/* * Generic hugetlb support. * (C) Nadia Yvette Chambers, April 2004 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; unsigned long hugepages_treat_as_movable; int hugetlb_max_hstate __read_mostly; unsigned int default_hstate_idx; struct hstate hstates[HUGE_MAX_HSTATE]; __initdata LIST_HEAD(huge_boot_pages); /* for command line parsing */ static struct hstate * __initdata parsed_hstate; static unsigned long __initdata default_hstate_max_huge_pages; static unsigned long __initdata default_hstate_size; /* * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, * free_huge_pages, and surplus_huge_pages. */ DEFINE_SPINLOCK(hugetlb_lock); /* * Serializes faults on the same logical page. This is used to * prevent spurious OOMs when the hugepage pool is fully utilized. */ static int num_fault_mutexes; static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp; static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) { bool free = (spool->count == 0) && (spool->used_hpages == 0); spin_unlock(&spool->lock); /* If no pages are used, and no other handles to the subpool * remain, free the subpool the subpool remain */ if (free) kfree(spool); } struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) { struct hugepage_subpool *spool; spool = kmalloc(sizeof(*spool), GFP_KERNEL); if (!spool) return NULL; spin_lock_init(&spool->lock); spool->count = 1; spool->max_hpages = nr_blocks; spool->used_hpages = 0; return spool; } void hugepage_put_subpool(struct hugepage_subpool *spool) { spin_lock(&spool->lock); BUG_ON(!spool->count); spool->count--; unlock_or_release_subpool(spool); } static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, long delta) { int ret = 0; if (!spool) return 0; spin_lock(&spool->lock); if ((spool->used_hpages + delta) <= spool->max_hpages) { spool->used_hpages += delta; } else { ret = -ENOMEM; } spin_unlock(&spool->lock); return ret; } static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, long delta) { if (!spool) return; spin_lock(&spool->lock); spool->used_hpages -= delta; /* If hugetlbfs_put_super couldn't free spool due to * an outstanding quota reference, free it now. */ unlock_or_release_subpool(spool); } static inline struct hugepage_subpool *subpool_inode(struct inode *inode) { return HUGETLBFS_SB(inode->i_sb)->spool; } static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) { return subpool_inode(file_inode(vma->vm_file)); } /* * Region tracking -- allows tracking of reservations and instantiated pages * across the pages in a mapping. * * The region data structures are embedded into a resv_map and * protected by a resv_map's lock */ struct file_region { struct list_head link; long from; long to; }; static long region_add(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg, *nrg, *trg; spin_lock(&resv->lock); /* Locate the region we are either in or before. */ list_for_each_entry(rg, head, link) if (f <= rg->to) break; /* Round our left edge to the current segment if it encloses us. */ if (f > rg->from) f = rg->from; /* Check for and consume any regions we now overlap with. */ nrg = rg; list_for_each_entry_safe(rg, trg, rg->link.prev, link) { if (&rg->link == head) break; if (rg->from > t) break; /* If this area reaches higher then extend our area to * include it completely. If this is not the first area * which we intend to reuse, free it. */ if (rg->to > t) t = rg->to; if (rg != nrg) { list_del(&rg->link); kfree(rg); } } nrg->from = f; nrg->to = t; spin_unlock(&resv->lock); return 0; } static long region_chg(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg, *nrg = NULL; long chg = 0; retry: spin_lock(&resv->lock); /* Locate the region we are before or in. */ list_for_each_entry(rg, head, link) if (f <= rg->to) break; /* If we are below the current region then a new region is required. * Subtle, allocate a new region at the position but make it zero * size such that we can guarantee to record the reservation. */ if (&rg->link == head || t < rg->from) { if (!nrg) { spin_unlock(&resv->lock); nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); if (!nrg) return -ENOMEM; nrg->from = f; nrg->to = f; INIT_LIST_HEAD(&nrg->link); goto retry; } list_add(&nrg->link, rg->link.prev); chg = t - f; goto out_nrg; } /* Round our left edge to the current segment if it encloses us. */ if (f > rg->from) f = rg->from; chg = t - f; /* Check for and consume any regions we now overlap with. */ list_for_each_entry(rg, rg->link.prev, link) { if (&rg->link == head) break; if (rg->from > t) goto out; /* We overlap with this area, if it extends further than * us then we must extend ourselves. Account for its * existing reservation. */ if (rg->to > t) { chg += rg->to - t; t = rg->to; } chg -= rg->to - rg->from; } out: spin_unlock(&resv->lock); /* We already know we raced and no longer need the new region */ kfree(nrg); return chg; out_nrg: spin_unlock(&resv->lock); return chg; } static long region_truncate(struct resv_map *resv, long end) { struct list_head *head = &resv->regions; struct file_region *rg, *trg; long chg = 0; spin_lock(&resv->lock); /* Locate the region we are either in or before. */ list_for_each_entry(rg, head, link) if (end <= rg->to) break; if (&rg->link == head) goto out; /* If we are in the middle of a region then adjust it. */ if (end > rg->from) { chg = rg->to - end; rg->to = end; rg = list_entry(rg->link.next, typeof(*rg), link); } /* Drop any remaining regions. */ list_for_each_entry_safe(rg, trg, rg->link.prev, link) { if (&rg->link == head) break; chg += rg->to - rg->from; list_del(&rg->link); kfree(rg); } out: spin_unlock(&resv->lock); return chg; } static long region_count(struct resv_map *resv, long f, long t) { struct list_head *head = &resv->regions; struct file_region *rg; long chg = 0; spin_lock(&resv->lock); /* Locate each segment we overlap with, and count that overlap. */ list_for_each_entry(rg, head, link) { long seg_from; long seg_to; if (rg->to <= f) continue; if (rg->from >= t) break; seg_from = max(rg->from, f); seg_to = min(rg->to, t); chg += seg_to - seg_from; } spin_unlock(&resv->lock); return chg; } /* * Convert the address within this vma to the page offset within * the mapping, in pagecache page units; huge pages here. */ static pgoff_t vma_hugecache_offset(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { return ((address - vma->vm_start) >> huge_page_shift(h)) + (vma->vm_pgoff >> huge_page_order(h)); } pgoff_t linear_hugepage_index(struct vm_area_struct *vma, unsigned long address) { return vma_hugecache_offset(hstate_vma(vma), vma, address); } /* * Return the size of the pages allocated when backing a VMA. In the majority * cases this will be same size as used by the page table entries. */ unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) { struct hstate *hstate; if (!is_vm_hugetlb_page(vma)) return PAGE_SIZE; hstate = hstate_vma(vma); return 1UL << huge_page_shift(hstate); } EXPORT_SYMBOL_GPL(vma_kernel_pagesize); /* * Return the page size being used by the MMU to back a VMA. In the majority * of cases, the page size used by the kernel matches the MMU size. On * architectures where it differs, an architecture-specific version of this * function is required. */ #ifndef vma_mmu_pagesize unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) { return vma_kernel_pagesize(vma); } #endif /* * Flags for MAP_PRIVATE reservations. These are stored in the bottom * bits of the reservation map pointer, which are always clear due to * alignment. */ #define HPAGE_RESV_OWNER (1UL << 0) #define HPAGE_RESV_UNMAPPED (1UL << 1) #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) /* * These helpers are used to track how many pages are reserved for * faults in a MAP_PRIVATE mapping. Only the process that called mmap() * is guaranteed to have their future faults succeed. * * With the exception of reset_vma_resv_huge_pages() which is called at fork(), * the reserve counters are updated with the hugetlb_lock held. It is safe * to reset the VMA at fork() time as it is not in use yet and there is no * chance of the global counters getting corrupted as a result of the values. * * The private mapping reservation is represented in a subtly different * manner to a shared mapping. A shared mapping has a region map associated * with the underlying file, this region map represents the backing file * pages which have ever had a reservation assigned which this persists even * after the page is instantiated. A private mapping has a region map * associated with the original mmap which is attached to all VMAs which * reference it, this region map represents those offsets which have consumed * reservation ie. where pages have been instantiated. */ static unsigned long get_vma_private_data(struct vm_area_struct *vma) { return (unsigned long)vma->vm_private_data; } static void set_vma_private_data(struct vm_area_struct *vma, unsigned long value) { vma->vm_private_data = (void *)value; } struct resv_map *resv_map_alloc(void) { struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); if (!resv_map) return NULL; kref_init(&resv_map->refs); spin_lock_init(&resv_map->lock); INIT_LIST_HEAD(&resv_map->regions); return resv_map; } void resv_map_release(struct kref *ref) { struct resv_map *resv_map = container_of(ref, struct resv_map, refs); /* Clear out any active regions before we release the map. */ region_truncate(resv_map, 0); kfree(resv_map); } static inline struct resv_map *inode_resv_map(struct inode *inode) { return inode->i_mapping->private_data; } static struct resv_map *vma_resv_map(struct vm_area_struct *vma) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); if (vma->vm_flags & VM_MAYSHARE) { struct address_space *mapping = vma->vm_file->f_mapping; struct inode *inode = mapping->host; return inode_resv_map(inode); } else { return (struct resv_map *)(get_vma_private_data(vma) & ~HPAGE_RESV_MASK); } } static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); set_vma_private_data(vma, (get_vma_private_data(vma) & HPAGE_RESV_MASK) | (unsigned long)map); } static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); set_vma_private_data(vma, get_vma_private_data(vma) | flags); } static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); return (get_vma_private_data(vma) & flag) != 0; } /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ void reset_vma_resv_huge_pages(struct vm_area_struct *vma) { VM_BUG_ON(!is_vm_hugetlb_page(vma)); if (!(vma->vm_flags & VM_MAYSHARE)) vma->vm_private_data = (void *)0; } /* Returns true if the VMA has associated reserve pages */ static int vma_has_reserves(struct vm_area_struct *vma, long chg) { if (vma->vm_flags & VM_NORESERVE) { /* * This address is already reserved by other process(chg == 0), * so, we should decrement reserved count. Without decrementing, * reserve count remains after releasing inode, because this * allocated page will go into page cache and is regarded as * coming from reserved pool in releasing step. Currently, we * don't have any other solution to deal with this situation * properly, so add work-around here. */ if (vma->vm_flags & VM_MAYSHARE && chg == 0) return 1; else return 0; } /* Shared mappings always use reserves */ if (vma->vm_flags & VM_MAYSHARE) return 1; /* * Only the process that called mmap() has reserves for * private mappings. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) return 1; return 0; } static void enqueue_huge_page(struct hstate *h, struct page *page) { int nid = page_to_nid(page); list_move(&page->lru, &h->hugepage_freelists[nid]); h->free_huge_pages++; h->free_huge_pages_node[nid]++; } static struct page *dequeue_huge_page_node(struct hstate *h, int nid) { struct page *page; list_for_each_entry(page, &h->hugepage_freelists[nid], lru) if (!is_migrate_isolate_page(page)) break; /* * if 'non-isolated free hugepage' not found on the list, * the allocation fails. */ if (&h->hugepage_freelists[nid] == &page->lru) return NULL; list_move(&page->lru, &h->hugepage_activelist); set_page_refcounted(page); h->free_huge_pages--; h->free_huge_pages_node[nid]--; return page; } /* Movability of hugepages depends on migration support. */ static inline gfp_t htlb_alloc_mask(struct hstate *h) { if (hugepages_treat_as_movable || hugepage_migration_supported(h)) return GFP_HIGHUSER_MOVABLE; else return GFP_HIGHUSER; } static struct page *dequeue_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address, int avoid_reserve, long chg) { struct page *page = NULL; struct mempolicy *mpol; nodemask_t *nodemask; struct zonelist *zonelist; struct zone *zone; struct zoneref *z; unsigned int cpuset_mems_cookie; /* * A child process with MAP_PRIVATE mappings created by their parent * have no page reserves. This check ensures that reservations are * not "stolen". The child may still get SIGKILLed */ if (!vma_has_reserves(vma, chg) && h->free_huge_pages - h->resv_huge_pages == 0) goto err; /* If reserves cannot be used, ensure enough pages are in the pool */ if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) goto err; retry_cpuset: cpuset_mems_cookie = read_mems_allowed_begin(); zonelist = huge_zonelist(vma, address, htlb_alloc_mask(h), &mpol, &nodemask); for_each_zone_zonelist_nodemask(zone, z, zonelist, MAX_NR_ZONES - 1, nodemask) { if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { page = dequeue_huge_page_node(h, zone_to_nid(zone)); if (page) { if (avoid_reserve) break; if (!vma_has_reserves(vma, chg)) break; SetPagePrivate(page); h->resv_huge_pages--; break; } } } mpol_cond_put(mpol); if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) goto retry_cpuset; return page; err: return NULL; } /* * common helper functions for hstate_next_node_to_{alloc|free}. * We may have allocated or freed a huge page based on a different * nodes_allowed previously, so h->next_node_to_{alloc|free} might * be outside of *nodes_allowed. Ensure that we use an allowed * node for alloc or free. */ static int next_node_allowed(int nid, nodemask_t *nodes_allowed) { nid = next_node(nid, *nodes_allowed); if (nid == MAX_NUMNODES) nid = first_node(*nodes_allowed); VM_BUG_ON(nid >= MAX_NUMNODES); return nid; } static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) { if (!node_isset(nid, *nodes_allowed)) nid = next_node_allowed(nid, nodes_allowed); return nid; } /* * returns the previously saved node ["this node"] from which to * allocate a persistent huge page for the pool and advance the * next node from which to allocate, handling wrap at end of node * mask. */ static int hstate_next_node_to_alloc(struct hstate *h, nodemask_t *nodes_allowed) { int nid; VM_BUG_ON(!nodes_allowed); nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); return nid; } /* * helper for free_pool_huge_page() - return the previously saved * node ["this node"] from which to free a huge page. Advance the * next node id whether or not we find a free huge page to free so * that the next attempt to free addresses the next node. */ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) { int nid; VM_BUG_ON(!nodes_allowed); nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); return nid; } #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ for (nr_nodes = nodes_weight(*mask); \ nr_nodes > 0 && \ ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ nr_nodes--) #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ for (nr_nodes = nodes_weight(*mask); \ nr_nodes > 0 && \ ((node = hstate_next_node_to_free(hs, mask)) || 1); \ nr_nodes--) #if defined(CONFIG_CMA) && defined(CONFIG_X86_64) static void destroy_compound_gigantic_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; struct page *p = page + 1; for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { __ClearPageTail(p); set_page_refcounted(p); p->first_page = NULL; } set_compound_order(page, 0); __ClearPageHead(page); } static void free_gigantic_page(struct page *page, unsigned order) { free_contig_range(page_to_pfn(page), 1 << order); } static int __alloc_gigantic_page(unsigned long start_pfn, unsigned long nr_pages) { unsigned long end_pfn = start_pfn + nr_pages; return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE); } static bool pfn_range_valid_gigantic(unsigned long start_pfn, unsigned long nr_pages) { unsigned long i, end_pfn = start_pfn + nr_pages; struct page *page; for (i = start_pfn; i < end_pfn; i++) { if (!pfn_valid(i)) return false; page = pfn_to_page(i); if (PageReserved(page)) return false; if (page_count(page) > 0) return false; if (PageHuge(page)) return false; } return true; } static bool zone_spans_last_pfn(const struct zone *zone, unsigned long start_pfn, unsigned long nr_pages) { unsigned long last_pfn = start_pfn + nr_pages - 1; return zone_spans_pfn(zone, last_pfn); } static struct page *alloc_gigantic_page(int nid, unsigned order) { unsigned long nr_pages = 1 << order; unsigned long ret, pfn, flags; struct zone *z; z = NODE_DATA(nid)->node_zones; for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) { spin_lock_irqsave(&z->lock, flags); pfn = ALIGN(z->zone_start_pfn, nr_pages); while (zone_spans_last_pfn(z, pfn, nr_pages)) { if (pfn_range_valid_gigantic(pfn, nr_pages)) { /* * We release the zone lock here because * alloc_contig_range() will also lock the zone * at some point. If there's an allocation * spinning on this lock, it may win the race * and cause alloc_contig_range() to fail... */ spin_unlock_irqrestore(&z->lock, flags); ret = __alloc_gigantic_page(pfn, nr_pages); if (!ret) return pfn_to_page(pfn); spin_lock_irqsave(&z->lock, flags); } pfn += nr_pages; } spin_unlock_irqrestore(&z->lock, flags); } return NULL; } static void prep_new_huge_page(struct hstate *h, struct page *page, int nid); static void prep_compound_gigantic_page(struct page *page, unsigned long order); static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid) { struct page *page; page = alloc_gigantic_page(nid, huge_page_order(h)); if (page) { prep_compound_gigantic_page(page, huge_page_order(h)); prep_new_huge_page(h, page, nid); } return page; } static int alloc_fresh_gigantic_page(struct hstate *h, nodemask_t *nodes_allowed) { struct page *page = NULL; int nr_nodes, node; for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { page = alloc_fresh_gigantic_page_node(h, node); if (page) return 1; } return 0; } static inline bool gigantic_page_supported(void) { return true; } #else static inline bool gigantic_page_supported(void) { return false; } static inline void free_gigantic_page(struct page *page, unsigned order) { } static inline void destroy_compound_gigantic_page(struct page *page, unsigned long order) { } static inline int alloc_fresh_gigantic_page(struct hstate *h, nodemask_t *nodes_allowed) { return 0; } #endif static void update_and_free_page(struct hstate *h, struct page *page) { int i; if (hstate_is_gigantic(h) && !gigantic_page_supported()) return; h->nr_huge_pages--; h->nr_huge_pages_node[page_to_nid(page)]--; for (i = 0; i < pages_per_huge_page(h); i++) { page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | 1 << PG_dirty | 1 << PG_active | 1 << PG_private | 1 << PG_writeback); } VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page); set_compound_page_dtor(page, NULL); set_page_refcounted(page); if (hstate_is_gigantic(h)) { destroy_compound_gigantic_page(page, huge_page_order(h)); free_gigantic_page(page, huge_page_order(h)); } else { arch_release_hugepage(page); __free_pages(page, huge_page_order(h)); } } struct hstate *size_to_hstate(unsigned long size) { struct hstate *h; for_each_hstate(h) { if (huge_page_size(h) == size) return h; } return NULL; } static void free_huge_page(struct page *page) { /* * Can't pass hstate in here because it is called from the * compound page destructor. */ struct hstate *h = page_hstate(page); int nid = page_to_nid(page); struct hugepage_subpool *spool = (struct hugepage_subpool *)page_private(page); bool restore_reserve; set_page_private(page, 0); page->mapping = NULL; BUG_ON(page_count(page)); BUG_ON(page_mapcount(page)); restore_reserve = PagePrivate(page); ClearPagePrivate(page); spin_lock(&hugetlb_lock); hugetlb_cgroup_uncharge_page(hstate_index(h), pages_per_huge_page(h), page); if (restore_reserve) h->resv_huge_pages++; if (h->surplus_huge_pages_node[nid]) { /* remove the page from active list */ list_del(&page->lru); update_and_free_page(h, page); h->surplus_huge_pages--; h->surplus_huge_pages_node[nid]--; } else { arch_clear_hugepage_flags(page); enqueue_huge_page(h, page); } spin_unlock(&hugetlb_lock); hugepage_subpool_put_pages(spool, 1); } static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) { INIT_LIST_HEAD(&page->lru); set_compound_page_dtor(page, free_huge_page); spin_lock(&hugetlb_lock); set_hugetlb_cgroup(page, NULL); h->nr_huge_pages++; h->nr_huge_pages_node[nid]++; spin_unlock(&hugetlb_lock); put_page(page); /* free it into the hugepage allocator */ } static void prep_compound_gigantic_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; struct page *p = page + 1; /* we rely on prep_new_huge_page to set the destructor */ set_compound_order(page, order); __SetPageHead(page); __ClearPageReserved(page); for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { __SetPageTail(p); /* * For gigantic hugepages allocated through bootmem at * boot, it's safer to be consistent with the not-gigantic * hugepages and clear the PG_reserved bit from all tail pages * too. Otherwse drivers using get_user_pages() to access tail * pages may get the reference counting wrong if they see * PG_reserved set on a tail page (despite the head page not * having PG_reserved set). Enforcing this consistency between * head and tail pages allows drivers to optimize away a check * on the head page when they need know if put_page() is needed * after get_user_pages(). */ __ClearPageReserved(p); set_page_count(p, 0); p->first_page = page; } } /* * PageHuge() only returns true for hugetlbfs pages, but not for normal or * transparent huge pages. See the PageTransHuge() documentation for more * details. */ int PageHuge(struct page *page) { if (!PageCompound(page)) return 0; page = compound_head(page); return get_compound_page_dtor(page) == free_huge_page; } EXPORT_SYMBOL_GPL(PageHuge); /* * PageHeadHuge() only returns true for hugetlbfs head page, but not for * normal or transparent huge pages. */ int PageHeadHuge(struct page *page_head) { if (!PageHead(page_head)) return 0; return get_compound_page_dtor(page_head) == free_huge_page; } pgoff_t __basepage_index(struct page *page) { struct