#undef TRACE_SYSTEM #define TRACE_SYSTEM rcu #if !defined(_TRACE_RCU_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_RCU_H #include /* * Tracepoint for start/end markers used for utilization calculations. * By convention, the string is of the following forms: * * "Start " -- Mark the start of the specified activity, * such as "context switch". Nesting is permitted. * "End " -- Mark the end of the specified activity. * * An "@" character within "" is a comment character: Data * reduction scripts will ignore the "@" and the remainder of the line. */ TRACE_EVENT(rcu_utilization, TP_PROTO(const char *s), TP_ARGS(s), TP_STRUCT__entry( __field(const char *, s) ), TP_fast_assign( __entry->s = s; ), TP_printk("%s", __entry->s) ); #ifdef CONFIG_RCU_TRACE #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) /* * Tracepoint for grace-period events. Takes a string identifying the * RCU flavor, the grace-period number, and a string identifying the * grace-period-related event as follows: * * "AccReadyCB": CPU acclerates new callbacks to RCU_NEXT_READY_TAIL. * "AccWaitCB": CPU accelerates new callbacks to RCU_WAIT_TAIL. * "newreq": Request a new grace period. * "start": Start a grace period. * "cpustart": CPU first notices a grace-period start. * "cpuqs": CPU passes through a quiescent state. * "cpuonl": CPU comes online. * "cpuofl": CPU goes offline. * "reqwait": GP kthread sleeps waiting for grace-period request. * "reqwaitsig": GP kthread awakened by signal from reqwait state. * "fqswait": GP kthread waiting until time to force quiescent states. * "fqsstart": GP kthread starts forcing quiescent states. * "fqsend": GP kthread done forcing quiescent states. * "fqswaitsig": GP kthread awakened by signal from fqswait state. * "end": End a grace period. * "cpuend": CPU first notices a grace-period end. */ TRACE_EVENT(rcu_grace_period, TP_PROTO(const char *rcuname, unsigned long gpnum, const char *gpevent), TP_ARGS(rcuname, gpnum, gpevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(const char *, gpevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->gpevent = gpevent; ), TP_printk("%s %lu %s", __entry->rcuname, __entry->gpnum, __entry->gpevent) ); /* * Tracepoint for future grace-period events, including those for no-callbacks * CPUs. The caller should pull the data from the rcu_node structure, * other than rcuname, which comes from the rcu_state structure, and event, * which is one of the following: * * "Startleaf": Request a nocb grace period based on leaf-node data. * "Startedleaf": Leaf-node start proved sufficient. * "Startedleafroot": Leaf-node start proved sufficient after checking root. * "Startedroot": Requested a nocb grace period based on root-node data. * "StartWait": Start waiting for the requested grace period. * "ResumeWait": Resume waiting after signal. * "EndWait": Complete wait. * "Cleanup": Clean up rcu_node structure after previous GP. * "CleanupMore": Clean up, and another no-CB GP is needed. */ TRACE_EVENT(rcu_future_grace_period, TP_PROTO(const char *rcuname, unsigned long gpnum, unsigned long completed, unsigned long c, u8 level, int grplo, int grphi, const char *gpevent), TP_ARGS(rcuname, gpnum, completed, c, level, grplo, grphi, gpevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(unsigned long, completed) __field(unsigned long, c) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(const char *, gpevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->completed = completed; __entry->c = c; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->gpevent = gpevent; ), TP_printk("%s %lu %lu %lu %u %d %d %s", __entry->rcuname, __entry->gpnum, __entry->completed, __entry->c, __entry->level, __entry->grplo, __entry->grphi, __entry->gpevent) ); /* * Tracepoint for grace-period-initialization events. These are * distinguished by the type of RCU, the new grace-period number, the * rcu_node structure level, the starting and ending CPU covered by the * rcu_node structure, and the mask of CPUs that will be waited for. * All but the type of RCU are extracted from the rcu_node structure. */ TRACE_EVENT(rcu_grace_period_init, TP_PROTO(const