/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include "ctree.h" #include "transaction.h" #include "btrfs_inode.h" #include "extent_io.h" static u64 entry_end(struct btrfs_ordered_extent *entry) { if (entry->file_offset + entry->len < entry->file_offset) return (u64)-1; return entry->file_offset + entry->len; } /* returns NULL if the insertion worked, or it returns the node it did find * in the tree */ static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_ordered_extent *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); if (file_offset < entry->file_offset) p = &(*p)->rb_left; else if (file_offset >= entry_end(entry)) p = &(*p)->rb_right; else return parent; } rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } /* * look for a given offset in the tree, and if it can't be found return the * first lesser offset */ static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, struct rb_node **prev_ret) { struct rb_node *n = root->rb_node; struct rb_node *prev = NULL; struct rb_node *test; struct btrfs_ordered_extent *entry; struct btrfs_ordered_extent *prev_entry = NULL; while (n) { entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); prev = n; prev_entry = entry; if (file_offset < entry->file_offset) n = n->rb_left; else if (file_offset >= entry_end(entry)) n = n->rb_right; else return n; } if (!prev_ret) return NULL; while (prev && file_offset >= entry_end(prev_entry)) { test = rb_next(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); if (file_offset < entry_end(prev_entry)) break; prev = test; } if (prev) prev_entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node); while (prev && file_offset < entry_end(prev_entry)) { test = rb_prev(prev); if (!test) break; prev_entry = rb_entry(test, struct btrfs_ordered_extent, rb_node); prev = test; } *prev_ret = prev; return NULL; } /* * helper to check if a given offset is inside a given entry */ static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) { if (file_offset < entry->file_offset || entry->file_offset + entry->len <= file_offset) return 0; return 1; } /* * look find the first ordered struct that has this offset, otherwise * the first one less than this offset */ static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, u64 file_offset) { struct rb_root *root = &tree->tree; struct rb_node *prev; struct rb_node *ret; struct btrfs_ordered_extent *entry; if (tree->last) { entry = rb_entry(tree->last, struct btrfs_ordered_extent, rb_node); if (offset_in_entry(entry, file_offset)) return tree->last; } ret = __tree_search(root, file_offset, &prev); if (!ret) ret = prev; if (ret) tree->last = ret; return ret; } /* allocate and add a new ordered_extent into the per-inode tree. * file_offset is the logical offset in the file * * start is the disk block number of an extent already reserved in the * extent allocation tree * * len is the length of the extent * * This also sets the EXTENT_ORDERED bit on the range in the inode. * * The tree is given a single reference on the ordered extent that was * inserted. */ int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, u64 start, u64 len, u64 disk_len, int type) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry; tree = &BTRFS_I(inode)->ordered_tree; entry = kzalloc(sizeof(*entry), GFP_NOFS); if (!entry) return -ENOMEM; mutex_lock(&tree->mutex); entry->file_offset = file_offset; entry->start = start; entry->len = len; entry->disk_len = disk_len; entry->inode = inode; if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) set_bit(type, &entry->flags); /* one ref for the tree */ atomic_set(&entry->refs, 1); init_waitqueue_head(&entry->wait); INIT_LIST_HEAD(&entry->list); INIT_LIST_HEAD(&entry->root_extent_list); node = tree_insert(&tree->tree, file_offset, &entry->rb_node); BUG_ON(node); set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, entry_end(entry) - 1, GFP_NOFS); spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); list_add_tail(&entry->root_extent_list, &BTRFS_I(inode)->root->fs_info->ordered_extents); spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); mutex_unlock(&tree->mutex); BUG_ON(node); return 0; } /* * Add a struct btrfs_ordered_sum into the list of checksums to be inserted * when an ordered extent is finished. If the list covers more than one * ordered extent, it is split across multiples. */ int btrfs_add_ordered_sum(struct inode *inode, struct btrfs_ordered_extent *entry, struct btrfs_ordered_sum *sum) { struct btrfs_ordered_inode_tree *tree; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); list_add_tail(&sum->list, &entry->list); mutex_unlock(&tree->mutex); return 0; } /* * this is used to account for finished IO across a given range * of the file. The IO should not span ordered extents. If * a given ordered_extent is completely done, 1 is returned, otherwise * 0. * * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used * to make sure this function only returns 1 once for a given ordered extent. */ int btrfs_dec_test_ordered_pending(struct inode *inode, u64 file_offset, u64 io_size) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; int ret; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, GFP_NOFS); node = tree_search(tree, file_offset); if (!node) { ret = 1; goto out; } entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) { ret = 1; goto out; } ret = test_range_bit(io_tree, entry->file_offset, entry->file_offset + entry->len - 1, EXTENT_ORDERED, 0); if (ret == 0) ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); out: mutex_unlock(&tree->mutex); return ret == 0; } /* * used to drop a reference on an ordered extent. This will free * the extent if the last reference is dropped */ int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) { struct list_head *cur; struct btrfs_ordered_sum *sum; if (atomic_dec_and_test(&entry->refs)) { while (!list_empty(&entry->list)) { cur = entry->list.next; sum = list_entry(cur, struct btrfs_ordered_sum, list); list_del(&sum->list); kfree(sum); } kfree(entry); } return 0; } /* * remove an ordered extent from the tree. No references are dropped * but, anyone waiting on this extent is woken up. */ int btrfs_remove_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = &entry->rb_node; rb_erase(node, &tree->tree); tree->last = NULL; set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); list_del_init(&entry->root_extent_list); /* * we have no more ordered extents for this inode and * no dirty pages. We can safely remove it from the * list of ordered extents */ if (RB_EMPTY_ROOT(&tree->tree) && !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { list_del_init(&BTRFS_I(inode)->ordered_operations); } spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); mutex_unlock(&tree->mutex); wake_up(&entry->wait); return 0; } /* * wait for all the ordered extents in a root. This is done when balancing * space between drives. */ int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) { struct list_head splice; struct list_head *cur; struct btrfs_ordered_extent *ordered; struct inode *inode; INIT_LIST_HEAD(&splice); spin_lock(&root->fs_info->ordered_extent_lock); list_splice_init(&root->fs_info->ordered_extents, &splice); while (!list_empty(&splice)) { cur = splice.next; ordered = list_entry(cur, struct btrfs_ordered_extent, root_extent_list); if (nocow_only && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { list_move(&ordered->root_extent_list, &root->fs_info->ordered_extents); cond_resched_lock(&root->fs_info->ordered_extent_lock); continue; } list_del_init(&ordered->root_extent_list); atomic_inc(&ordered->refs); /* * the inode may be getting freed (in sys_unlink path). */ inode = igrab(ordered->inode); spin_unlock(&root->fs_info->ordered_extent_lock); if (inode) { btrfs_start_ordered_extent(inode, ordered, 1); btrfs_put_ordered_extent(ordered); iput(inode); } else { btrfs_put_ordered_extent(ordered); } spin_lock(&root->fs_info->ordered_extent_lock); } spin_unlock(&root->fs_info->ordered_extent_lock); return 0; } /* * this is used during transaction commit to write all the inodes * added to the ordered operation list. These files must be fully on * disk before the transaction commits. * * we have two modes here, one is to just start the IO via filemap_flush * and the other is to wait for all the io. When we wait, we have an * extra check to make sure the ordered operation list really is empty * before we return */ int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) { struct btrfs_inode *btrfs_inode; struct inode *inode; struct list_head splice; INIT_LIST_HEAD(&splice); mutex_lock(&root->fs_info->ordered_operations_mutex); spin_lock(&root->fs_info->ordered_extent_lock); again: list_splice_init(&root->fs_info->ordered_operations, &splice); while (!list_empty(&splice)) { btrfs_inode = list_entry(splice.next, struct btrfs_inode, ordered_operations); inode = &btrfs_inode->vfs_inode; list_del_init(&btrfs_inode->ordered_operations); /* * the inode may be getting freed (in sys_unlink path). */ inode = igrab(inode); if (!wait && inode) { list_add_tail(&BTRFS_I(inode)->ordered_operations, &root->fs_info->ordered_operations); } spin_unlock(&root->fs_info->ordered_extent_lock); if (inode) { if (wait) btrfs_wait_ordered_range(inode, 0, (u64)-1); else filemap_flush(inode->i_mapping); iput(inode); } cond_resched(); spin_lock(&root->fs_info->ordered_extent_lock); } if (wait && !list_empty(&root->fs_info->ordered_operations)) goto again; spin_unlock(&root->fs_info->ordered_extent_lock); mutex_unlock(&root->fs_info->ordered_operations_mutex); return 0; } /* * Used to start IO or wait for a given ordered extent to finish. * * If wait is one, this effectively waits on page writeback for all the pages * in the