page *page_head = compound_head(page); pgoff_t index = page_index(page_head); unsigned long compound_idx; if (!PageHuge(page_head)) return page_index(page); if (compound_order(page_head) >= MAX_ORDER) compound_idx = page_to_pfn(page) - page_to_pfn(page_head); else compound_idx = page - page_head; return (index << compound_order(page_head)) + compound_idx; } static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) { struct page *page; page = alloc_pages_exact_node(nid, htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); if (page) { if (arch_prepare_hugepage(page)) { __free_pages(page, huge_page_order(h)); return NULL; } prep_new_huge_page(h, page, nid); } return page; } static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) { struct page *page; int nr_nodes, node; int ret = 0; for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { page = alloc_fresh_huge_page_node(h, node); if (page) { ret = 1; break; } } if (ret) count_vm_event(HTLB_BUDDY_PGALLOC); else count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); return ret; } /* * Free huge page from pool from next node to free. * Attempt to keep persistent huge pages more or less * balanced over allowed nodes. * Called with hugetlb_lock locked. */ static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, bool acct_surplus) { int nr_nodes, node; int ret = 0; for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { /* * If we're returning unused surplus pages, only examine * nodes with surplus pages. */ if ((!acct_surplus || h->surplus_huge_pages_node[node]) && !list_empty(&h->hugepage_freelists[node])) { struct page *page = list_entry(h->hugepage_freelists[node].next, struct page, lru); list_del(&page->lru); h->free_huge_pages--; h->free_huge_pages_node[node]--; if (acct_surplus) { h->surplus_huge_pages--; h->surplus_huge_pages_node[node]--; } update_and_free_page(h, page); ret = 1; break; } } return ret; } /* * Dissolve a given free hugepage into free buddy pages. This function does * nothing for in-use (including surplus) hugepages. */ static void dissolve_free_huge_page(struct page *page) { spin_lock(&hugetlb_lock); if (PageHuge(page) && !page_count(page)) { struct hstate *h = page_hstate(page); int nid = page_to_nid(page); list_del(&page->lru); h->free_huge_pages--; h->free_huge_pages_node[nid]--; update_and_free_page(h, page); } spin_unlock(&hugetlb_lock); } /* * Dissolve free hugepages in a given pfn range. Used by memory hotplug to * make specified memory blocks removable from the system. * Note that start_pfn should aligned with (minimum) hugepage size. */ void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) { unsigned int order = 8 * sizeof(void *); unsigned long pfn; struct hstate *h; /* Set scan step to minimum hugepage size */ for_each_hstate(h) if (order > huge_page_order(h)) order = huge_page_order(h); VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) dissolve_free_huge_page(pfn_to_page(pfn)); } static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) { struct page *page; unsigned int r_nid; if (hstate_is_gigantic(h)) return NULL; /* * Assume we will successfully allocate the surplus page to * prevent racing processes from causing the surplus to exceed * overcommit * * This however introduces a different race, where a process B * tries to grow the static hugepage pool while alloc_pages() is * called by process A. B will only examine the per-node * counters in determining if surplus huge pages can be * converted to normal huge pages in adjust_pool_surplus(). A * won't be able to increment the per-node counter, until the * lock is dropped by B, but B doesn't drop hugetlb_lock until * no more huge pages can be converted from surplus to normal * state (and doesn't try to convert again). Thus, we have a * case where a surplus huge page exists, the pool is grown, and * the surplus huge page still exists after, even though it * should just have been converted to a normal huge page. This * does not leak memory, though, as the hugepage will be freed * once it is out of use. It also does not allow the counters to * go out of whack in adjust_pool_surplus() as we don't modify * the node values until we've gotten the hugepage and only the * per-node value is checked there. */ spin_lock(&hugetlb_lock); if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { spin_unlock(&hugetlb_lock); return NULL; } else { h->nr_huge_pages++; h->surplus_huge_pages++; } spin_unlock(&hugetlb_lock); if (nid == NUMA_NO_NODE) page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); else page = alloc_pages_exact_node(nid, htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); if (page && arch_prepare_hugepage(page)) { __free_pages(page, huge_page_order(h)); page = NULL; } spin_lock(&hugetlb_lock); if (page) { INIT_LIST_HEAD(&page->lru); r_nid = page_to_nid(page); set_compound_page_dtor(page, free_huge_page); set_hugetlb_cgroup(page, NULL); /* * We incremented the global counters already */ h->nr_huge_pages_node[r_nid]++; h->surplus_huge_pages_node[r_nid]++; __count_vm_event(HTLB_BUDDY_PGALLOC); } else { h->nr_huge_pages--; h->surplus_huge_pages--; __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); } spin_unlock(&hugetlb_lock); return page; } /* * This allocation function is useful in the context where vma is irrelevant. * E.g. soft-offlining uses this function because it only cares physical * address of error page. */ struct page *alloc_huge_page_node(struct hstate *h, int nid) { struct page *page = NULL; spin_lock(&hugetlb_lock); if (h->free_huge_pages - h->resv_huge_pages > 0) page = dequeue_huge_page_node(h, nid); spin_unlock(&hugetlb_lock); if (!page) page = alloc_buddy_huge_page(h, nid); return page; } /* * Increase the hugetlb pool such that it can accommodate a reservation * of size 'delta'. */ static int gather_surplus_pages(struct hstate *h, int delta) { struct list_head surplus_list; struct page *page, *tmp; int ret, i; int needed, allocated; bool alloc_ok = true; needed = (h->resv_huge_pages + delta) - h->free_huge_pages; if (needed <= 0) { h->resv_huge_pages += delta; return 0; } allocated = 0; INIT_LIST_HEAD(&surplus_list); ret = -ENOMEM; retry: spin_unlock(&hugetlb_lock); for (i = 0; i < needed; i++) { page = alloc_buddy_huge_page(h, NUMA_NO_NODE); if (!page) { alloc_ok = false; break; } list_add(&page->lru, &surplus_list); } allocated += i; /* * After retaking hugetlb_lock, we need to recalculate 'needed' * because either resv_huge_pages or free_huge_pages may have changed. */ spin_lock(&hugetlb_lock); needed = (h->resv_huge_pages + delta) - (h->free_huge_pages + allocated); if (needed > 0) { if (alloc_ok) goto retry; /* * We were not able to allocate enough pages to * satisfy the entire reservation so we free what * we've allocated so far. */ goto free; } /* * The surplus_list now contains _at_least_ the number of extra pages * needed to accommodate the reservation. Add the appropriate number * of pages to the hugetlb pool and free the extras back to the buddy * allocator. Commit the entire reservation here to prevent another * process from stealing the pages as they are added to the pool but * before they are reserved. */ needed += allocated; h->resv_huge_pages += delta; ret = 0; /* Free the needed pages to the hugetlb pool */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) { if ((--needed) < 0) break; /* * This page is now managed by the hugetlb allocator and has * no users -- drop the buddy allocator's reference. */ put_page_testzero(page); VM_BUG_ON_PAGE(page_count(page), page); enqueue_huge_page(h, page); } free: spin_unlock(&hugetlb_lock); /* Free unnecessary surplus pages to the buddy allocator */ list_for_each_entry_safe(page, tmp, &surplus_list, lru) put_page(page); spin_lock(&hugetlb_lock); return ret; } /* * When releasing a hugetlb pool reservation, any surplus pages that were * allocated to satisfy the reservation must be explicitly freed if they were * never used. * Called with hugetlb_lock held. */ static void return_unused_surplus_pages(struct hstate *h, unsigned long unused_resv_pages) { unsigned long nr_pages; /* Uncommit the reservation */ h->resv_huge_pages -= unused_resv_pages; /* Cannot return gigantic pages currently */ if (hstate_is_gigantic(h)) return; nr_pages = min(unused_resv_pages, h->surplus_huge_pages); /* * We want to release as many surplus pages as possible, spread * evenly across all nodes with memory. Iterate across these nodes * until we can no longer free unreserved surplus pages. This occurs * when the nodes with surplus pages have no free pages. * free_pool_huge_page() will balance the the freed pages across the * on-line nodes with memory and will handle the hstate accounting. */ while (nr_pages--) { if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) break; cond_resched_lock(&hugetlb_lock); } } /* * Determine if the huge page at addr within the vma has an associated * reservation. Where it does not we will need to logically increase * reservation and actually increase subpool usage before an allocation * can occur. Where any new reservation would be required the * reservation change is prepared, but not committed. Once the page * has been allocated from the subpool and instantiated the change should * be committed via vma_commit_reservation. No action is required on * failure. */ static long vma_needs_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { struct resv_map *resv; pgoff_t idx; long chg; resv = vma_resv_map(vma); if (!resv) return 1; idx = vma_hugecache_offset(h, vma, addr); chg = region_chg(resv, idx, idx + 1); if (vma->vm_flags & VM_MAYSHARE) return chg; else return chg < 0 ? chg : 0; } static void vma_commit_reservation(struct hstate *h, struct vm_area_struct *vma, unsigned long addr) { struct resv_map *resv; pgoff_t idx; resv = vma_resv_map(vma); if (!resv) return; idx = vma_hugecache_offset(h, vma, addr); region_add(resv, idx, idx + 1); } static struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { struct hugepage_subpool *spool = subpool_vma(vma); struct hstate *h = hstate_vma(vma); struct page *page; long chg; int ret, idx; struct hugetlb_cgroup *h_cg; idx = hstate_index(h); /* * Processes that did not create the mapping will have no * reserves and will not have accounted against subpool * limit. Check that the subpool limit can be made before * satisfying the allocation MAP_NORESERVE mappings may also * need pages and subpool limit allocated allocated if no reserve * mapping overlaps. */ chg = vma_needs_reservation(h, vma, addr); if (chg < 0) return ERR_PTR(-ENOMEM); if (chg || avoid_reserve) if (hugepage_subpool_get_pages(spool, 1)) return ERR_PTR(-ENOSPC); ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); if (ret) goto out_subpool_put; spin_lock(&hugetlb_lock); page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); if (!page) { spin_unlock(&hugetlb_lock); page = alloc_buddy_huge_page(h, NUMA_NO_NODE); if (!page) goto out_uncharge_cgroup; spin_lock(&hugetlb_lock); list_move(&page->lru, &h->hugepage_activelist); /* Fall through */ } hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); spin_unlock(&hugetlb_lock); set_page_private(page, (unsigned long)spool); vma_commit_reservation(h, vma, addr); return page; out_uncharge_cgroup: hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); out_subpool_put: if (chg || avoid_reserve) hugepage_subpool_put_pages(spool, 1); return ERR_PTR(-ENOSPC); } /* * alloc_huge_page()'s wrapper which simply returns the page if allocation * succeeds, otherwise NULL. This function is called from new_vma_page(), * where no ERR_VALUE is expected to be returned. */ struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, unsigned long addr, int avoid_reserve) { struct page *page = alloc_huge_page(vma, addr, avoid_reserve); if (IS_ERR(page)) page = NULL; return page; } int __weak alloc_bootmem_huge_page(struct hstate *h) { struct huge_bootmem_page *m; int nr_nodes, node; for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { void *addr; addr = memblock_virt_alloc_try_nid_nopanic( huge_page_size(h), huge_page_size(h), 0, BOOTMEM_ALLOC_ACCESSIBLE, node); if (addr) { /* * Use the beginning of the huge page to store the * huge_bootmem_page struct (until gather_bootmem * puts them into the mem_map). */ m = addr; goto found; } } return 0; found: BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); /* Put them into a private list first because mem_map is not up yet */ list_add(&m->list, &huge_boot_pages); m->hstate = h; return 1; } static void __init prep_compound_huge_page(struct page *page, int order) { if (unlikely(order > (MAX_ORDER - 1))) prep_compound_gigantic_page(page, order); else prep_compound_page(page, order); } /* Put bootmem huge pages into the standard lists after mem_map is up */ static void __init gather_bootmem_prealloc(void) { struct huge_bootmem_page *m; list_for_each_entry(m, &huge_boot_pages, list) { struct hstate *h = m->hstate; struct page *page; #ifdef CONFIG_HIGHMEM page = pfn_to_page(m->phys >> PAGE_SHIFT); memblock_free_late(__pa(m), sizeof(struct huge_bootmem_page)); #else page = virt_to_page(m); #endif WARN_ON(page_count(page) != 1); prep_compound_huge_page(page, h->order); WARN_ON(PageReserved(page)); prep_new_huge_page(h, page, page_to_nid(page)); /* * If we had gigantic hugepages allocated at boot time, we need * to restore the 'stolen' pages to totalram_pages in order to * fix confusing memory reports from free(1) and another * side-effects, like CommitLimit going negative. */ if (hstate_is_gigantic(h)) adjust_managed_page_count(page, 1 << h->order); } } static void __init hugetlb_hstate_alloc_pages(struct hstate *h) { unsigned long i; for (i = 0; i < h->max_huge_pages; ++i) { if (hstate_is_gigantic(h)) { if (!alloc_bootmem_huge_page(h)) break; } else if (!alloc_fresh_huge_page(h, &node_states[N_MEMORY])) break; } h->max_huge_pages = i; } static void __init hugetlb_init_hstates(void) { struct hstate *h; for_each_hstate(h) { /* oversize hugepages were init'ed in early boot */ if (!hstate_is_gigantic(h)) hugetlb_hstate_alloc_pages(h); } } static char * __init memfmt(char *buf, unsigned long n) { if (n >= (1UL << 30)) sprintf(buf, "%lu GB", n >> 30); else if (n >= (1UL << 20)) sprintf(buf, "%lu MB", n >> 20); else sprintf(buf, "%lu KB", n >> 10); return buf; } static void __init report_hugepages(void) { struct hstate *h; for_each_hstate(h) { char buf[32]; pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", memfmt(buf, huge_page_size(h)), h->free_huge_pages); } } #ifdef CONFIG_HIGHMEM static void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { int i; if (hstate_is_gigantic(h)) return; for_each_node_mask(i, *nodes_allowed) { struct page *page, *next; struct list_head *freel = &h->hugepage_freelists[i]; list_for_each_entry_safe(page, next, freel, lru) { if (count >= h->nr_huge_pages) return; if (PageHighMem(page)) continue; list_del(&page->lru); update_and_free_page(h, page); h->free_huge_pages--; h->free_huge_pages_node[page_to_nid(page)]--; } } } #else static inline void try_to_free_low(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { } #endif /* * Increment or decrement surplus_huge_pages. Keep node-specific counters * balanced by operating on them in a round-robin fashion. * Returns 1 if an adjustment was made. */ static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, int delta) { int nr_nodes, node; VM_BUG_ON(delta != -1 && delta != 1); if (delta < 0) { for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node]) goto found; } } else { for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { if (h->surplus_huge_pages_node[node] < h->nr_huge_pages_node[node]) goto found; } } return 0; found: h->surplus_huge_pages += delta; h->surplus_huge_pages_node[node] += delta; return 1; } #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, nodemask_t *nodes_allowed) { unsigned long min_count, ret; if (hstate_is_gigantic(h) && !gigantic_page_supported()) return h->max_huge_pages; /* * Increase the pool size * First take pages out of surplus state. Then make up the * remaining difference by allocating fresh huge pages. * * We might race with alloc_buddy_huge_page() here and be unable * to convert a surplus huge page to a normal huge page. That is * not critical, though, it just means the overall size of the * pool might be one hugepage larger than it needs to be, but * within all the constraints specified by the sysctls. */ spin_lock(&hugetlb_lock); while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, -1)) break; } while (count > persistent_huge_pages(h)) { /* * If this allocation races such that we no longer need the * page, free_huge_page will handle it by freeing the page * and reducing the surplus. */ spin_unlock(&hugetlb_lock); if (hstate_is_gigantic(h)) ret = alloc_fresh_gigantic_page(h, nodes_allowed); else ret = alloc_fresh_huge_page(h, nodes_allowed); spin_lock(&hugetlb_lock); if (!ret) goto out; /* Bail for signals. Probably ctrl-c from user */ if (signal_pending(current)) goto out; } /* * Decrease the pool size * First return free pages to the buddy allocator (being careful * to keep enough around to satisfy reservations). Then place * pages into surplus state as needed so the pool will shrink * to the desired size as pages become free. * * By placing pages into the surplus state independent of the * overcommit value, we are allowing the surplus pool size to * exceed overcommit. There are few sane options here. Since * alloc_buddy_huge_page() is checking the global counter, * though, we'll note that we're not allowed to exceed surplus * and won't grow the pool anywhere else. Not until one of the * sysctls are changed, or the surplus pages go out of use. */ min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; min_count = max(count, min_count); try_to_free_low(h, min_count, nodes_allowed); while (min_count < persistent_huge_pages(h)) { if (!free_pool_huge_page(h, nodes_allowed, 0)) break; cond_resched_lock(&hugetlb_lock); } while (count < persistent_huge_pages(h)) { if (!adjust_pool_surplus(h, nodes_allowed, 1)) break; } out: ret = persistent_huge_pages(h); spin_unlock(&hugetlb_lock); return ret; } #define HSTATE_ATTR_RO(_name) \ static struct kobj_attribute _name##_attr = __ATTR_RO(_name) #define HSTATE_ATTR(_name) \ static struct kobj_attribute _name##_attr = \ __ATTR(_name, 0644, _name##_show, _name##_store) static struct kobject *hugepages_kobj; static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) { int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (hstate_kobjs[i] == kobj) { if (nidp) *nidp = NUMA_NO_NODE; return &hstates[i]; } return kobj_to_node_hstate(kobj, nidp); } static ssize_t nr_hugepages_show_common(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long nr_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) nr_huge_pages = h->nr_huge_pages; else nr_huge_pages = h->nr_huge_pages_node[nid]; return sprintf(buf, "%lu\n", nr_huge_pages); } static ssize_t nr_hugepages_store_common(bool obey_mempolicy, struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { int err; int nid; unsigned long count; struct hstate *h; NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); err = kstrtoul(buf, 10, &count); if (err) goto out; h = kobj_to_hstate(kobj, &nid); if (hstate_is_gigantic(h) && !gigantic_page_supported()) { err = -EINVAL; goto out; } if (nid == NUMA_NO_NODE) { /* * global hstate attribute */ if (!(obey_mempolicy && init_nodemask_of_mempolicy(nodes_allowed))) { NODEMASK_FREE(nodes_allowed); nodes_allowed = &node_states[N_MEMORY]; } } else if (nodes_allowed) { /* * per node hstate attribute: adjust count to global, * but restrict alloc/free to the specified node. */ count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; init_nodemask_of_node(nodes_allowed, nid); } else nodes_allowed = &node_states[N_MEMORY]; h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); if (nodes_allowed != &node_states[N_MEMORY]) NODEMASK_FREE(nodes_allowed); return len; out: NODEMASK_FREE(nodes_allowed); return err; } static ssize_t nr_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return nr_hugepages_show_common(kobj, attr, buf); } static ssize_t nr_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { return nr_hugepages_store_common(false, kobj, attr, buf, len); } HSTATE_ATTR(nr_hugepages); #ifdef CONFIG_NUMA /* * hstate attribute for optionally mempolicy-based constraint on persistent * huge page alloc/free. */ static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return nr_hugepages_show_common(kobj, attr, buf); } static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t len) { return nr_hugepages_store_common(true, kobj, attr, buf, len); } HSTATE_ATTR(nr_hugepages_mempolicy); #endif static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); } static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, struct kobj_attribute *attr, const char *buf, size_t count) { int err; unsigned long input; struct hstate *h = kobj_to_hstate(kobj, NULL); if (hstate_is_gigantic(h)) return -EINVAL; err = kstrtoul(buf, 10, &input); if (err) return err; spin_lock(&hugetlb_lock); h->nr_overcommit_huge_pages = input; spin_unlock(&hugetlb_lock); return count; } HSTATE_ATTR(nr_overcommit_hugepages); static ssize_t free_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long free_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) free_huge_pages = h->free_huge_pages; else free_huge_pages = h->free_huge_pages_node[nid]; return sprintf(buf, "%lu\n", free_huge_pages); } HSTATE_ATTR_RO(free_hugepages); static ssize_t resv_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h = kobj_to_hstate(kobj, NULL); return sprintf(buf, "%lu\n", h->resv_huge_pages); } HSTATE_ATTR_RO(resv_hugepages); static ssize_t surplus_hugepages_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct hstate *h; unsigned long surplus_huge_pages; int nid; h = kobj_to_hstate(kobj, &nid); if (nid == NUMA_NO_NODE) surplus_huge_pages = h->surplus_huge_pages; else surplus_huge_pages = h->surplus_huge_pages_node[nid]; return sprintf(buf, "%lu\n", surplus_huge_pages); } HSTATE_ATTR_RO(surplus_hugepages); static struct attribute *hstate_attrs[] = { &nr_hugepages_attr.attr, &nr_overcommit_hugepages_attr.attr, &free_hugepages_attr.attr, &resv_hugepages_attr.attr, &surplus_hugepages_attr.attr, #ifdef CONFIG_NUMA &nr_hugepages_mempolicy_attr.attr, #endif NULL, }; static struct attribute_group hstate_attr_group = { .attrs = hstate_attrs, }; static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, struct kobject **hstate_kobjs, struct attribute_group *hstate_attr_group) { int retval; int hi = hstate_index(h); hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); if (!hstate_kobjs[hi]) return -ENOMEM; retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); if (retval) kobject_put(hstate_kobjs[hi]); return retval; } static void __init hugetlb_sysfs_init(void) { struct hstate *h; int err; hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); if (!hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, hstate_kobjs, &hstate_attr_group); if (err) pr_err("Hugetlb: Unable to add hstate %s", h->name); } } #ifdef CONFIG_NUMA /* * node_hstate/s - associate per node hstate attributes, via their kobjects, * with node devices in node_devices[] using a parallel array. The array * index of a node device or _hstate == node id. * This is here to avoid any static dependency of the node device driver, in * the base kernel, on the hugetlb module. */ struct node_hstate { struct kobject *hugepages_kobj; struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; }; struct node_hstate node_hstates[MAX_NUMNODES]; /* * A subset of global hstate attributes for node devices */ static struct attribute *per_node_hstate_attrs[] = { &nr_hugepages_attr.attr, &free_hugepages_attr.attr, &surplus_hugepages_attr.attr, NULL, }; static struct attribute_group per_node_hstate_attr_group = { .attrs = per_node_hstate_attrs, }; /* * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. * Returns node id via non-NULL nidp. */ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) { int nid; for (nid = 0; nid < nr_node_ids; nid++) { struct node_hstate *nhs = &node_hstates[nid]; int i; for (i = 0; i < HUGE_MAX_HSTATE; i++) if (nhs->hstate_kobjs[i] == kobj) { if (nidp) *nidp = nid; return &hstates[i]; } } BUG(); return NULL; } /* * Unregister hstate attributes from a single node device. * No-op if no hstate attributes attached. */ static void hugetlb_unregister_node(struct node *node) { struct hstate *h; struct node_hstate *nhs = &node_hstates[node->dev.id]; if (!nhs->hugepages_kobj) return; /* no hstate attributes */ for_each_hstate(h) { int idx = hstate_index(h); if (nhs->hstate_kobjs[idx]) { kobject_put(nhs->hstate_kobjs[idx]); nhs->hstate_kobjs[idx] = NULL; } } kobject_put(nhs->hugepages_kobj); nhs->hugepages_kobj = NULL; } /* * hugetlb module exit: unregister hstate attributes from node devices * that have them. */ static void hugetlb_unregister_all_nodes(void) { int nid; /* * disable node device registrations. */ register_hugetlbfs_with_node(NULL, NULL); /* * remove hstate attributes from any nodes that have them. */ for (nid = 0; nid < nr_node_ids; nid++) hugetlb_unregister_node(node_devices[nid]); } /* * Register hstate attributes for a single node device. * No-op if attributes already registered. */ static void hugetlb_register_node(struct node *node) { struct hstate *h; struct node_hstate *nhs = &node_hstates[node->dev.id]; int err; if (nhs->hugepages_kobj) return; /* already allocated */ nhs->hugepages_kobj = kobject_create_and_add("hugepages", &node->dev.kobj); if (!nhs->hugepages_kobj) return; for_each_hstate(h) { err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, nhs->hstate_kobjs, &per_node_hstate_attr_group); if (err) { pr_err("Hugetlb: Unable to add hstate %s for node %d\n", h->name, node->dev.id); hugetlb_unregister_node(node); break; } } } /* * hugetlb init time: register hstate attributes for all registered node * devices of nodes that have memory. All on-line nodes should have * registered their associated device by this time. */ static void hugetlb_register_all_nodes(void) { int nid; for_each_node_state(nid, N_MEMORY) { struct node *node = node_devices[nid]; if (node->dev.id == nid) hugetlb_register_node(node); } /* * Let the node device driver know we're here so it can * [un]register hstate attributes on node hotplug. */ register_hugetlbfs_with_node(hugetlb_register_node, hugetlb_unregister_node); } #else /* !CONFIG_NUMA */ static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) { BUG(); if (nidp) *nidp = -1; return NULL; } static void hugetlb_unregister_all_nodes(void) { } static void hugetlb_register_all_nodes(void) { } #endif static void __exit hugetlb_exit(void) { struct hstate *h; hugetlb_unregister_all_nodes(); for_each_hstate(h) { kobject_put(hstate_kobjs[hstate_index(h)]); } kobject_put(hugepages_kobj); kfree(htlb_fault_mutex_table); } module_exit(hugetlb_exit); static int __init hugetlb_init(void) { int i; if (!hugepages_supported()) return 0; if (!size_to_hstate(default_hstate_size)) { default_hstate_size = HPAGE_SIZE; if (!size_to_hstate(default_hstate_size)) hugetlb_add_hstate(HUGETLB_PAGE_ORDER); } default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); if (default_hstate_max_huge_pages) default_hstate.max_huge_pages = default_hstate_max_huge_pages; hugetlb_init_hstates(); gather_bootmem_prealloc(); report_hugepages(); hugetlb_sysfs_init(); hugetlb_register_all_nodes(); hugetlb_cgroup_file_init(); #ifdef CONFIG_SMP num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); #else num_fault_mutexes = 1; #endif htlb_fault_mutex_table = kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL); BUG_ON(!htlb_fault_mutex_table); for (i = 0; i < num_fault_mutexes; i++) mutex_init(&htlb_fault_mutex_table[i]); return 0; } module_init(hugetlb_init); /* Should be called on processing a hugepagesz=... option */ void __init hugetlb_add_hstate(unsigned order) { struct hstate *h; unsigned long i; if (size_to_hstate(PAGE_SIZE << order)) { pr_warning("hugepagesz= specified twice, ignoring\n"); return; } BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); BUG_ON(order == 0); h = &hstates[hugetlb_max_hstate++]; h->order = order; h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); h->nr_huge_pages = 0; h->free_huge_pages = 0; for (i = 0; i < MAX_NUMNODES; ++i) INIT_LIST_HEAD(&h->hugepage_freelists[i]); INIT_LIST_HEAD(&h->hugepage_activelist); h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); h->next_nid_to_free = first_node(node_states[N_MEMORY]); snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", huge_page_size(h)/1024); parsed_hstate = h; } static int __init hugetlb_nrpages_setup(char *s) { unsigned long *mhp; static unsigned long *last_mhp; /* * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, * so this hugepages= parameter goes to the "default hstate". */ if (!hugetlb_max_hstate) mhp = &default_hstate_max_huge_pages; else mhp = &parsed_hstate->max_huge_pages; if (mhp == last_mhp) { pr_warning("hugepages= specified twice without " "interleaving hugepagesz=, ignoring\n"); return 1; } if (sscanf(s, "%lu", mhp) <= 0) *mhp = 0; /* * Global state is always initialized later in hugetlb_init. * But we need to allocate >= MAX_ORDER hstates here early to still * use the bootmem allocator. */ if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) hugetlb_hstate_alloc_pages(parsed_hstate); last_mhp = mhp; return 1; } __setup("hugepages=", hugetlb_nrpages_setup); static int __init hugetlb_default_setup(char *s) { default_hstate_size = memparse(s, &s); return 1; } __setup("default_hugepagesz=", hugetlb_default_setup); static unsigned int cpuset_mems_nr(unsigned int *array) { int node; unsigned int nr = 0; for_each_node_mask(node, cpuset_current_mems_allowed) nr += array[node]; return nr; } #ifdef CONFIG_SYSCTL static int hugetlb_sysctl_handler_common(bool obey_mempolicy, struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp; int ret; if (!hugepages_supported()) return -ENOTSUPP; tmp = h->max_huge_pages; if (write && hstate_is_gigantic(h) && !gigantic_page_supported()) return -EINVAL; table->data = &tmp; table->maxlen = sizeof(unsigned long); ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); if (ret) goto out; if (write) { NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); if (!(obey_mempolicy && init_nodemask_of_mempolicy(nodes_allowed))) { NODEMASK_FREE(nodes_allowed); nodes_allowed = &node_states[N_MEMORY]; } h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); if (nodes_allowed != &node_states[N_MEMORY]) NODEMASK_FREE(nodes_allowed); } out: return ret; } int hugetlb_sysctl_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { return hugetlb_sysctl_handler_common(false, table, write, buffer, length, ppos); } #ifdef CONFIG_NUMA int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { return hugetlb_sysctl_handler_common(true, table, write, buffer, length, ppos); } #endif /* CONFIG_NUMA */ int hugetlb_overcommit_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { struct hstate *h = &default_hstate; unsigned long tmp; int ret; if (!hugepages_supported()) return -ENOTSUPP; tmp = h->nr_overcommit_huge_pages; if (write && hstate_is_gigantic(h)) return -EINVAL; table->data = &tmp; table->maxlen = sizeof(unsigned long); ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); if (ret) goto out; if (write) { spin_lock(&hugetlb_lock); h->nr_overcommit_huge_pages = tmp; spin_unlock(&hugetlb_lock); } out: return ret; } #endif /* CONFIG_SYSCTL */ void hugetlb_report_meminfo(struct seq_file *m) { struct hstate *h = &default_hstate; if (!hugepages_supported()) return; seq_printf(m, "HugePages_Total: %5lu\n" "HugePages_Free: %5lu\n" "HugePages_Rsvd: %5lu\n" "HugePages_Surp: %5lu\n" "Hugepagesize: %8lu kB\n", h->nr_huge_pages, h->free_huge_pages, h->resv_huge_pages, h->surplus_huge_pages, 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); } int hugetlb_report_node_meminfo(int nid, char *buf) { struct hstate *h = &default_hstate; if (!hugepages_supported()) return 0; return sprintf(buf, "Node %d HugePages_Total: %5u\n" "Node %d HugePages_Free: %5u\n" "Node %d HugePages_Surp: %5u\n", nid, h->nr_huge_pages_node[nid], nid, h->free_huge_pages_node[nid], nid, h->surplus_huge_pages_node[nid]); } void hugetlb_show_meminfo(void) { struct hstate *h; int nid; if (!hugepages_supported()) return; for_each_node_state(nid, N_MEMORY) for_each_hstate(h) pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", nid, h->nr_huge_pages_node[nid], h->free_huge_pages_node[nid], h->surplus_huge_pages_node[nid], 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); } /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ unsigned long hugetlb_total_pages(void) { struct hstate *h; unsigned long nr_total_pages = 0; for_each_hstate(h) nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); return nr_total_pages; } static int hugetlb_acct_memory(struct hstate *h, long delta) { int ret = -ENOMEM; spin_lock(&hugetlb_lock); /* * When cpuset is configured, it breaks the strict hugetlb page * reservation as the accounting is done on a global variable. Such * reservation is completely rubbish in the presence of cpuset because * the reservation is not checked against page availability for the * current cpuset. Application can still potentially OOM'ed by kernel * with lack of free htlb page in cpuset that the task is in. * Attempt to enforce strict accounting with cpuset is almost * impossible (or too ugly) because cpuset is too fluid that * task or memory node can be dynamically moved between cpusets. * * The change of semantics for shared hugetlb mapping with