char *rcuname, unsigned long gpnum, u8 level, int grplo, int grphi, unsigned long qsmask), TP_ARGS(rcuname, gpnum, level, grplo, grphi, qsmask), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(unsigned long, qsmask) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->qsmask = qsmask; ), TP_printk("%s %lu %u %d %d %lx", __entry->rcuname, __entry->gpnum, __entry->level, __entry->grplo, __entry->grphi, __entry->qsmask) ); /* * Tracepoint for RCU no-CBs CPU callback handoffs. This event is intended * to assist debugging of these handoffs. * * The first argument is the name of the RCU flavor, and the second is * the number of the offloaded CPU are extracted. The third and final * argument is a string as follows: * * "WakeEmpty": Wake rcuo kthread, first CB to empty list. * "WakeOvf": Wake rcuo kthread, CB list is huge. * "WakeNot": Don't wake rcuo kthread. * "WakeNotPoll": Don't wake rcuo kthread because it is polling. * "Poll": Start of new polling cycle for rcu_nocb_poll. * "Sleep": Sleep waiting for CBs for !rcu_nocb_poll. * "WokeEmpty": rcuo kthread woke to find empty list. * "WokeNonEmpty": rcuo kthread woke to find non-empty list. * "WaitQueue": Enqueue partially done, timed wait for it to complete. * "WokeQueue": Partial enqueue now complete. */ TRACE_EVENT(rcu_nocb_wake, TP_PROTO(const char *rcuname, int cpu, const char *reason), TP_ARGS(rcuname, cpu, reason), TP_STRUCT__entry( __field(const char *, rcuname) __field(int, cpu) __field(const char *, reason) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->cpu = cpu; __entry->reason = reason; ), TP_printk("%s %d %s", __entry->rcuname, __entry->cpu, __entry->reason) ); /* * Tracepoint for tasks blocking within preemptible-RCU read-side * critical sections. Track the type of RCU (which one day might * include SRCU), the grace-period number that the task is blocking * (the current or the next), and the task's PID. */ TRACE_EVENT(rcu_preempt_task, TP_PROTO(const char *rcuname, int pid, unsigned long gpnum), TP_ARGS(rcuname, pid, gpnum), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(int, pid) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->pid = pid; ), TP_printk("%s %lu %d", __entry->rcuname, __entry->gpnum, __entry->pid) ); /* * Tracepoint for tasks that blocked within a given preemptible-RCU * read-side critical section exiting that critical section. Track the * type of RCU (which one day might include SRCU) and the task's PID. */ TRACE_EVENT(rcu_unlock_preempted_task, TP_PROTO(const char *rcuname, unsigned long gpnum, int pid), TP_ARGS(rcuname, gpnum, pid), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(int, pid) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->pid = pid; ), TP_printk("%s %lu %d", __entry->rcuname, __entry->gpnum, __entry->pid) ); /* * Tracepoint for quiescent-state-reporting events. These are * distinguished by the type of RCU, the grace-period number, the * mask of quiescent lower-level entities, the rcu_node structure level, * the starting and ending CPU covered by the rcu_node structure, and * whether there are any blocked tasks blocking the current grace period. * All but the type of RCU are extracted from the rcu_node structure. */ TRACE_EVENT(rcu_quiescent_state_report, TP_PROTO(const char *rcuname, unsigned long gpnum, unsigned long mask, unsigned long qsmask, u8 level, int grplo, int grphi, int gp_tasks), TP_ARGS(rcuname, gpnum, mask, qsmask, level, grplo, grphi, gp_tasks), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(unsigned long, mask) __field(unsigned long, qsmask) __field(u8, level) __field(int, grplo) __field(int, grphi) __field(u8, gp_tasks) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->mask = mask; __entry->qsmask = qsmask; __entry->level = level; __entry->grplo = grplo; __entry->grphi = grphi; __entry->gp_tasks = gp_tasks; ), TP_printk("%s %lu %lx>%lx %u %d %d %u", __entry->rcuname, __entry->gpnum, __entry->mask, __entry->qsmask, __entry->level, __entry->grplo, __entry->grphi, __entry->gp_tasks) ); /* * Tracepoint for quiescent states detected by force_quiescent_state(). * These trace events include the type