE_ANON; } update_page_reclaim_stat(zone, page_tail, file, active); if (likely(PageLRU(page))) head = page->lru.prev; else head = &zone->lru[lru].list; __add_page_to_lru_list(zone, page_tail, lru, head); } else { SetPageUnevictable(page_tail); add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE); } } /* * Add the passed pages to the LRU, then drop the caller's refcount * on them. Reinitialises the caller's pagevec. */ void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru) { int i; struct zone *zone = NULL; VM_BUG_ON(is_unevictable_lru(lru)); for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; struct zone *pagezone = page_zone(page); int file; int active; if (pagezone != zone) { if (zone) spin_unlock_irq(&zone->lru_lock); zone = pagezone; spin_lock_irq(&zone->lru_lock); } VM_BUG_ON(PageActive(page)); VM_BUG_ON(PageUnevictable(page)); VM_BUG_ON(PageLRU(page)); SetPageLRU(page); active = is_active_lru(lru); file = is_file_lru(lru); if (active) SetPageActive(page); update_page_reclaim_stat(zone, page, file, active); add_page_to_lru_list(zone, page, lru); } if (zone) spin_unlock_irq(&zone->lru_lock); release_pages(pvec->pages, pvec->nr, pvec->cold); pagevec_reinit(pvec); } EXPORT_SYMBOL(____pagevec_lru_add); /* * Try to drop buffers from the pages in a pagevec */ void pagevec_strip(struct pagevec *pvec) { int i; for (i = 0; i < pagevec_count(pvec); i++) { struct page *page = pvec->pages[i]; if (page_has_private(page) && trylock_page(page)) { if (page_has_private(page)) try_to_release_page(page, 0); unlock_page(page); } } } /** * pagevec_lookup - gang pagecache lookup * @pvec: Where the resulting pages are placed * @mapping: The address_space to search * @start: The starting page index * @nr_pages: The maximum number of pages * * pagevec_lookup() will search for and return a group of up to @nr_pages pages * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a * reference against the pages in @pvec. * * The search returns a group of mapping-contiguous pages with ascending * indexes. There may be holes in the indices due to not-present pages. * * pagevec_lookup() returns the number of pages which were found. */ unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, pgoff_t start, unsigned nr_pages) { pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup); unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, int tag, unsigned nr_pages) { pvec->nr = find_get_pages_tag(mapping, index, tag, nr_pages, pvec->pages); return pagevec_count(pvec); } EXPORT_SYMBOL(pagevec_lookup_tag); /* * Perform any setup for the swap system */ void __init swap_setup(void) { unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT); #ifdef CONFIG_SWAP bdi_init(swapper_space.backing_dev_info); #endif /* Use a smaller cluster for small-memory machines */ if (megs < 16) page_cluster = 2; else page_cluster = 3; /* * Right now other parts of the system means that we * _really_ don't want to cluster much more */ }