cpuset is * undesirable. However, in order to preserve some of the semantics, * we fall back to check against current free page availability as * a best attempt and hopefully to minimize the impact of changing * semantics that cpuset has. */ if (delta > 0) { if (gather_surplus_pages(h, delta) < 0) goto out; if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { return_unused_surplus_pages(h, delta); goto out; } } ret = 0; if (delta < 0) return_unused_surplus_pages(h, (unsigned long) -delta); out: spin_unlock(&hugetlb_lock); return ret; } static void hugetlb_vm_op_open(struct vm_area_struct *vma) { struct resv_map *resv = vma_resv_map(vma); /* * This new VMA should share its siblings reservation map if present. * The VMA will only ever have a valid reservation map pointer where * it is being copied for another still existing VMA. As that VMA * has a reference to the reservation map it cannot disappear until * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) kref_get(&resv->refs); } static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); struct resv_map *resv = vma_resv_map(vma); struct hugepage_subpool *spool = subpool_vma(vma); unsigned long reserve, start, end; if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) return; start = vma_hugecache_offset(h, vma, vma->vm_start); end = vma_hugecache_offset(h, vma, vma->vm_end); reserve = (end - start) - region_count(resv, start, end); kref_put(&resv->refs, resv_map_release); if (reserve) { hugetlb_acct_memory(h, -reserve); hugepage_subpool_put_pages(spool, reserve); } } /* * We cannot handle pagefaults against hugetlb pages at all. They cause * handle_mm_fault() to try to instantiate regular-sized pages in the * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get * this far. */ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { BUG(); return 0; } const struct vm_operations_struct hugetlb_vm_ops = { .fault = hugetlb_vm_op_fault, .open = hugetlb_vm_op_open, .close = hugetlb_vm_op_close, }; static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, int writable) { pte_t entry; if (writable) { entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, vma->vm_page_prot))); } else { entry = huge_pte_wrprotect(mk_huge_pte(page, vma->vm_page_prot)); } entry = pte_mkyoung(entry); entry = pte_mkhuge(entry); entry = arch_make_huge_pte(entry, vma, page, writable); return entry; } static void set_huge_ptep_writable(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t entry; entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) update_mmu_cache(vma, address, ptep); } int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma) { pte_t *src_pte, *dst_pte, entry; struct page *ptepage; unsigned long addr; int cow; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ int ret = 0; cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; mmun_start = vma->vm_start; mmun_end = vma->vm_end; if (cow) mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end); for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { spinlock_t *src_ptl, *dst_ptl; src_pte = huge_pte_offset(src, addr); if (!src_pte) continue; dst_pte = huge_pte_alloc(dst, addr, sz); if (!dst_pte) { ret = -ENOMEM; break; } /* If the pagetables are shared don't copy or take references */ if (dst_pte == src_pte) continue; dst_ptl = huge_pte_lock(h, dst, dst_pte); src_ptl = huge_pte_lockptr(h, src, src_pte); spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); if (!huge_pte_none(huge_ptep_get(src_pte))) { if (cow) huge_ptep_set_wrprotect(src, addr, src_pte); entry = huge_ptep_get(src_pte); ptepage = pte_page(entry); get_page(ptepage); page_dup_rmap(ptepage); set_huge_pte_at(dst, addr, dst_pte, entry); } spin_unlock(src_ptl); spin_unlock(dst_ptl); } if (cow) mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end); return ret; } static int is_hugetlb_entry_migration(pte_t pte) { swp_entry_t swp; if (huge_pte_none(pte) || pte_present(pte)) return 0; swp = pte_to_swp_entry(pte); if (non_swap_entry(swp) && is_migration_entry(swp)) return 1; else return 0; } static int is_hugetlb_entry_hwpoisoned(pte_t pte) { swp_entry_t swp; if (huge_pte_none(pte) || pte_present(pte)) return 0; swp = pte_to_swp_entry(pte); if (non_swap_entry(swp) && is_hwpoison_entry(swp)) return 1; else return 0; } void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { int force_flush = 0; struct mm_struct *mm = vma->vm_mm; unsigned long address; pte_t *ptep; pte_t pte; spinlock_t *ptl; struct page *page; struct hstate *h = hstate_vma(vma); unsigned long sz = huge_page_size(h); const unsigned long mmun_start = start; /* For mmu_notifiers */ const unsigned long mmun_end = end; /* For mmu_notifiers */ WARN_ON(!is_vm_hugetlb_page(vma)); BUG_ON(start & ~huge_page_mask(h)); BUG_ON(end & ~huge_page_mask(h)); tlb_start_vma(tlb, vma); mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); again: for (address = start; address < end; address += sz) { ptep = huge_pte_offset(mm, address); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, &address, ptep)) goto unlock; pte = huge_ptep_get(ptep); if (huge_pte_none(pte)) goto unlock; /* * HWPoisoned hugepage is already unmapped and dropped reference */ if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { huge_pte_clear(mm, address, ptep); goto unlock; } page = pte_page(pte); /* * If a reference page is supplied, it is because a specific * page is being unmapped, not a range. Ensure the page we * are about to unmap is the actual page of interest. */ if (ref_page) { if (page != ref_page) goto unlock; /* * Mark the VMA as having unmapped its page so that * future faults in this VMA will fail rather than * looking like data was lost */ set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); } pte = huge_ptep_get_and_clear(mm, address, ptep); tlb_remove_tlb_entry(tlb, ptep, address); if (huge_pte_dirty(pte)) set_page_dirty(page); page_remove_rmap(page); force_flush = !__tlb_remove_page(tlb, page); if (force_flush) { spin_unlock(ptl); break; } /* Bail out after unmapping reference page if supplied */ if (ref_page) { spin_unlock(ptl); break; } unlock: spin_unlock(ptl); } /* * mmu_gather ran out of room to batch pages, we break out of * the PTE lock to avoid doing the potential expensive TLB invalidate * and page-free while holding it. */ if (force_flush) { force_flush = 0; tlb_flush_mmu(tlb); if (address < end && !ref_page) goto again; } mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); tlb_end_vma(tlb, vma); } void __unmap_hugepage_range_final(struct mmu_gather *tlb, struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { __unmap_hugepage_range(tlb, vma, start, end, ref_page); /* * Clear this flag so that x86's huge_pmd_share page_table_shareable * test will fail on a vma being torn down, and not grab a page table * on its way out. We're lucky that the flag has such an appropriate * name, and can in fact be safely cleared here. We could clear it * before the __unmap_hugepage_range above, but all that's necessary * is to clear it before releasing the i_mmap_mutex. This works * because in the context this is called, the VMA is about to be * destroyed and the i_mmap_mutex is held. */ vma->vm_flags &= ~VM_MAYSHARE; } void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, unsigned long end, struct page *ref_page) { struct mm_struct *mm; struct mmu_gather tlb; mm = vma->vm_mm; tlb_gather_mmu(&tlb, mm, start, end); __unmap_hugepage_range(&tlb, vma, start, end, ref_page); tlb_finish_mmu(&tlb, start, end); } /* * This is called when the original mapper is failing to COW a MAP_PRIVATE * mappping it owns the reserve page for. The intention is to unmap the page * from other VMAs and let the children be SIGKILLed if they are faulting the * same region. */ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, struct page *page, unsigned long address) { struct hstate *h = hstate_vma(vma); struct vm_area_struct *iter_vma; struct address_space *mapping; pgoff_t pgoff; /* * vm_pgoff is in PAGE_SIZE units, hence the different calculation * from page cache lookup which is in HPAGE_SIZE units. */ address = address & huge_page_mask(h); pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; mapping = file_inode(vma->vm_file)->i_mapping; /* * Take the mapping lock for the duration of the table walk. As * this mapping should be shared between all the VMAs, * __unmap_hugepage_range() is called as the lock is already held */ mutex_lock(&mapping->i_mmap_mutex); vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { /* Do not unmap the current VMA */ if (iter_vma == vma) continue; /* * Unmap the page from other VMAs without their own reserves. * They get marked to be SIGKILLed if they fault in these * areas. This is because a future no-page fault on this VMA * could insert a zeroed page instead of the data existing * from the time of fork. This would look like data corruption */ if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) unmap_hugepage_range(iter_vma, address, address + huge_page_size(h), page); } mutex_unlock(&mapping->i_mmap_mutex); return 1; } /* * Hugetlb_cow() should be called with page lock of the original hugepage held. * Called with hugetlb_instantiation_mutex held and pte_page locked so we * cannot race with other handlers or page migration. * Keep the pte_same checks anyway to make transition from the mutex easier. */ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t pte, struct page *pagecache_page, spinlock_t *ptl) { struct hstate *h = hstate_vma(vma); struct page *old_page, *new_page; int outside_reserve = 0; unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ old_page = pte_page(pte); retry_avoidcopy: /* If no-one else is actually using this page, avoid the copy * and just make the page writable */ if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { page_move_anon_rmap(old_page, vma, address); set_huge_ptep_writable(vma, address, ptep); return 0; } /* * If the process that created a MAP_PRIVATE mapping is about to * perform a COW due to a shared page count, attempt to satisfy * the allocation without using the existing reserves. The pagecache * page is used to determine if the reserve at this address was * consumed or not. If reserves were used, a partial faulted mapping * at the time of fork() could consume its reserves on COW instead * of the full address range. */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && old_page != pagecache_page) outside_reserve = 1; page_cache_get(old_page); /* Drop page table lock as buddy allocator may be called */ spin_unlock(ptl); new_page = alloc_huge_page(vma, address, outside_reserve); if (IS_ERR(new_page)) { long err = PTR_ERR(new_page); page_cache_release(old_page); /* * If a process owning a MAP_PRIVATE mapping fails to COW, * it is due to references held by a child and an insufficient * huge page pool. To guarantee the original mappers * reliability, unmap the page from child processes. The child * may get SIGKILLed if it later faults. */ if (outside_reserve) { BUG_ON(huge_pte_none(pte)); if (unmap_ref_private(mm, vma, old_page, address)) { BUG_ON(huge_pte_none(pte)); spin_lock(ptl); ptep = huge_pte_offset(mm, address & huge_page_mask(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) goto