/* CPU control. * (C) 2001, 2002, 2003, 2004 Rusty Russell * * This code is licenced under the GPL. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "smpboot.h" #ifdef CONFIG_SMP /* Serializes the updates to cpu_online_mask, cpu_present_mask */ static DEFINE_MUTEX(cpu_add_remove_lock); /* * The following two APIs (cpu_maps_update_begin/done) must be used when * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. * The APIs cpu_notifier_register_begin/done() must be used to protect CPU * hotplug callback (un)registration performed using __register_cpu_notifier() * or __unregister_cpu_notifier(). */ void cpu_maps_update_begin(void) { mutex_lock(&cpu_add_remove_lock); } EXPORT_SYMBOL(cpu_notifier_register_begin); void cpu_maps_update_done(void) { mutex_unlock(&cpu_add_remove_lock); } EXPORT_SYMBOL(cpu_notifier_register_done); static RAW_NOTIFIER_HEAD(cpu_chain); /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. * Should always be manipulated under cpu_add_remove_lock */ static int cpu_hotplug_disabled; #ifdef CONFIG_HOTPLUG_CPU static struct { struct task_struct *active_writer; /* wait queue to wake up the active_writer */ wait_queue_head_t wq; /* verifies that no writer will get active while readers are active */ struct mutex lock; /* * Also blocks the new readers during * an ongoing cpu hotplug operation. */ atomic_t refcount; #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } cpu_hotplug = { .active_writer = NULL, .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq), #ifdef CONFIG_DEBUG_LOCK_ALLOC .dep_map = {.name = "cpu_hotplug.lock" }, #endif }; /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */ #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map) #define cpuhp_lock_acquire_tryread() \ lock_map_acquire_tryread(&cpu_hotplug.dep_map) #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map) #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map) /** * hotplug_pcp - per cpu hotplug descriptor * @unplug: set when pin_current_cpu() needs to sync tasks * @sync_tsk: the task that waits for tasks to finish pinned sections * @refcount: counter of tasks in pinned sections * @grab_lock: set when the tasks entering pinned sections should wait * @synced: notifier for @sync_tsk to tell cpu_down it's finished * @mutex: the mutex to make tasks wait (used when @grab_lock is true) * @mutex_init: zero if the mutex hasn't been initialized yet. * * Although @unplug and @sync_tsk may point to the same task, the @unplug * is used as a flag and still exists after @sync_tsk has exited and * @sync_tsk set to NULL. */ struct hotplug_pcp { struct task_struct *unplug; struct task_struct *sync_tsk; int refcount; int grab_lock; struct completion synced; struct completion unplug_wait; #ifdef CONFIG_PREEMPT_RT_FULL /* * Note, on PREEMPT_RT, the hotplug lock must save the state of * the task, otherwise the mutex will cause the task to fail * to sleep when required. (Because it's called from migrate_disable()) * * The spinlock_t on PREEMPT_RT is a mutex that saves the task's * state. */ spinlock_t lock; #else struct mutex mutex; #endif int mutex_init; }; #ifdef CONFIG_PREEMPT_RT_FULL # define hotplug_lock(hp) rt_spin_lock(&(hp)->lock) # define hotplug_unlock(hp) rt_spin_unlock(&(hp)->lock) #else # define hotplug_lock(hp) mutex_lock(&(hp)->mutex) # define hotplug_unlock(hp) mutex_unlock(&(hp)->mutex) #endif static DEFINE_PER_CPU(struct hotplug_pcp, hotplug_pcp); /** * pin_current_cpu - Prevent the current cpu from being unplugged * * Lightweight version of get_online_cpus() to prevent cpu from being * unplugged when code runs in a migration disabled region. * * Must be called with preemption disabled (preempt_count = 1)! */ void pin_current_cpu(void) { struct hotplug_pcp *hp; int force = 0; retry: hp = this_cpu_ptr(&hotplug_pcp); if (!hp->unplug || hp->refcount || force || preempt_count() > 1 || hp->unplug == current) { hp->refcount++; return; } if (hp->grab_lock) { preempt_enable(); hotplug_lock(hp); hotplug_unlock(hp); } else { preempt_enable(); /* * Try to push this task off of this CPU. */ if (!migrate_me()) { preempt_disable(); hp = this_cpu_ptr(&hotplug_pcp); if (!hp->grab_lock) { /* * Just let it continue it's already pinned * or about to sleep. */ force = 1; goto retry; } preempt_enable(); } } preempt_disable(); goto retry; } /** * unpin_current_cpu - Allow unplug of current cpu * * Must be called with preemption or interrupts disabled! */ void unpin_current_cpu(void) { struct hotplug_pcp *hp = this_cpu_ptr(&hotplug_pcp); WARN_ON(hp->refcount <= 0); /* This is safe. sync_unplug_thread is pinned to this cpu */ if (!--hp->refcount && hp->unplug && hp->unplug != current) wake_up_process(hp->unplug); } static void wait_for_pinned_cpus(struct hotplug_pcp *hp) { set_current_state(TASK_UNINTERRUPTIBLE); while (hp->refcount) { schedule_preempt_disabled(); set_current_state(TASK_UNINTERRUPTIBLE); } } static int sync_unplug_thread(void *data) { struct hotplug_pcp *hp = data; wait_for_completion(&hp->unplug_wait); preempt_disable(); hp->unplug = current; wait_for_pinned_cpus(hp); /* * This thread will synchronize the cpu_down() with threads * that have pinned the CPU. When the pinned CPU count reaches * zero, we inform the cpu_down code to continue to the next step. */ set_current_state(TASK_UNINTERRUPTIBLE); preempt_enable(); complete(&hp->synced); /* * If all succeeds, the next step will need tasks to wait till * the CPU is offline before continuing. To do this, the grab_lock * is set and tasks going into pin_current_cpu() will block on the * mutex. But we still need to wait for those that are already in * pinned CPU sections. If the cpu_down() failed, the kthread_should_stop() * will kick this thread out. */ while (!hp->grab_lock && !kthread_should_stop()) { schedule(); set_current_state(TASK_UNINTERRUPTIBLE); } /* Make sure grab_lock is seen before we see a stale completion */ smp_mb(); /* * Now just before cpu_down() enters stop machine, we need to make * sure all tasks that are in pinned CPU sections are out, and new * tasks will now grab the lock, keeping them from entering pinned * CPU sections. */ if (!kthread_should_stop()) { preempt_disable(); wait_for_pinned_cpus(hp); preempt_enable(); complete(&hp->synced); } set_current_state(TASK_UNINTERRUPTIBLE); while (!kthread_should_stop()) { schedule(); set_current_state(TASK_UNINTERRUPTIBLE); } set_current_state(TASK_RUNNING); /* * Force this thread off this CPU as it's going down and * we don't want any more work on this CPU. */ current->flags &= ~PF_NO_SETAFFINITY; set_cpus_allowed_ptr(current, cpu_present_mask); migrate_me(); return 0; } static void __cpu_unplug_sync(struct hotplug_pcp *hp) { wake_up_process(hp->sync_tsk); wait_for_completion(&hp->synced); } static void __cpu_unplug_wait(unsigned int cpu) { struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); complete(&hp->unplug_wait); wait_for_completion(&hp->synced); } /* * Start the sync_unplug_thread on the target cpu and wait for it to * complete. */ static int cpu_unplug_begin(unsigned int cpu) { struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); int err; /* Protected by cpu_hotplug.lock */ if (!hp->mutex_init) { #ifdef CONFIG_PREEMPT_RT_FULL spin_lock_init(&hp->lock); #else mutex_init(&hp->mutex); #endif hp->mutex_init = 1; } /* Inform the scheduler to migrate tasks off this