of RCU, the grace-period number * that was blocked by the CPU, the CPU itself, and the type of quiescent * state, which can be "dti" for dyntick-idle mode, "ofl" for CPU offline, * or "kick" when kicking a CPU that has been in dyntick-idle mode for * too long. */ TRACE_EVENT(rcu_fqs, TP_PROTO(const char *rcuname, unsigned long gpnum, int cpu, const char *qsevent), TP_ARGS(rcuname, gpnum, cpu, qsevent), TP_STRUCT__entry( __field(const char *, rcuname) __field(unsigned long, gpnum) __field(int, cpu) __field(const char *, qsevent) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->gpnum = gpnum; __entry->cpu = cpu; __entry->qsevent = qsevent; ), TP_printk("%s %lu %d %s", __entry->rcuname, __entry->gpnum, __entry->cpu, __entry->qsevent) ); #endif /* #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU) */ /* * Tracepoint for dyntick-idle entry/exit events. These take a string * as argument: "Start" for entering dyntick-idle mode, "End" for * leaving it, "--=" for events moving towards idle, and "++=" for events * moving away from idle. "Error on entry: not idle task" and "Error on * exit: not idle task" indicate that a non-idle task is erroneously * toying with the idle loop. * * These events also take a pair of numbers, which indicate the nesting * depth before and after the event of interest. Note that task-related * events use the upper bits of each number, while interrupt-related * events use the lower bits. */ TRACE_EVENT(rcu_dyntick, TP_PROTO(const char *polarity, long long oldnesting, long long newnesting), TP_ARGS(polarity, oldnesting, newnesting), TP_STRUCT__entry( __field(const char *, polarity) __field(long long, oldnesting) __field(long long, newnesting) ), TP_fast_assign( __entry->polarity = polarity; __entry->oldnesting = oldnesting; __entry->newnesting = newnesting; ), TP_printk("%s %llx %llx", __entry->polarity, __entry->oldnesting, __entry->newnesting) ); /* * Tracepoint for RCU preparation for idle, the goal being to get RCU * processing done so that the current CPU can shut off its scheduling * clock and enter dyntick-idle mode. One way to accomplish this is * to drain all RCU callbacks from this CPU, and the other is to have * done everything RCU requires for the current grace period. In this * latter case, the CPU will be awakened at the end of the current grace * period in order to process the remainder of its callbacks. * * These tracepoints take a string as argument: * * "No callbacks": Nothing to do, no callbacks on this CPU. * "In holdoff": Nothing to do, holding off after unsuccessful attempt. * "Begin holdoff": Attempt failed, don't retry until next jiffy. * "Dyntick with callbacks": Entering dyntick-idle despite callbacks. * "Dyntick with lazy callbacks": Entering dyntick-idle w/lazy callbacks. * "More callbacks": Still more callbacks, try again to clear them out. * "Callbacks drained": All callbacks processed, off to dyntick idle! * "Timer": Timer fired to cause CPU to continue processing callbacks. * "Demigrate": Timer fired on wrong CPU, woke up correct CPU. * "Cleanup after idle": Idle exited, timer canceled. */ TRACE_EVENT(rcu_prep_idle, TP_PROTO(const char *reason), TP_ARGS(reason), TP_STRUCT__entry( __field(const char *, reason) ), TP_fast_assign( __entry->reason = reason; ), TP_printk("%s", __entry->reason) ); /* * Tracepoint for the registration of a single RCU callback function. * The first argument is the type of RCU, the second argument is * a pointer to the RCU callback itself, the third element is the * number of lazy callbacks queued, and the fourth element is the * total number of callbacks queued. */ TRACE_EVENT(rcu_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp, long qlen_lazy, long qlen), TP_ARGS(rcuname, rhp, qlen_lazy, qlen), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(void *, func) __field(long, qlen_lazy) __field(long, qlen) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->func = rhp->func; __entry->qlen_lazy = qlen_lazy; __entry->qlen = qlen; ), TP_printk("%s rhp=%p func=%pf %ld/%ld", __entry->rcuname, __entry->rhp, __entry->func, __entry->qlen_lazy, __entry->qlen) ); /* * Tracepoint