extent, and it waits on the io completion code to insert * metadata into the btree corresponding to the extent */ void btrfs_start_ordered_extent(struct inode *inode, struct btrfs_ordered_extent *entry, int wait) { u64 start = entry->file_offset; u64 end = start + entry->len - 1; /* * pages in the range can be dirty, clean or writeback. We * start IO on any dirty ones so the wait doesn't stall waiting * for pdflush to find them */ btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); if (wait) { wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags)); } } /* * Used to wait on ordered extents across a large range of bytes. */ int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) { u64 end; u64 orig_end; u64 wait_end; struct btrfs_ordered_extent *ordered; if (start + len < start) { orig_end = INT_LIMIT(loff_t); } else { orig_end = start + len - 1; if (orig_end > INT_LIMIT(loff_t)) orig_end = INT_LIMIT(loff_t); } wait_end = orig_end; again: /* start IO across the range first to instantiate any delalloc * extents */ btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); /* The compression code will leave pages locked but return from * writepage without setting the page writeback. Starting again * with WB_SYNC_ALL will end up waiting for the IO to actually start. */ btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); btrfs_wait_on_page_writeback_range(inode->i_mapping, start >> PAGE_CACHE_SHIFT, orig_end >> PAGE_CACHE_SHIFT); end = orig_end; while (1) { ordered = btrfs_lookup_first_ordered_extent(inode, end); if (!ordered) break; if (ordered->file_offset > orig_end) { btrfs_put_ordered_extent(ordered); break; } if (ordered->file_offset + ordered->len < start) { btrfs_put_ordered_extent(ordered); break; } btrfs_start_ordered_extent(inode, ordered, 1); end = ordered->file_offset; btrfs_put_ordered_extent(ordered); if (end == 0 || end == start) break; end--; } if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { schedule_timeout(1); goto again; } return 0; } /* * find an ordered extent corresponding to file_offset. return NULL if * nothing is found, otherwise take a reference on the extent and return it */ struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (!offset_in_entry(entry, file_offset)) entry = NULL; if (entry) atomic_inc(&entry->refs); out: mutex_unlock(&tree->mutex); return entry; } /* * lookup and return any extent before 'file_offset'. NULL is returned * if none is found */ struct btrfs_ordered_extent * btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) { struct btrfs_ordered_inode_tree *tree; struct rb_node *node; struct btrfs_ordered_extent *entry = NULL; tree = &BTRFS_I(inode)->ordered_tree; mutex_lock(&tree->mutex); node = tree_search(tree, file_offset); if (!node) goto out; entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); atomic_inc(&entry->refs); out: mutex_unlock(&tree->mutex); return entry; } /* * After an extent is done, call this to conditionally update the on disk * i_size. i_size is updated to cover any fully written part of the file. */ int btrfs_ordered_update_i_size(struct inode *inode, struct btrfs_ordered_extent *ordered) { struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; u64 disk_i_size; u64 new_i_size; u64 i_size_test; struct rb_node *node; struct btrfs_ordered_extent *test; mutex_lock(&tree->mutex); disk_i_size = BTRFS_I(inode)->disk_i_size; /* * if the disk i_size is already at the inode->i_size, or * this ordered extent is inside the disk i_size, we're done */ if (disk_i_size >= inode->i_size || ordered->file_offset + ordered->len <= disk_i_size) { goto out; } /* * we can't update the disk_isize if there are delalloc bytes * between disk_i_size and this ordered extent */ if (test_range_bit(io_tree, disk_i_size, ordered->file_offset + ordered->len - 1, EXTENT_DELALLOC, 0)) { goto out; } /* * walk backward from this ordered extent to disk_i_size. * if we find an ordered extent then we can't update disk i_size * yet */ node = &ordered->rb_node; while (1) { node = rb_prev(node); if (!node) break; test = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (test->file_offset + test->len <= disk_i_size) break; if (test->file_offset >= inode->i_size) break; if (test->file_offset >= disk_i_size) goto out; } new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); /* * at this point, we know we can safely update i_size to at least * the offset from this ordered extent. But, we need to * walk forward and see if ios from higher up in the file have * finished. */ node = rb_next(&ordered->rb_node); i_size_test = 0; if (node) { /* * do we have an area where IO might have finished * between our ordered extent and the next one. */ test = rb_entry(node, struct btrfs_ordered_extent, rb_node); if (test->file_offset > entry_end(ordered)) i_size_test = test->file_offset; } else { i_size_test = i_size_read(inode); } /* * i_size_test is the end of a region after this ordered * extent where there are no ordered extents. As long as there * are no delalloc bytes in this area, it is safe to update * disk_i_size to the end of the region. */ if (i_size_test > entry_end(ordered) && !