retry_avoidcopy; /* * race occurs while re-acquiring page table * lock, and our job is done. */ return 0; } WARN_ON_ONCE(1); } /* Caller expects lock to be held */ spin_lock(ptl); if (err == -ENOMEM) return VM_FAULT_OOM; else return VM_FAULT_SIGBUS; } /* * When the original hugepage is shared one, it does not have * anon_vma prepared. */ if (unlikely(anon_vma_prepare(vma))) { page_cache_release(new_page); page_cache_release(old_page); /* Caller expects lock to be held */ spin_lock(ptl); return VM_FAULT_OOM; } copy_user_huge_page(new_page, old_page, address, vma, pages_per_huge_page(h)); __SetPageUptodate(new_page); mmun_start = address & huge_page_mask(h); mmun_end = mmun_start + huge_page_size(h); mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); /* * Retake the page table lock to check for racing updates * before the page tables are altered */ spin_lock(ptl); ptep = huge_pte_offset(mm, address & huge_page_mask(h)); if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) { ClearPagePrivate(new_page); /* Break COW */ huge_ptep_clear_flush(vma, address, ptep); set_huge_pte_at(mm, address, ptep, make_huge_pte(vma, new_page, 1)); page_remove_rmap(old_page); hugepage_add_new_anon_rmap(new_page, vma, address); /* Make the old page be freed below */ new_page = old_page; } spin_unlock(ptl); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); page_cache_release(new_page); page_cache_release(old_page); /* Caller expects lock to be held */ spin_lock(ptl); return 0; } /* Return the pagecache page at a given address within a VMA */ static struct page *hugetlbfs_pagecache_page(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping; pgoff_t idx; mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); return find_lock_page(mapping, idx); } /* * Return whether there is a pagecache page to back given address within VMA. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. */ static bool hugetlbfs_pagecache_present(struct hstate *h, struct vm_area_struct *vma, unsigned long address) { struct address_space *mapping; pgoff_t idx; struct page *page; mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); page = find_get_page(mapping, idx); if (page) put_page(page); return page != NULL; } static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned long address, pte_t *ptep, unsigned int flags) { struct hstate *h = hstate_vma(vma); int ret = VM_FAULT_SIGBUS; int anon_rmap = 0; unsigned long size; struct page *page; pte_t new_pte; spinlock_t *ptl; /* * Currently, we are forced to kill the process in the event the * original mapper has unmapped pages from the child due to a failed * COW. Warn that such a situation has occurred as it may not be obvious */ if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { pr_warning("PID %d killed due to inadequate hugepage pool\n", current->pid); return ret; } /* * Use page lock to guard against racing truncation * before we get page_table_lock. */ retry: page = find_lock_page(mapping, idx); if (!page) { size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto out; page = alloc_huge_page(vma, address, 0); if (IS_ERR(page)) { ret = PTR_ERR(page); if (ret == -ENOMEM) ret = VM_FAULT_OOM; else ret = VM_FAULT_SIGBUS; goto out; } clear_huge_page(page, address, pages_per_huge_page(h)); __SetPageUptodate(page); if (vma->vm_flags & VM_MAYSHARE) { int err; struct inode *inode = mapping->host; err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); if (err) { put_page(page); if (err == -EEXIST) goto retry; goto out; } ClearPagePrivate(page); spin_lock(&inode->i_lock); inode->i_blocks += blocks_per_huge_page(h); spin_unlock(&inode->i_lock); } else { lock_page(page); if (unlikely(anon_vma_prepare(vma))) { ret = VM_FAULT_OOM; goto backout_unlocked; } anon_rmap = 1; } } else { /* * If memory error occurs between mmap() and fault, some process * don't have hwpoisoned swap entry for errored virtual address. * So we need to block hugepage fault by PG_hwpoison bit check. */ if (unlikely(PageHWPoison(page))) { ret = VM_FAULT_HWPOISON | VM_FAULT_SET_HINDEX(hstate_index(h)); goto backout_unlocked; } } /* * If we are going to COW a private mapping later, we examine the * pending reservations for this page now. This will ensure that * any allocations necessary to record that reservation occur outside * the spinlock. */ if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) if (vma_needs_reservation(h, vma, address) < 0) { ret = VM_FAULT_OOM; goto backout_unlocked; } ptl = huge_pte_lockptr(h, mm, ptep); spin_lock(ptl); size = i_size_read(mapping->host) >> huge_page_shift(h); if (idx >= size) goto backout; ret = 0; if (!huge_pte_none(huge_ptep_get(ptep))) goto backout; if (anon_rmap) { ClearPagePrivate(page); hugepage_add_new_anon_rmap(page, vma, address); } else page_dup_rmap(page); new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) && (vma->vm_flags & VM_SHARED))); set_huge_pte_at(mm, address, ptep, new_pte); if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { /* Optimization, do the COW without a second fault */ ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl); } spin_unlock(ptl); unlock_page(page); out: return ret; backout: spin_unlock(ptl); backout_unlocked: unlock_page(page); put_page(page); goto out; } #ifdef CONFIG_SMP static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned long address) { unsigned long key[2]; u32 hash; if (vma->vm_flags & VM_SHARED) { key[0] = (unsigned long) mapping; key[1] = idx; } else { key[0] = (unsigned long) mm; key[1] = address >> huge_page_shift(h); } hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0); return hash & (num_fault_mutexes - 1); } #else /* * For uniprocesor systems we always use a single mutex, so just * return 0 and avoid the hashing overhead. */ static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm, struct vm_area_struct *vma, struct address_space *mapping, pgoff_t idx, unsigned long address) { return 0; } #endif int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, unsigned int flags) { pte_t *ptep, entry; spinlock_t *ptl; int ret; u32 hash; pgoff_t idx; struct page *page = NULL; struct page *pagecache_page = NULL; struct hstate *h = hstate_vma(vma); struct address_space *mapping; address &= huge_page_mask(h); ptep = huge_pte_offset(mm, address); if (ptep) { entry = huge_ptep_get(ptep); if (unlikely(is_hugetlb_entry_migration(entry))) { migration_entry_wait_huge(vma, mm, ptep); return 0; } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) return VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); } ptep = huge_pte_alloc(mm, address, huge_page_size(h)); if (!ptep) return VM_FAULT_OOM; mapping = vma->vm_file->f_mapping; idx = vma_hugecache_offset(h, vma, address); /* * Serialize hugepage allocation and instantiation, so that we don't * get spurious allocation failures if two CPUs race to instantiate * the same page in the page cache. */ hash = fault_mutex_hash(h, mm, vma, mapping, idx, address); mutex_lock(&htlb_fault_mutex_table[hash]); entry = huge_ptep_get(ptep); if (huge_pte_none(entry)) { ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags); goto out_mutex; } ret = 0; /* * If we are going to COW the mapping later, we examine the pending * reservations for this page now. This will ensure that any * allocations necessary to record that reservation occur outside the * spinlock. For private mappings, we also lookup the pagecache * page now as it is used to determine if a reservation has been * consumed. */ if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { if (vma_needs_reservation(h, vma, address) < 0) { ret = VM_FAULT_OOM; goto out_mutex; } if (!(vma->vm_flags & VM_MAYSHARE)) pagecache_page = hugetlbfs_pagecache_page(h, vma, address); } /* * hugetlb_cow() requires page locks of pte_page(entry) and * pagecache_page, so here we need take the former one * when page != pagecache_page or !pagecache_page. * Note that locking order is always pagecache_page -> page, * so no worry about deadlock. */ page = pte_page(entry); get_page(page); if (page != pagecache_page) lock_page(page); ptl = huge_pte_lockptr(h, mm, ptep); spin_lock(ptl); /* Check for a racing update before calling hugetlb_cow */ if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) goto out_ptl; if (flags & FAULT_FLAG_WRITE) { if (!huge_pte_write(entry)) { ret = hugetlb_cow(mm, vma, address, ptep, entry, pagecache_page, ptl); goto out_ptl; } entry = huge_pte_mkdirty(entry); } entry = pte_mkyoung(entry); if (huge_ptep_set_access_flags(vma, address, ptep, entry, flags & FAULT_FLAG_WRITE)) update_mmu_cache(vma, address, ptep); out_ptl: spin_unlock(ptl); if (pagecache_page) { unlock_page(pagecache_page); put_page(pagecache_page); } if (page != pagecache_page) unlock_page(page); put_page(page); out_mutex: mutex_unlock(&htlb_fault_mutex_table[hash]); return ret; } long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, struct page **pages, struct vm_area_struct **vmas, unsigned long *position, unsigned long *nr_pages, long i, unsigned int flags) { unsigned long pfn_offset; unsigned long vaddr = *position; unsigned long remainder = *nr_pages; struct hstate *h = hstate_vma(vma); while (vaddr < vma->vm_end && remainder) { pte_t *pte; spinlock_t *ptl = NULL; int absent; struct page *page; /* * Some archs (sparc64, sh*) have multiple pte_ts to * each hugepage. We have to make sure we get the * first, for the page indexing below to work. * * Note that page table lock is not held when pte is null. */ pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); if (pte) ptl = huge_pte_lock(h, mm, pte); absent = !pte || huge_pte_none(huge_ptep_get(pte)); /* * When coredumping, it suits get_dump_page if we just return * an error where there's an empty slot with no huge pagecache * to back it. This way, we avoid allocating a hugepage, and * the sparse dumpfile avoids allocating disk blocks, but its * huge holes still show up with zeroes where they need to be. */ if (absent && (flags & FOLL_DUMP) && !hugetlbfs_pagecache_present(h, vma, vaddr)) { if (pte) spin_unlock(ptl); remainder = 0; break; } /* * We need call hugetlb_fault for both hugepages under migration * (in which case hugetlb_fault waits for the migration,) and * hwpoisoned hugepages (in which case we need to prevent the * caller from accessing to them.) In order to do this, we use * here is_swap_pte instead of is_hugetlb_entry_migration and * is_hugetlb_entry_hwpoisoned. This is because it simply covers * both cases, and because we can't follow correct pages * directly from any kind of swap entries. */ if (absent || is_swap_pte(huge_ptep_get(pte)) || ((flags & FOLL_WRITE) && !huge_pte_write(huge_ptep_get(pte)))) { int ret; if (pte) spin_unlock(ptl); ret = hugetlb_fault(mm, vma, vaddr, (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); if (!