CPU */ tell_sched_cpu_down_begin(cpu); init_completion(&hp->synced); init_completion(&hp->unplug_wait); hp->sync_tsk = kthread_create(sync_unplug_thread, hp, "sync_unplug/%d", cpu); if (IS_ERR(hp->sync_tsk)) { err = PTR_ERR(hp->sync_tsk); hp->sync_tsk = NULL; return err; } kthread_bind(hp->sync_tsk, cpu); /* * Wait for tasks to get out of the pinned sections, * it's still OK if new tasks enter. Some CPU notifiers will * wait for tasks that are going to enter these sections and * we must not have them block. */ wake_up_process(hp->sync_tsk); return 0; } static void cpu_unplug_sync(unsigned int cpu) { struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); init_completion(&hp->synced); /* The completion needs to be initialzied before setting grab_lock */ smp_wmb(); /* Grab the mutex before setting grab_lock */ hotplug_lock(hp); hp->grab_lock = 1; /* * The CPU notifiers have been completed. * Wait for tasks to get out of pinned CPU sections and have new * tasks block until the CPU is completely down. */ __cpu_unplug_sync(hp); /* All done with the sync thread */ kthread_stop(hp->sync_tsk); hp->sync_tsk = NULL; } static void cpu_unplug_done(unsigned int cpu) { struct hotplug_pcp *hp = &per_cpu(hotplug_pcp, cpu); hp->unplug = NULL; /* Let all tasks know cpu unplug is finished before cleaning up */ smp_wmb(); if (hp->sync_tsk) kthread_stop(hp->sync_tsk); if (hp->grab_lock) { hotplug_unlock(hp); /* protected by cpu_hotplug.lock */ hp->grab_lock = 0; } tell_sched_cpu_down_done(cpu); } void get_online_cpus(void) { might_sleep(); if (cpu_hotplug.active_writer == current) return; cpuhp_lock_acquire_read(); mutex_lock(&cpu_hotplug.lock); atomic_inc(&cpu_hotplug.refcount); mutex_unlock(&cpu_hotplug.lock); } EXPORT_SYMBOL_GPL(get_online_cpus); bool try_get_online_cpus(void) { if (cpu_hotplug.active_writer == current) return true; if (!mutex_trylock(&cpu_hotplug.lock)) return false; cpuhp_lock_acquire_tryread(); atomic_inc(&cpu_hotplug.refcount); mutex_unlock(&cpu_hotplug.lock); return true; } EXPORT_SYMBOL_GPL(try_get_online_cpus); void put_online_cpus(void) { int refcount; if (cpu_hotplug.active_writer == current) return; refcount = atomic_dec_return(&cpu_hotplug.refcount); if (WARN_ON(refcount < 0)) /* try to fix things up */ atomic_inc(&cpu_hotplug.refcount); if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq)) wake_up(&cpu_hotplug.wq); cpuhp_lock_release(); } EXPORT_SYMBOL_GPL(put_online_cpus); /* * This ensures that the hotplug operation can begin only when the * refcount goes to zero. * * Note that during a cpu-hotplug operation, the new readers, if any, * will be blocked by the cpu_hotplug.lock * * Since cpu_hotplug_begin() is always called after invoking * cpu_maps_update_begin(), we can be sure that only one writer is active. * * Note that theoretically, there is a possibility of a livelock: * - Refcount goes to zero, last reader wakes up the sleeping * writer. * - Last reader unlocks the cpu_hotplug.lock. * - A new reader arrives at this moment, bumps up the refcount. * - The writer acquires the cpu_hotplug.lock finds the refcount * non zero and goes to sleep again. * * However, this is very difficult to achieve in practice since * get_online_cpus() not an api which is called all that often. * */ void cpu_hotplug_begin(void) { DEFINE_WAIT(wait); cpu_hotplug.active_writer = current; cpuhp_lock_acquire(); for (;;) { mutex_lock(&cpu_hotplug.lock); prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE); if (likely(!atomic_read(&cpu_hotplug.refcount))) break; mutex_unlock(&cpu_hotplug.lock); schedule(); } finish_wait(&cpu_hotplug.wq, &wait); } void cpu_hotplug_done(void) { cpu_hotplug.active_writer = NULL; mutex_unlock(&cpu_hotplug.lock); cpuhp_lock_release(); } /* * Wait for currently running CPU hotplug operations to complete (if any) and * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the * hotplug path before performing hotplug operations. So acquiring that lock * guarantees mutual exclusion from any currently running hotplug operations. */ void cpu_hotplug_disable(void) { cpu_maps_update_begin(); cpu_hotplug_disabled = 1; cpu_maps_update_done(); } void cpu_hotplug_enable(void) { cpu_maps_update_begin(); cpu_hotplug_disabled = 0; cpu_maps_update_done(); } #endif /* CONFIG_HOTPLUG_CPU */ /* Need to know about CPUs going up/down? */ int __ref register_cpu_notifier(struct notifier_block *nb) { int ret; cpu_maps_update_begin(); ret = raw_notifier_chain_register(&cpu_chain, nb); cpu_maps_update_done(); return ret; } int __ref __register_cpu_notifier(struct notifier_block *nb) { return raw_notifier_chain_register(&cpu_chain, nb); } static int __cpu_notify(unsigned long val, void *v, int nr_to_call, int *nr_calls) { int ret; ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, nr_calls); return notifier_to_errno(ret); } static int cpu_notify(unsigned long val, void *v) { return __cpu_notify(val, v, -1, NULL); } #ifdef CONFIG_HOTPLUG_CPU static void cpu_notify_nofail(unsigned long val, void *v) { BUG_ON(cpu_notify(val, v)); } EXPORT_SYMBOL(register_cpu_notifier); EXPORT_SYMBOL(__register_cpu_notifier); void __ref unregister_cpu_notifier(struct notifier_block *nb) { cpu_maps_update_begin(); raw_notifier_chain_unregister(&cpu_chain, nb); cpu_maps_update_done(); } EXPORT_SYMBOL(unregister_cpu_notifier); void __ref __unregister_cpu_notifier(struct notifier_block *nb) { raw_notifier_chain_unregister(&cpu_chain, nb); } EXPORT_SYMBOL(__unregister_cpu_notifier); /** * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU * @cpu: a CPU id * * This function walks all processes, finds a valid mm struct for each one and * then clears a corresponding bit in mm's cpumask. While this all sounds * trivial, there are various non-obvious corner cases, which this function * tries to solve in a safe manner. * * Also note that the function uses a somewhat relaxed locking scheme, so it may * be called only for an already offlined CPU. */ void clear_tasks_mm_cpumask(int cpu) { struct task_struct *p; /* * This function is called after the cpu is taken down and marked * offline, so its not like new tasks will ever get this cpu set in * their mm mask. -- Peter Zijlstra * Thus, we may use rcu_read_lock() here, instead of grabbing * full-fledged tasklist_lock. */ WARN_ON(cpu_online(cpu)); rcu_read_lock(); for_each_process(p) { struct task_struct *t; /* * Main thread might exit, but other threads may still have * a valid mm. Find one. */ t = find_lock_task_mm(p); if (!t) continue; cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); task_unlock(t); } rcu_read_unlock(); } static inline void check_for_tasks(int dead_cpu) { struct task_struct *g, *p; read_lock_irq(&tasklist_lock); do_each_thread(g, p) { if (!p->on_rq) continue; /* * We do the check with unlocked task_rq(p)->lock. * Order the reading to do not warn about a task, * which was running on this cpu in the past, and * it's just been woken on another cpu. */ rmb(); if (task_cpu(p) != dead_cpu) continue; pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n", p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags); } while_each_thread(g, p); read_unlock_irq(&tasklist_lock); } struct take_cpu_down_param { unsigned long mod; void *hcpu; }; /* Take this CPU down. */ static int __ref take_cpu_down(void *_param) { struct take_cpu_down_param *param = _param; int