/* * TI EDMA definitions * * Copyright (C) 2006-2013 Texas Instruments. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ /* * This EDMA3 programming framework exposes two basic kinds of resource: * * Channel Triggers transfers, usually from a hardware event but * also manually or by "chaining" from DMA completions. * Each channel is coupled to a Parameter RAM (PaRAM) slot. * * Slot Each PaRAM slot holds a DMA transfer descriptor (PaRAM * "set"), source and destination addresses, a link to a * next PaRAM slot (if any), options for the transfer, and * instructions for updating those addresses. There are * more than twice as many slots as event channels. * * Each PaRAM set describes a sequence of transfers, either for one large * buffer or for several discontiguous smaller buffers. An EDMA transfer * is driven only from a channel, which performs the transfers specified * in its PaRAM slot until there are no more transfers. When that last * transfer completes, the "link" field may be used to reload the channel's * PaRAM slot with a new transfer descriptor. * * The EDMA Channel Controller (CC) maps requests from channels into physical * Transfer Controller (TC) requests when the channel triggers (by hardware * or software events, or by chaining). The two physical DMA channels provided * by the TCs are thus shared by many logical channels. * * DaVinci hardware also has a "QDMA" mechanism which is not currently * supported through this interface. (DSP firmware uses it though.) */ #ifndef EDMA_H_ #define EDMA_H_ /* PaRAM slots are laid out like this */ struct edmacc_param { unsigned int opt; unsigned int src; unsigned int a_b_cnt; unsigned int dst; unsigned int src_dst_bidx; unsigned int link_bcntrld; unsigned int src_dst_cidx; unsigned int ccnt; }; /* fields in edmacc_param.opt */ #define SAM BIT(0) #define DAM BIT(1) #define SYNCDIM BIT(2) #define STATIC BIT(3) #define EDMA_FWID (0x07 << 8) #define TCCMODE BIT(11) #define EDMA_TCC(t) ((t) << 12) #define TCINTEN BIT(20) #define ITCINTEN BIT(21) #define TCCHEN BIT(22) #define ITCCHEN BIT(23) /*ch_status paramater of callback function possible values*/ #define DMA_COMPLETE 1 #define DMA_CC_ERROR 2 #define DMA_TC1_ERROR 3 #define DMA_TC2_ERROR 4 enum address_mode { INCR = 0, FIFO = 1 }; enum fifo_width { W8BIT = 0, W16BIT = 1, W32BIT = 2, W64BIT = 3, W128BIT = 4, W256BIT = 5 }; enum dma_event_q { EVENTQ_0 = 0, EVENTQ_1 = 1, EVENTQ_2 = 2, EVENTQ_3 = 3, EVENTQ_DEFAULT = -1 }; enum sync_dimension { ASYNC = 0, ABSYNC = 1 }; #define EDMA_CTLR_CHAN(ctlr, chan) (((ctlr) << 16) | (chan)) #define EDMA_CTLR(i) ((i) >> 16) #define EDMA_CHAN_SLOT(i) ((i) & 0xffff) #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */ #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */ #define EDMA_CONT_PARAMS_ANY 1001 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003 #define EDMA_MAX_CC 2 /* alloc/free DMA channels and their dedicated parameter RAM slots */ int edma_alloc_channel(int channel, void (*callback)(unsigned channel, u16 ch_status, void *data), void *data, enum dma_event_q); void edma_free_channel(unsigned channel); /* alloc/free parameter RAM slots */ int edma_alloc_slot(unsigned ctlr, int slot); void edma_free_slot(unsigned slot); /* alloc/free a set of contiguous parameter RAM slots */ int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count); int edma_free_cont_slots(unsigned slot, int count); /* calls that operate on part of a parameter RAM slot */ void edma_set_src(unsigned slot, dma_addr_t src_port, enum address_mode mode, enum fifo_width); void edma_set_dest(unsigned slot, dma_addr_t dest_port, enum address_mode mode, enum fifo_width); void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst); void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx); void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx); void edma_set_transfer_params(unsigned slot, u16 acnt, u16 bcnt, u16 ccnt, u16 bcnt_rld, enum sync_dimension sync_mode); void edma_link(unsigned from, unsigned to); void edma_unlink(unsigned from); /* calls that operate on an entire parameter RAM slot */ void edma_write_slot(unsigned slot, const struct edmacc_param *params); void edma_read_slot(unsigned slot, struct edmacc_param *params); /* channel control operations */ int edma_start(unsigned channel); void edma_stop(unsigned channel); void edma_clean_channel(unsigned channel); void edma_clear_event(unsigned channel); void edma_pause(unsigned channel); void edma_resume(unsigned channel); struct edma_rsv_info { const s16 (*rsv_chans)[2]; const s16 (*rsv_slots)[2]; }; /* platform_data for EDMA driver */ struct edma_soc_info { /* how many dma resources of each type */ unsigned n_channel; unsigned n_region; unsigned n_slot; unsigned n_tc; unsigned n_cc; /* * Default queue is expected to be a low-priority queue. * This way, long transfers on the default queue started * by the codec engine will not cause audio defects. */ enum dma_event_q default_queue; /* Resource reservation for other cores */ struct edma_rsv_info *rsv; s8 (*queue_tc_mapping)[2]; s8 (*queue_priority_mapping)[2]; const s16 (*xbar_chans)[2]; }; #endif