(ret & VM_FAULT_ERROR)) continue; remainder = 0; break; } pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; page = pte_page(huge_ptep_get(pte)); same_page: if (pages) { pages[i] = mem_map_offset(page, pfn_offset); get_page_foll(pages[i]); } if (vmas) vmas[i] = vma; vaddr += PAGE_SIZE; ++pfn_offset; --remainder; ++i; if (vaddr < vma->vm_end && remainder && pfn_offset < pages_per_huge_page(h)) { /* * We use pfn_offset to avoid touching the pageframes * of this compound page. */ goto same_page; } spin_unlock(ptl); } *nr_pages = remainder; *position = vaddr; return i ? i : -EFAULT; } unsigned long hugetlb_change_protection(struct vm_area_struct *vma, unsigned long address, unsigned long end, pgprot_t newprot) { struct mm_struct *mm = vma->vm_mm; unsigned long start = address; pte_t *ptep; pte_t pte; struct hstate *h = hstate_vma(vma); unsigned long pages = 0; BUG_ON(address >= end); flush_cache_range(vma, address, end); mmu_notifier_invalidate_range_start(mm, start, end); mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); for (; address < end; address += huge_page_size(h)) { spinlock_t *ptl; ptep = huge_pte_offset(mm, address); if (!ptep) continue; ptl = huge_pte_lock(h, mm, ptep); if (huge_pmd_unshare(mm, &address, ptep)) { pages++; spin_unlock(ptl); continue; } if (!huge_pte_none(huge_ptep_get(ptep))) { pte = huge_ptep_get_and_clear(mm, address, ptep); pte = pte_mkhuge(huge_pte_modify(pte, newprot)); pte = arch_make_huge_pte(pte, vma, NULL, 0); set_huge_pte_at(mm, address, ptep, pte); pages++; } spin_unlock(ptl); } /* * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare * may have cleared our pud entry and done put_page on the page table: * once we release i_mmap_mutex, another task can do the final put_page * and that page table be reused and filled with junk. */ flush_tlb_range(vma, start, end); mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); mmu_notifier_invalidate_range_end(mm, start, end); return pages << h->order; } int hugetlb_reserve_pages(struct inode *inode, long from, long to, struct vm_area_struct *vma, vm_flags_t vm_flags) { long ret, chg; struct hstate *h = hstate_inode(inode); struct hugepage_subpool *spool = subpool_inode(inode); struct resv_map *resv_map; /* * Only apply hugepage reservation if asked. At fault time, an * attempt will be made for VM_NORESERVE to allocate a page * without using reserves */ if (vm_flags & VM_NORESERVE) return 0; /* * Shared mappings base their reservation on the number of pages that * are already allocated on behalf of the file. Private mappings need * to reserve the full area even if read-only as mprotect() may be * called to make the mapping read-write. Assume !vma is a shm mapping */ if (!vma || vma->vm_flags & VM_MAYSHARE) { resv_map = inode_resv_map(inode); chg = region_chg(resv_map, from, to); } else { resv_map = resv_map_alloc(); if (!resv_map) return -ENOMEM; chg = to - from; set_vma_resv_map(vma, resv_map); set_vma_resv_flags(vma, HPAGE_RESV_OWNER); } if (chg < 0) { ret = chg; goto out_err; } /* There must be enough pages in the subpool for the mapping */ if (hugepage_subpool_get_pages(spool, chg)) { ret = -ENOSPC; goto out_err; } /* * Check enough hugepages are available for the reservation. * Hand the pages back to the subpool if there are not */ ret = hugetlb_acct_memory(h, chg); if (ret < 0) { hugepage_subpool_put_pages(spool, chg); goto out_err; } /* * Account for the reservations made. Shared mappings record regions * that have reservations as they are shared by multiple VMAs. * When the last VMA disappears, the region map says how much * the reservation was and the page cache tells how much of * the reservation was consumed. Private mappings are per-VMA and * only the consumed reservations are tracked. When the VMA * disappears, the original reservation is the VMA size and the * consumed reservations are stored in the map. Hence, nothing * else has to be done for private mappings here */ if (!vma || vma->vm_flags & VM_MAYSHARE) region_add(resv_map, from, to); return 0; out_err: if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) kref_put(&resv_map->refs, resv_map_release); return ret; } void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) { struct hstate *h = hstate_inode(inode); struct resv_map *resv_map = inode_resv_map(inode); long chg = 0; struct hugepage_subpool *spool = subpool_inode(inode); if (resv_map) chg = region_truncate(resv_map, offset); spin_lock(&inode->i_lock); inode->i_blocks -= (blocks_per_huge_page(h) * freed); spin_unlock(&inode->i_lock); hugepage_subpool_put_pages(spool, (chg - freed)); hugetlb_acct_memory(h, -(chg - freed)); } #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE static unsigned long page_table_shareable(struct vm_area_struct *svma, struct vm_area_struct *vma, unsigned long addr, pgoff_t idx) { unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + svma->vm_start; unsigned long sbase = saddr & PUD_MASK; unsigned long s_end = sbase + PUD_SIZE; /* Allow segments to share if only one is marked locked */ unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; /* * match the virtual addresses, permission and the alignment of the * page table page. */ if (pmd_index(addr) != pmd_index(saddr) || vm_flags != svm_flags || sbase < svma->vm_start || svma->vm_end < s_end) return 0; return saddr; } static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) { unsigned long base = addr & PUD_MASK; unsigned long end = base + PUD_SIZE; /* * check on proper vm_flags and page table alignment */ if (vma->vm_flags & VM_MAYSHARE && vma->vm_start <= base && end <= vma->vm_end) return 1; return 0; } /* * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() * and returns the corresponding pte. While this is not necessary for the * !shared pmd case because we can allocate the pmd later as well, it makes the * code much cleaner. pmd allocation is essential for the shared case because * pud has to be populated inside the same i_mmap_mutex section - otherwise * racing tasks could either miss the sharing (see huge_pte_offset) or select a * bad pmd for sharing. */ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) { struct vm_area_struct *vma = find_vma(mm, addr); struct address_space *mapping = vma->vm_file->f_mapping; pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; struct vm_area_struct *svma; unsigned long saddr; pte_t *spte = NULL; pte_t *pte; spinlock_t *ptl; if (!vma_shareable(vma, addr)) return (pte_t *)pmd_alloc(mm, pud, addr); mutex_lock(&mapping->i_mmap_mutex); vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { if (svma == vma) continue; saddr = page_table_shareable(svma, vma, addr, idx); if (saddr) { spte = huge_pte_offset(svma->vm_mm, saddr); if (spte) { get_page(virt_to_page(spte)); break; } } } if (!spte) goto out; ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte); spin_lock(ptl); if (pud_none(*pud)) pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK)); else put_page(virt_to_page(spte)); spin_unlock(ptl); out: pte = (pte_t *)pmd_alloc(mm, pud, addr); mutex_unlock(&mapping->i_mmap_mutex); return pte; } /* * unmap huge page backed by shared pte. * * Hugetlb pte page is ref counted at the time of mapping. If pte is shared * indicated by page_count > 1, unmap is achieved by clearing pud and * decrementing the ref count. If count == 1, the pte page is not shared. * * called with page table lock held. * * returns: 1 successfully unmapped a shared pte page * 0 the underlying pte page is not shared, or it is the last user */ int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) { pgd_t *pgd = pgd_offset(mm, *addr); pud_t *pud = pud_offset(pgd, *addr); BUG_ON(page_count(virt_to_page(ptep)) == 0); if (page_count(virt_to_page(ptep)) == 1) return 0; pud_clear(pud); put_page(virt_to_page(ptep)); *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; return 1; } #define want_pmd_share() (1) #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) { return NULL; } #define want_pmd_share() (0) #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) { pgd_t *pgd; pud_t *pud; pte_t *pte = NULL; pgd = pgd_offset(mm, addr); pud = pud_alloc(mm, pgd, addr); if (pud) { if (sz == PUD_SIZE) { pte = (pte_t *)pud; } else { BUG_ON(sz != PMD_SIZE); if (want_pmd_share() && pud_none(*pud)) pte = huge_pmd_share(mm, addr, pud); else pte = (pte_t *)pmd_alloc(mm, pud, addr); } } BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); return pte; } pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) { pgd_t *pgd; pud_t *pud; pmd_t *pmd = NULL; pgd = pgd_offset(mm, addr); if (pgd_present(*pgd)) { pud = pud_offset(pgd, addr); if (pud_present(*pud)) { if (pud_huge(*pud)) return (pte_t *)pud; pmd = pmd_offset(pud, addr); } } return (pte_t *) pmd; } struct page * follow_huge_pmd(struct mm_struct *mm, unsigned long address, pmd_t *pmd, int write) { struct page *page; page = pte_page(*(pte_t *)pmd); if (page) page += ((address & ~PMD_MASK) >> PAGE_SHIFT); return page; } struct page * follow_huge_pud(struct mm_struct *mm, unsigned long address, pud_t *pud, int write) { struct page *page; page = pte_page(*(pte_t *)pud); if (page) page += ((address & ~PUD_MASK) >> PAGE_SHIFT); return page; } #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ /* Can be overriden by architectures */ struct page * __weak follow_huge_pud(struct mm_struct *mm, unsigned long address, pud_t *pud, int write) { BUG(); return NULL; } #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ #ifdef CONFIG_MEMORY_FAILURE /* Should be called in hugetlb_lock */ static int is_hugepage_on_freelist(struct page *hpage) { struct page *page; struct page *tmp; struct hstate *h = page_hstate(hpage); int nid = page_to_nid(hpage); list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) if (page == hpage) return 1; return 0; } /* * This function is called from memory failure code. * Assume the caller holds page lock of the head page. */ int dequeue_hwpoisoned_huge_page(struct page *hpage) { struct hstate *h = page_hstate(hpage); int nid = page_to_nid(hpage); int ret = -EBUSY; spin_lock(&hugetlb_lock); if (is_hugepage_on_freelist(hpage)) { /* * Hwpoisoned hugepage isn't linked to activelist or freelist, * but dangling hpage->lru can trigger list-debug warnings * (this happens when we call unpoison_memory() on it), * so let it point to itself with list_del_init(). */ list_del_init(&hpage->lru); set_page_refcounted(hpage); h->free_huge_pages--; h->free_huge_pages_node[nid]--; ret = 0; } spin_unlock(&hugetlb_lock); return ret; } #endif bool isolate_huge_page(struct page *page, struct list_head *list) { VM_BUG_ON_PAGE(!PageHead(page), page); if (!get_page_unless_zero(page)) return false; spin_lock(&hugetlb_lock); list_move_tail(&page->lru, list); spin_unlock(&hugetlb_lock); return true; } void putback_active_hugepage(struct page *page) { VM_BUG_ON_PAGE(!PageHead(page), page); spin_lock(&hugetlb_lock); list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); spin_unlock(&hugetlb_lock); put_page(page); } bool is_hugepage_active(struct page *page) { VM_BUG_ON_PAGE(!PageHuge(page), page); /* * This function can be called for a tail page because the caller, * scan_movable_pages, scans through a given pfn-range which typically * covers one memory block. In systems using gigantic hugepage (1GB * for x86_64,) a hugepage is larger than a memory block, and we don't * support migrating such large hugepages for now, so return false * when called for tail pages. */ if (PageTail(page)) return false; /* * Refcount of a hwpoisoned hugepages is 1, but they are not active, * so we should return false for them. */ if (unlikely(PageHWPoison(page))) return false; return page_count(page) > 0; }