err; /* Ensure this CPU doesn't handle any more interrupts. */ err = __cpu_disable(); if (err < 0) return err; cpu_notify(CPU_DYING | param->mod, param->hcpu); /* Give up timekeeping duties */ tick_handover_do_timer(); /* Park the stopper thread */ kthread_park(current); return 0; } /* Requires cpu_add_remove_lock to be held */ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) { int mycpu, err, nr_calls = 0; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; struct take_cpu_down_param tcd_param = { .mod = mod, .hcpu = hcpu, }; cpumask_var_t cpumask; cpumask_var_t cpumask_org; if (num_online_cpus() == 1) return -EBUSY; if (!cpu_online(cpu)) return -EINVAL; /* Move the downtaker off the unplug cpu */ if (!alloc_cpumask_var(&cpumask, GFP_KERNEL)) return -ENOMEM; if (!alloc_cpumask_var(&cpumask_org, GFP_KERNEL)) { free_cpumask_var(cpumask); return -ENOMEM; } cpumask_copy(cpumask_org, tsk_cpus_allowed(current)); cpumask_andnot(cpumask, cpu_online_mask, cpumask_of(cpu)); set_cpus_allowed_ptr(current, cpumask); free_cpumask_var(cpumask); migrate_disable(); mycpu = smp_processor_id(); if (mycpu == cpu) { printk(KERN_ERR "Yuck! Still on unplug CPU\n!"); migrate_enable(); err = -EBUSY; goto restore_cpus; } migrate_enable(); cpu_hotplug_begin(); err = cpu_unplug_begin(cpu); if (err) { printk("cpu_unplug_begin(%d) failed\n", cpu); goto out_cancel; } err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); if (err) { nr_calls--; __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); pr_warn("%s: attempt to take down CPU %u failed\n", __func__, cpu); goto out_release; } /* * By now we've cleared cpu_active_mask, wait for all preempt-disabled * and RCU users of this state to go away such that all new such users * will observe it. * * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might * not imply sync_sched(), so explicitly call both. * * Do sync before park smpboot threads to take care the rcu boost case. */ #ifdef CONFIG_PREEMPT synchronize_sched(); #endif synchronize_rcu(); __cpu_unplug_wait(cpu); smpboot_park_threads(cpu); /* Notifiers are done. Don't let any more tasks pin this CPU. */ cpu_unplug_sync(cpu); /* * So now all preempt/rcu users must observe !cpu_active(). */ err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); if (err) { /* CPU didn't die: tell everyone. Can't complain. */ smpboot_unpark_threads(cpu); cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); goto out_release; } BUG_ON(cpu_online(cpu)); /* * The migration_call() CPU_DYING callback will have removed all * runnable tasks from the cpu, there's only the idle task left now * that the migration thread is done doing the stop_machine thing. * * Wait for the stop thread to go away. */ while (!per_cpu(cpu_dead_idle, cpu)) cpu_relax(); smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */ per_cpu(cpu_dead_idle, cpu) = false; hotplug_cpu__broadcast_tick_pull(cpu); /* This actually kills the CPU. */ __cpu_die(cpu); /* CPU is completely dead: tell everyone. Too late to complain. */ tick_cleanup_dead_cpu(cpu); cpu_notify_nofail(CPU_DEAD | mod, hcpu); check_for_tasks(cpu); out_release: cpu_unplug_done(cpu); out_cancel: cpu_hotplug_done(); if (!err) cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); restore_cpus: set_cpus_allowed_ptr(current, cpumask_org); free_cpumask_var(cpumask_org); return err; } int __ref cpu_down(unsigned int cpu) { int err; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } err = _cpu_down(cpu, 0); out: cpu_maps_update_done(); return err; } EXPORT_SYMBOL(cpu_down); #endif /*CONFIG_HOTPLUG_CPU*/ /* * Unpark per-CPU smpboot kthreads at CPU-online time. */ static int