for the registration of a single RCU callback of the special * kfree() form. The first argument is the RCU type, the second argument * is a pointer to the RCU callback, the third argument is the offset * of the callback within the enclosing RCU-protected data structure, * the fourth argument is the number of lazy callbacks queued, and the * fifth argument is the total number of callbacks queued. */ TRACE_EVENT(rcu_kfree_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp, unsigned long offset, long qlen_lazy, long qlen), TP_ARGS(rcuname, rhp, offset, qlen_lazy, qlen), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(unsigned long, offset) __field(long, qlen_lazy) __field(long, qlen) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->offset = offset; __entry->qlen_lazy = qlen_lazy; __entry->qlen = qlen; ), TP_printk("%s rhp=%p func=%ld %ld/%ld", __entry->rcuname, __entry->rhp, __entry->offset, __entry->qlen_lazy, __entry->qlen) ); /* * Tracepoint for marking the beginning rcu_do_batch, performed to start * RCU callback invocation. The first argument is the RCU flavor, * the second is the number of lazy callbacks queued, the third is * the total number of callbacks queued, and the fourth argument is * the current RCU-callback batch limit. */ TRACE_EVENT(rcu_batch_start, TP_PROTO(const char *rcuname, long qlen_lazy, long qlen, long blimit), TP_ARGS(rcuname, qlen_lazy, qlen, blimit), TP_STRUCT__entry( __field(const char *, rcuname) __field(long, qlen_lazy) __field(long, qlen) __field(long, blimit) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->qlen_lazy = qlen_lazy; __entry->qlen = qlen; __entry->blimit = blimit; ), TP_printk("%s CBs=%ld/%ld bl=%ld", __entry->rcuname, __entry->qlen_lazy, __entry->qlen, __entry->blimit) ); /* * Tracepoint for the invocation of a single RCU callback function. * The first argument is the type of RCU, and the second argument is * a pointer to the RCU callback itself. */ TRACE_EVENT(rcu_invoke_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp), TP_ARGS(rcuname, rhp), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(void *, func) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->func = rhp->func; ), TP_printk("%s rhp=%p func=%pf", __entry->rcuname, __entry->rhp, __entry->func) ); /* * Tracepoint for the invocation of a single RCU callback of the special * kfree() form. The first argument is the RCU flavor, the second * argument is a pointer to the RCU callback, and the third argument * is the offset of the callback within the enclosing RCU-protected * data structure. */ TRACE_EVENT(rcu_invoke_kfree_callback, TP_PROTO(const char *rcuname, struct rcu_head *rhp, unsigned long offset), TP_ARGS(rcuname, rhp, offset), TP_STRUCT__entry( __field(const char *, rcuname) __field(void *, rhp) __field(unsigned long, offset) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->rhp = rhp; __entry->offset = offset; ), TP_printk("%s rhp=%p func=%ld", __entry->rcuname, __entry->rhp, __entry->offset) ); /* * Tracepoint for exiting rcu_do_batch after RCU callbacks have been * invoked. The first argument is the name of the RCU flavor, * the second argument is number of callbacks actually invoked, * the third argument (cb) is whether or not any of the callbacks that * were ready to invoke at the beginning of this batch are still * queued, the fourth argument (nr) is the return value of need_resched(), * the fifth argument (iit) is 1 if the current task is the idle task, * and the sixth argument (risk) is the return value from * rcu_is_callbacks_kthread(). */ TRACE_EVENT(rcu_batch_end, TP_PROTO(const char *rcuname, int callbacks_invoked, char cb, char nr, char iit, char risk), TP_ARGS(rcuname, callbacks_invoked, cb, nr, iit, risk), TP_STRUCT__entry( __field(const char *, rcuname) __field(int, callbacks_invoked) __field(char, cb) __field(char, nr) __field(char, iit) __field(char, risk) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->callbacks_invoked = callbacks_invoked; __entry->cb = cb; __entry->nr = nr; __entry->iit = iit; __entry->risk = risk; ), TP_printk("%s CBs-invoked=%d idle=%c%c%c%c", __entry->rcuname, __entry->callbacks_invoked, __entry->cb ? 