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, EXTENT_DELALLOC, 0)) { new_i_size = min_t(u64, i_size_test, i_size_read(inode)); } BTRFS_I(inode)->disk_i_size = new_i_size; out: mutex_unlock(&tree->mutex); return 0; } /* * search the ordered extents for one corresponding to 'offset' and * try to find a checksum. This is used because we allow pages to * be reclaimed before their checksum is actually put into the btree */ int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, u32 *sum) { struct btrfs_ordered_sum *ordered_sum; struct btrfs_sector_sum *sector_sums; struct btrfs_ordered_extent *ordered; struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; unsigned long num_sectors; unsigned long i; u32 sectorsize = BTRFS_I(inode)->root->sectorsize; int ret = 1; ordered = btrfs_lookup_ordered_extent(inode, offset); if (!ordered) return 1; mutex_lock(&tree->mutex); list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { if (disk_bytenr >= ordered_sum->bytenr) { num_sectors = ordered_sum->len / sectorsize; sector_sums = ordered_sum->sums; for (i = 0; i < num_sectors; i++) { if (sector_sums[i].bytenr == disk_bytenr) { *sum = sector_sums[i].sum; ret = 0; goto out; } } } } out: mutex_unlock(&tree->mutex); btrfs_put_ordered_extent(ordered); return ret; } /** * taken from mm/filemap.c because it isn't exported * * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range * @mapping: address space structure to write * @start: offset in bytes where the range starts * @end: offset in bytes where the range ends (inclusive) * @sync_mode: enable synchronous operation * * Start writeback against all of a mapping's dirty pages that lie * within the byte offsets inclusive. * * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as * opposed to a regular memory cleansing writeback. The difference between * these two operations is that if a dirty page/buffer is encountered, it must * be waited upon, and not just skipped over. */ int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end, int sync_mode) { struct writeback_control wbc = { .sync_mode = sync_mode, .nr_to_write = mapping->nrpages * 2, .range_start = start, .range_end = end, }; return btrfs_writepages(mapping, &wbc); } /** * taken from mm/filemap.c because it isn't exported * * wait_on_page_writeback_range - wait for writeback to complete * @mapping: target address_space * @start: beginning page index * @end: ending page index * * Wait for writeback to complete against pages indexed by start->end * inclusive */ int btrfs_wait_on_page_writeback_range(struct address_space *mapping, pgoff_t start, pgoff_t end) { struct pagevec pvec; int nr_pages; int ret = 0; pgoff_t index; if (end < start) return 0; pagevec_init(&pvec, 0); index = start; while ((index <= end) && (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_WRITEBACK, min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { unsigned i; for (i = 0; i < nr_pages; i++) { struct page *page = pvec.pages[i]; /* until radix tree lookup accepts end_index */ if (page->index > end) continue; wait_on_page_writeback(page); if (PageError(page)) ret = -EIO; } pagevec_release(&pvec); cond_resched(); } /* Check for outstanding write errors */ if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) ret = -ENOSPC; if (test_and_clear_bit(AS_EIO, &mapping->flags)) ret = -EIO; return ret; } /* * add a given inode to the list of inodes that must be fully on * disk before a transaction commit finishes. * * This basically gives us the ext3 style data=ordered mode, and it is mostly * used to make sure renamed files are fully on disk. * * It is a noop if the inode is already fully on disk. * * If trans is not null, we'll do a friendly check for a transaction that * is already flushing things and force the IO down ourselves. */ int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode) { u64 last_mod; last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); /* * if this file hasn't been changed since the last transaction * commit, we can safely return without doing anything */ if (last_mod < root->fs_info->last_trans_committed) return 0; /* * the transaction is already committing. Just start the IO and * don't bother with all of this list nonsense */ if (trans && root->fs_info->running_transaction->blocked) { btrfs_wait_ordered_range(inode, 0, (u64)-1); return 0; } spin_lock(&root->fs_info->ordered_extent_lock); if (list_empty(&BTRFS_I(inode)->ordered_operations)) { list_add_tail(&BTRFS_I(inode)->ordered_operations, &root->fs_info->ordered_operations); } spin_unlock(&root->fs_info->ordered_extent_lock); return 0; }