/* * linux/kernel/time/ntp.c * * NTP state machine interfaces and logic. * * This code was mainly moved from kernel/timer.c and kernel/time.c * Please see those files for relevant copyright info and historical * changelogs. */ #include #include #include #include #include #include #include #include #include /* * Timekeeping variables */ unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ unsigned long tick_nsec; /* ACTHZ period (nsec) */ static u64 tick_length, tick_length_base; #define MAX_TICKADJ 500 /* microsecs */ #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \ TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ) /* * phase-lock loop variables */ /* TIME_ERROR prevents overwriting the CMOS clock */ static int time_state = TIME_OK; /* clock synchronization status */ int time_status = STA_UNSYNC; /* clock status bits */ static s64 time_offset; /* time adjustment (ns) */ static long time_constant = 2; /* pll time constant */ long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ long time_freq; /* frequency offset (scaled ppm)*/ static long time_reftime; /* time at last adjustment (s) */ long time_adjust; static long ntp_tick_adj; static void ntp_update_frequency(void) { u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << TICK_LENGTH_SHIFT; second_length += (s64)ntp_tick_adj << TICK_LENGTH_SHIFT; second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC); tick_length_base = second_length; do_div(second_length, HZ); tick_nsec = second_length >> TICK_LENGTH_SHIFT; do_div(tick_length_base, NTP_INTERVAL_FREQ); } /** * ntp_clear - Clears the NTP state variables * * Must be called while holding a write on the xtime_lock */ void ntp_clear(void) { time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; ntp_update_frequency(); tick_length = tick_length_base; time_offset = 0; } /* * this routine handles the overflow of the microsecond field * * The tricky bits of code to handle the accurate clock support * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame. * They were originally developed for SUN and DEC kernels. * All the kudos should go to Dave for this stuff. */ void second_overflow(void) { long time_adj; /* Bump the maxerror field */ time_maxerror += MAXFREQ >> SHIFT_USEC; if (time_maxerror > NTP_PHASE_LIMIT) { time_maxerror = NTP_PHASE_LIMIT; time_status |= STA_UNSYNC; } /* * Leap second processing. If in leap-insert state at the end of the * day, the system clock is set back one second; if in leap-delete * state, the system clock is set ahead one second. The microtime() * routine or external clock driver will insure that reported time is * always monotonic. The ugly divides should be replaced. */ switch (time_state) { case TIME_OK: if (time_status & STA_INS) time_state = TIME_INS; else if (time_status & STA_DEL) time_state = TIME_DEL; break; case TIME_INS: if (xtime.tv_sec % 86400 == 0) { xtime.tv_sec--; wall_to_monotonic.tv_sec++; time_state = TIME_OOP; printk(KERN_NOTICE "Clock: inserting leap second " "23:59:60 UTC\n"); } break; case TIME_DEL: if ((xtime.tv_sec + 1) % 86400 == 0) { xtime.tv_sec++; wall_to_monotonic.tv_sec--; time_state = TIME_WAIT; printk(KERN_NOTICE "Clock: deleting leap second " "23:59:59 UTC\n"); } break; case TIME_OOP: time_state = TIME_WAIT; break; case TIME_WAIT: if (!(time_status & (STA_INS | STA_DEL))) time_state = TIME_OK; } /* * Compute the phase adjustment for the next second. The offset is * reduced by a fixed factor times the time constant. */ tick_length = tick_length_base; time_adj = shift_right(time_offset, SHIFT_PLL + time_constant); time_offset -= time_adj; tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE); if (unlikely(time_adjust)) { if (time_adjust > MAX_TICKADJ) { time_adjust -= MAX_TICKADJ; tick_length += MAX_TICKADJ_SCALED; } else if (time_adjust < -MAX_TICKADJ) { time_adjust += MAX_TICKADJ; tick_length -= MAX_TICKADJ_SCALED; } else { tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT; time_adjust = 0; } } } /* * Return how long ticks are at the moment, that is, how much time * update_wall_time_one_tick will add to xtime next time we call it * (assuming no calls to do_adjtimex in the meantime). * The return value is in fixed-point nanoseconds shifted by the * specified number of bits to the right of the binary point. * This function has no side-effects. */ u64 current_tick_length(void) { return tick_length; } #ifdef CONFIG_GENERIC_CMOS_UPDATE /* Disable the cmos update - used by virtualization and embedded */ int no_sync_cmos_clock __read_mostly; static void sync_cmos_clock(unsigned long dummy); static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0); static void sync_cmos_clock(unsigned long dummy) { struct timespec now, next; int fail = 1; /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. * This code is run on a timer. If the clock is set, that timer * may not expire at the correct time. Thus, we adjust... */ if (!ntp_synced()) /* * Not synced, exit, do not restart a timer (if one is * running, let it run out). */ return; getnstimeofday(&now); if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) fail = update_persistent_clock(now); next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec; if (next.tv_nsec <= 0) next.tv_nsec += NSEC_PER_SEC; if (!fail) next.tv_sec = 659; else next.tv_sec = 0; if (next.tv_nsec >= NSEC_PER_SEC) { next.tv_sec++; next.tv_nsec -= NSEC_PER_SEC; } mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next)); } static void notify_cmos_timer(void) { if (!no_sync_cmos_clock) mod_timer(&sync_cmos_timer, jiffies + 1); } #else static inline void notify_cmos_timer(void) { } #endif /* adjtimex mainly allows reading (and writing, if superuser) of * kernel time-keeping variables. used by xntpd. */ int do_adjtimex(struct timex *txc) { long mtemp, save_adjust, rem; s64 freq_adj, temp64; int result; /* In order to modify anything, you gotta be super-user! */ if (txc->modes && !capable(CAP_SYS_TIME)) return -EPERM; /* Now we validate the data before disabling interrupts */ if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) { /* singleshot must not be used with any other mode bits */ if (txc->modes != ADJ_OFFSET_SINGLESHOT && txc->modes != ADJ_OFFSET_SS_READ) return -EINVAL; } if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) /* adjustment Offset limited to +- .512 seconds */ if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) return -EINVAL; /* if the quartz is off by more than 10% something is VERY wrong ! */ if (txc->modes & ADJ_TICK) if (txc->tick < 900000/USER_HZ || txc->tick > 1100000/USER_HZ) return -EINVAL; write_seqlock_irq(&xtime_lock); result = time_state; /* mostly `TIME_OK' */ /* Save for later - semantics of adjtime is to return old value */ save_adjust = time_adjust; #if 0 /* STA_CLOCKERR is never set yet */ time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */ #endif /* If there are input parameters, then process them */ if (txc->modes) { if (txc->modes & ADJ_STATUS) /* only set allowed bits */ time_status = (txc->status & ~STA_RONLY) | (time_status & STA_RONLY); if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */ if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { result = -EINVAL; goto leave; } time_freq = ((s64)txc->freq * NSEC_PER_USEC) >> (SHIFT_USEC - SHIFT_NSEC); } if (txc->modes & ADJ_MAXERROR) { if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { result = -EINVAL; goto leave; } time_maxerror = txc->maxerror; } if (txc->modes & ADJ_ESTERROR) { if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { result = -EINVAL; goto leave; } time_esterror = txc->esterror; } if (txc->modes & ADJ_TIMECONST) { /* p. 24 */ if (txc->constant < 0) { /* NTP v4 uses values > 6 */ result = -EINVAL; goto leave; } time_constant = min(txc->constant + 4, (long)MAXTC); } if (txc->modes & ADJ_OFFSET) { /* values checked earlier */ if (txc->modes == ADJ_OFFSET_SINGLESHOT) { /* adjtime() is independent from ntp_adjtime() */ time_adjust = txc->offset; } else if (time_status & STA_PLL) { time_offset = txc->offset * NSEC_PER_USEC; /* * Scale the phase adjustment and * clamp to the operating range. */ time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC); time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC); /* * Select whether the frequency is to be controlled * and in which mode (PLL or FLL). Clamp to the operating * range. Ugly multiply/divide should be replaced someday. */ if (time_status & STA_FREQHOLD || time_reftime == 0) time_reftime = xtime.tv_sec; mtemp = xtime.tv_sec - time_reftime; time_reftime = xtime.tv_sec; freq_adj = time_offset * mtemp; freq_adj = shift_right(freq_adj, time_constant * 2 + (SHIFT_PLL + 2) * 2 - SHIFT_NSEC); if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) { u64 utemp64; temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL); if (time_offset < 0) { utemp64 = -temp64; do_div(utemp64, mtemp); freq_adj -= utemp64; } else { utemp64 = temp64; do_div(utemp64, mtemp); freq_adj += utemp64; } } freq_adj += time_freq; freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC); time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC); time_offset = div_long_long_rem_signed(time_offset, NTP_INTERVAL_FREQ, &rem); time_offset <<= SHIFT_UPDATE; } /* STA_PLL */ } /* txc->modes & ADJ_OFFSET */ if (txc->modes & ADJ_TICK) tick_usec = txc->tick; if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) ntp_update_frequency(); } /* txc->modes */ leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) result = TIME_ERROR; if ((txc->modes == ADJ_OFFSET_SINGLESHOT) || (txc->modes == ADJ_OFFSET_SS_READ)) txc->offset = save_adjust; else txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) * NTP_INTERVAL_FREQ / 1000; txc->freq = (time_freq / NSEC_PER_USEC) << (SHIFT_USEC - SHIFT_NSEC); txc->maxerror = time_maxerror; txc->esterror = time_esterror; txc->status = time_status; txc->constant = time_constant; txc->precision = 1; txc->tolerance = MAXFREQ; txc->tick = tick_usec; /* PPS is not implemented, so these are zero */ txc->ppsfreq = 0; txc->jitter = 0; txc->shift = 0; txc->stabil = 0; txc->jitcnt = 0; txc->calcnt = 0; txc->errcnt = 0; txc->stbcnt = 0; write_sequnlock_irq(&xtime_lock); do_gettimeofday(&txc->time); notify_cmos_timer(); return(result); } static int __init ntp_tick_adj_setup(char *str) { ntp_tick_adj = simple_strtol(str, NULL, 0); return 1; } __setup("ntp_tick_adj=", ntp_tick_adj_setup);