smpboot_thread_call(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: smpboot_unpark_threads(cpu); break; default: break; } return NOTIFY_OK; } static struct notifier_block smpboot_thread_notifier = { .notifier_call = smpboot_thread_call, .priority = CPU_PRI_SMPBOOT, }; void __cpuinit smpboot_thread_init(void) { register_cpu_notifier(&smpboot_thread_notifier); } /* Requires cpu_add_remove_lock to be held */ static int _cpu_up(unsigned int cpu, int tasks_frozen) { int ret, nr_calls = 0; void *hcpu = (void *)(long)cpu; unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; struct task_struct *idle; cpu_hotplug_begin(); if (cpu_online(cpu) || !cpu_present(cpu)) { ret = -EINVAL; goto out; } idle = idle_thread_get(cpu); if (IS_ERR(idle)) { ret = PTR_ERR(idle); goto out; } ret = smpboot_create_threads(cpu); if (ret) goto out; ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); if (ret) { nr_calls--; pr_warn("%s: attempt to bring up CPU %u failed\n", __func__, cpu); goto out_notify; } /* Arch-specific enabling code. */ ret = __cpu_up(cpu, idle); if (ret != 0) goto out_notify; BUG_ON(!cpu_online(cpu)); /* Now call notifier in preparation. */ cpu_notify(CPU_ONLINE | mod, hcpu); out_notify: if (ret != 0) __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); out: cpu_hotplug_done(); return ret; } int cpu_up(unsigned int cpu) { int err = 0; if (!cpu_possible(cpu)) { pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", cpu); #if defined(CONFIG_IA64) pr_err("please check additional_cpus= boot parameter\n"); #endif return -EINVAL; } err = try_online_node(cpu_to_node(cpu)); if (err) return err; cpu_maps_update_begin(); if (cpu_hotplug_disabled) { err = -EBUSY; goto out; } err = _cpu_up(cpu, 0); out: cpu_maps_update_done(); return err; } EXPORT_SYMBOL_GPL(cpu_up); #ifdef CONFIG_PM_SLEEP_SMP static cpumask_var_t frozen_cpus; int disable_nonboot_cpus(void) { int cpu, first_cpu, error = 0; cpu_maps_update_begin(); first_cpu = cpumask_first(cpu_online_mask); /* * We take down all of the non-boot CPUs in one shot to avoid races * with the userspace trying to use the CPU hotplug at the same time */ cpumask_clear(frozen_cpus); pr_info("Disabling non-boot CPUs ...\n"); for_each_online_cpu(cpu) { if (cpu == first_cpu) continue; trace_suspend_resume(TPS("CPU_OFF"), cpu, true); error = _cpu_down(cpu, 1); trace_suspend_resume(TPS("CPU_OFF"), cpu, false); if (!error) cpumask_set_cpu(cpu, frozen_cpus); else { pr_err("Error taking CPU%d down: %d\n", cpu, error); break; } } if (!error) { BUG_ON(num_online_cpus() > 1); /* Make sure the CPUs won't be enabled by someone else */ cpu_hotplug_disabled = 1; } else { pr_err("Non-boot CPUs are not disabled\n"); } cpu_maps_update_done(); return error; } void __weak arch_enable_nonboot_cpus_begin(void) { } void __weak arch_enable_nonboot_cpus_end(void) { } void __ref enable_nonboot_cpus(void) { int cpu, error; /* Allow everyone to use the CPU hotplug again */ cpu_maps_update_begin(); cpu_hotplug_disabled = 0; if (cpumask_empty(frozen_cpus)) goto out; pr_info("Enabling non-boot CPUs ...\n"); arch_enable_nonboot_cpus_begin(); for_each_cpu(cpu, frozen_cpus) { trace_suspend_resume(TPS("CPU_ON"), cpu, true); error = _cpu_up(cpu, 1); trace_suspend_resume(TPS("CPU_ON"), cpu, false); if (!error) { pr_info("CPU%d is up\n", cpu); continue; } pr_warn("Error taking CPU%d up: %d\n", cpu, error); } arch_enable_nonboot_cpus_end(); cpumask_clear(frozen_cpus); out: cpu_maps_update_done(); } static int __init alloc_frozen_cpus(void) { if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) return -ENOMEM; return 0; } core_initcall(alloc_frozen_cpus); /* * When callbacks for CPU hotplug notifications are being executed, we must * ensure that the state of the system with respect to the tasks being frozen * or not, as reported by the notification, remains unchanged *throughout the * duration* of the execution of the callbacks. * Hence we need to prevent the freezer from racing with regular CPU hotplug. * * This synchronization is implemented by mutually excluding regular CPU * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ * Hibernate notifications. */ static int cpu_hotplug_pm_callback(struct notifier_block *nb, unsigned long action, void *ptr) { switch (action) { case PM_SUSPEND_PREPARE: case PM_HIBERNATION_PREPARE: cpu_hotplug_disable(); break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: cpu_hotplug_enable(); break; default: return NOTIFY_DONE; } return NOTIFY_OK; } static int __init cpu_hotplug_pm_sync_init(void) { /* * cpu_hotplug_pm_callback has higher priority than x86 * bsp_pm_callback which depends on cpu_hotplug_pm_callback * to disable cpu hotplug to avoid cpu hotplug race. */ pm_notifier(cpu_hotplug_pm_callback, 0); return 0; } core_initcall(cpu_hotplug_pm_sync_init); #endif /* CONFIG_PM_SLEEP_SMP */ /** * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers * @cpu: cpu that just started * * This function calls the cpu_chain notifiers with CPU_STARTING. * It must be called by the arch code on the new cpu, before the new cpu * enables interrupts and before the "boot" cpu returns from __cpu_up(). */ void notify_cpu_starting(unsigned int cpu) { unsigned long val = CPU_STARTING; #ifdef CONFIG_PM_SLEEP_SMP if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) val = CPU_STARTING_FROZEN; #endif /* CONFIG_PM_SLEEP_SMP */ cpu_notify(val, (void *)(long)cpu); } #endif /* CONFIG_SMP */ /* * cpu_bit_bitmap[] is a special, "compressed" data structure that * represents all NR_CPUS bits binary values of 1< 32 MASK_DECLARE_8(32), MASK_DECLARE_8(40), MASK_DECLARE_8(48), MASK_DECLARE_8(56), #endif }; EXPORT_SYMBOL_GPL(cpu_bit_bitmap); const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; EXPORT_SYMBOL(cpu_all_bits); #ifdef CONFIG_INIT_ALL_POSSIBLE static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly = CPU_BITS_ALL; #else static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; #endif const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); EXPORT_SYMBOL(cpu_possible_mask); static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); EXPORT_SYMBOL(cpu_online_mask); static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); EXPORT_SYMBOL(cpu_present_mask); static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); EXPORT_SYMBOL(cpu_active_mask); void set_cpu_possible(unsigned int cpu, bool possible) { if (possible) cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); else cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); } void set_cpu_present(unsigned int cpu, bool present) { if (present) cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); else cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); } void set_cpu_online(unsigned int cpu, bool online) { if (online) { cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); } else { cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); } } void set_cpu_active(unsigned int cpu, bool active) { if (active) cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); else cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); } void init_cpu_present(const struct cpumask *src) { cpumask_copy(to_cpumask(cpu_present_bits), src); } void init_cpu_possible(const struct cpumask *src) { cpumask_copy(to_cpumask(cpu_possible_bits), src); } void init_cpu_online(const struct cpumask *src) { cpumask_copy(to_cpumask(cpu_online_bits), src); }