'C' : '.', __entry->nr ? 'S' : '.', __entry->iit ? 'I' : '.', __entry->risk ? 'R' : '.') ); /* * Tracepoint for rcutorture readers. The first argument is the name * of the RCU flavor from rcutorture's viewpoint and the second argument * is the callback address. */ TRACE_EVENT(rcu_torture_read, TP_PROTO(const char *rcutorturename, struct rcu_head *rhp, unsigned long secs, unsigned long c_old, unsigned long c), TP_ARGS(rcutorturename, rhp, secs, c_old, c), TP_STRUCT__entry( __field(const char *, rcutorturename) __field(struct rcu_head *, rhp) __field(unsigned long, secs) __field(unsigned long, c_old) __field(unsigned long, c) ), TP_fast_assign( __entry->rcutorturename = rcutorturename; __entry->rhp = rhp; __entry->secs = secs; __entry->c_old = c_old; __entry->c = c; ), TP_printk("%s torture read %p %luus c: %lu %lu", __entry->rcutorturename, __entry->rhp, __entry->secs, __entry->c_old, __entry->c) ); /* * Tracepoint for _rcu_barrier() execution. The string "s" describes * the _rcu_barrier phase: * "Begin": rcu_barrier_callback() started. * "Check": rcu_barrier_callback() checking for piggybacking. * "EarlyExit": rcu_barrier_callback() piggybacked, thus early exit. * "Inc1": rcu_barrier_callback() piggyback check counter incremented. * "Offline": rcu_barrier_callback() found offline CPU * "OnlineNoCB": rcu_barrier_callback() found online no-CBs CPU. * "OnlineQ": rcu_barrier_callback() found online CPU with callbacks. * "OnlineNQ": rcu_barrier_callback() found online CPU, no callbacks. * "IRQ": An rcu_barrier_callback() callback posted on remote CPU. * "CB": An rcu_barrier_callback() invoked a callback, not the last. * "LastCB": An rcu_barrier_callback() invoked the last callback. * "Inc2": rcu_barrier_callback() piggyback check counter incremented. * The "cpu" argument is the CPU or -1 if meaningless, the "cnt" argument * is the count of remaining callbacks, and "done" is the piggybacking count. */ TRACE_EVENT(rcu_barrier, TP_PROTO(const char *rcuname, const char *s, int cpu, int cnt, unsigned long done), TP_ARGS(rcuname, s, cpu, cnt, done), TP_STRUCT__entry( __field(const char *, rcuname) __field(const char *, s) __field(int, cpu) __field(int, cnt) __field(unsigned long, done) ), TP_fast_assign( __entry->rcuname = rcuname; __entry->s = s; __entry->cpu = cpu; __entry->cnt = cnt; __entry->done = done; ), TP_printk("%s %s cpu %d remaining %d # %lu", __entry->rcuname, __entry->s, __entry->cpu, __entry->cnt, __entry->done) ); #else /* #ifdef CONFIG_RCU_TRACE */ #define trace_rcu_grace_period(rcuname, gpnum, gpevent) do { } while (0) #define trace_rcu_grace_period_init(rcuname, gpnum, level, grplo, grphi, \ qsmask) do { } while (0) #define trace_rcu_future_grace_period(rcuname, gpnum, completed, c, \ level, grplo, grphi, event) \ do { } while (0) #define trace_rcu_nocb_wake(rcuname, cpu, reason) do { } while (0) #define trace_rcu_preempt_task(rcuname, pid, gpnum) do { } while (0) #define trace_rcu_unlock_preempted_task(rcuname, gpnum, pid) do { } while (0) #define trace_rcu_quiescent_state_report(rcuname, gpnum, mask, qsmask, level, \ grplo, grphi, gp_tasks) do { } \ while (0) #define trace_rcu_fqs(rcuname, gpnum, cpu, qsevent) do { } while (0) #define trace_rcu_dyntick(polarity, oldnesting, newnesting) do { } while (0) #define trace_rcu_prep_idle(reason) do { } while (0) #define trace_rcu_callback(rcuname, rhp, qlen_lazy, qlen) do { } while (0) #define trace_rcu_kfree_callback(rcuname, rhp, offset, qlen_lazy, qlen) \ do { } while (0) #define trace_rcu_batch_start(rcuname, qlen_lazy, qlen, blimit) \ do { } while (0) #define trace_rcu_invoke_callback(rcuname, rhp) do { } while (0) #define trace_rcu_invoke_kfree_callback(rcuname, rhp, offset) do { } while (0) #define trace_rcu_batch_end(rcuname, callbacks_invoked, cb, nr, iit, risk) \ do { } while (0) #define trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ do { } while (0) #define trace_rcu_barrier(name, s, cpu, cnt, done) do { } while (0) #endif /* #else #ifdef CONFIG_RCU_TRACE */ #endif /* _TRACE_RCU_H */ /* This part must be outside protection */ #include