/* * Common utility functions for VGA-based graphics cards. * * Copyright (c) 2006-2007 Ondrej Zajicek * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. * * Some parts are based on David Boucher's viafb (http://davesdomain.org.uk/viafb/) */ #include #include #include #include #include #include #include /* Write a CRT register value spread across multiple registers */ void svga_wcrt_multi(void __iomem *regbase, const struct vga_regset *regset, u32 value) { u8 regval, bitval, bitnum; while (regset->regnum != VGA_REGSET_END_VAL) { regval = vga_rcrt(regbase, regset->regnum); bitnum = regset->lowbit; while (bitnum <= regset->highbit) { bitval = 1 << bitnum; regval = regval & ~bitval; if (value & 1) regval = regval | bitval; bitnum ++; value = value >> 1; } vga_wcrt(regbase, regset->regnum, regval); regset ++; } } /* Write a sequencer register value spread across multiple registers */ void svga_wseq_multi(void __iomem *regbase, const struct vga_regset *regset, u32 value) { u8 regval, bitval, bitnum; while (regset->regnum != VGA_REGSET_END_VAL) { regval = vga_rseq(regbase, regset->regnum); bitnum = regset->lowbit; while (bitnum <= regset->highbit) { bitval = 1 << bitnum; regval = regval & ~bitval; if (value & 1) regval = regval | bitval; bitnum ++; value = value >> 1; } vga_wseq(regbase, regset->regnum, regval); regset ++; } } static unsigned int svga_regset_size(const struct vga_regset *regset) { u8 count = 0; while (regset->regnum != VGA_REGSET_END_VAL) { count += regset->highbit - regset->lowbit + 1; regset ++; } return 1 << count; } /* ------------------------------------------------------------------------- */ /* Set graphics controller registers to sane values */ void svga_set_default_gfx_regs(void __iomem *regbase) { /* All standard GFX registers (GR00 - GR08) */ vga_wgfx(regbase, VGA_GFX_SR_VALUE, 0x00); vga_wgfx(regbase, VGA_GFX_SR_ENABLE, 0x00); vga_wgfx(regbase, VGA_GFX_COMPARE_VALUE, 0x00); vga_wgfx(regbase, VGA_GFX_DATA_ROTATE, 0x00); vga_wgfx(regbase, VGA_GFX_PLANE_READ, 0x00); vga_wgfx(regbase, VGA_GFX_MODE, 0x00); /* vga_wgfx(regbase, VGA_GFX_MODE, 0x20); */ /* vga_wgfx(regbase, VGA_GFX_MODE, 0x40); */ vga_wgfx(regbase, VGA_GFX_MISC, 0x05); /* vga_wgfx(regbase, VGA_GFX_MISC, 0x01); */ vga_wgfx(regbase, VGA_GFX_COMPARE_MASK, 0x0F); vga_wgfx(regbase, VGA_GFX_BIT_MASK, 0xFF); } /* Set attribute controller registers to sane values */ void svga_set_default_atc_regs(void __iomem *regbase) { u8 count; vga_r(regbase, 0x3DA); vga_w(regbase, VGA_ATT_W, 0x00); /* All standard ATC registers (AR00 - AR14) */ for (count = 0; count <= 0xF; count ++) svga_wattr(regbase, count, count); svga_wattr(regbase, VGA_ATC_MODE, 0x01); /* svga_wattr(regbase, VGA_ATC_MODE, 0x41); */ svga_wattr(regbase, VGA_ATC_OVERSCAN, 0x00); svga_wattr(regbase, VGA_ATC_PLANE_ENABLE, 0x0F); svga_wattr(regbase, VGA_ATC_PEL, 0x00); svga_wattr(regbase, VGA_ATC_COLOR_PAGE, 0x00); vga_r(regbase, 0x3DA); vga_w(regbase, VGA_ATT_W, 0x20); } /* Set sequencer registers to sane values */ void svga_set_default_seq_regs(void __iomem *regbase) { /* Standard sequencer registers (SR01 - SR04), SR00 is not set */ vga_wseq(regbase, VGA_SEQ_CLOCK_MODE, VGA_SR01_CHAR_CLK_8DOTS); vga_wseq(regbase, VGA_SEQ_PLANE_WRITE, VGA_SR02_ALL_PLANES); vga_wseq(regbase, VGA_SEQ_CHARACTER_MAP, 0x00); /* vga_wseq(regbase, VGA_SEQ_MEMORY_MODE, VGA_SR04_EXT_MEM | VGA_SR04_SEQ_MODE | VGA_SR04_CHN_4M); */ vga_wseq(regbase, VGA_SEQ_MEMORY_MODE, VGA_SR04_EXT_MEM | VGA_SR04_SEQ_MODE); } /* Set CRTC registers to sane values */ void svga_set_default_crt_regs(void __iomem *regbase) { /* Standard CRT registers CR03 CR08 CR09 CR14 CR17 */ svga_wcrt_mask(regbase, 0x03, 0x80, 0x80); /* Enable vertical retrace EVRA */ vga_wcrt(regbase, VGA_CRTC_PRESET_ROW, 0); svga_wcrt_mask(regbase, VGA_CRTC_MAX_SCAN, 0, 0x1F); vga_wcrt(regbase, VGA_CRTC_UNDERLINE, 0); vga_wcrt(regbase, VGA_CRTC_MODE, 0xE3); } void svga_set_textmode_vga_regs(void __iomem *regbase) { /* svga_wseq_mask(regbase, 0x1, 0x00, 0x01); */ /* Switch 8/9 pixel per char */ vga_wseq(regbase, VGA_SEQ_MEMORY_MODE, VGA_SR04_EXT_MEM); vga_wseq(regbase, VGA_SEQ_PLANE_WRITE, 0x03); vga_wcrt(regbase, VGA_CRTC_MAX_SCAN, 0x0f); /* 0x4f */ vga_wcrt(regbase, VGA_CRTC_UNDERLINE, 0x1f); svga_wcrt_mask(regbase, VGA_CRTC_MODE, 0x23, 0x7f); vga_wcrt(regbase, VGA_CRTC_CURSOR_START, 0x0d); vga_wcrt(regbase, VGA_CRTC_CURSOR_END, 0x0e); vga_wcrt(regbase, VGA_CRTC_CURSOR_HI, 0x00); vga_wcrt(regbase, VGA_CRTC_CURSOR_LO, 0x00); vga_wgfx(regbase, VGA_GFX_MODE, 0x10); /* Odd/even memory mode */ vga_wgfx(regbase, VGA_GFX_MISC, 0x0E); /* Misc graphics register - text mode enable */ vga_wgfx(regbase, VGA_GFX_COMPARE_MASK, 0x00); vga_r(regbase, 0x3DA); vga_w(regbase, VGA_ATT_W, 0x00); svga_wattr(regbase, 0x10, 0x0C); /* Attribute Mode Control Register - text mode, blinking and line graphics */ svga_wattr(regbase, 0x13, 0x08); /* Horizontal Pixel Panning Register */ vga_r(regbase, 0x3DA); vga_w(regbase, VGA_ATT_W, 0x20); } #if 0 void svga_dump_var(struct fb_var_screeninfo *var, int node) { pr_debug("fb%d: var.vmode : 0x%X\n", node, var->vmode); pr_debug("fb%d: var.xres : %d\n", node, var->xres); pr_debug("fb%d: var.yres : %d\n", node, var->yres); pr_debug("fb%d: var.bits_per_pixel: %d\n", node, var->bits_per_pixel); pr_debug("fb%d: var.xres_virtual : %d\n", node, var->xres_virtual); pr_debug("fb%d: var.yres_virtual : %d\n", node, var->yres_virtual); pr_debug("fb%d: var.left_margin : %d\n", node, var->left_margin); pr_debug("fb%d: var.right_margin : %d\n", node, var->right_margin); pr_debug("fb%d: var.upper_margin : %d\n", node, var->upper_margin); pr_debug("fb%d: var.lower_margin : %d\n", node, var->lower_margin); pr_debug("fb%d: var.hsync_len : %d\n", node, var->hsync_len); pr_debug("fb%d: var.vsync_len : %d\n", node, var->vsync_len); pr_debug("fb%d: var.sync : 0x%X\n", node, var->sync); pr_debug("fb%d: var.pixclock : %d\n\n", node, var->pixclock); } #endif /* 0 */ /* ------------------------------------------------------------------------- */ void svga_settile(struct fb_info *info, struct fb_tilemap *map) { const u8 *font = map->data; u8 __iomem *fb = (u8 __iomem *)info->screen_base; int i, c; if ((map->width != 8) || (map->height != 16) || (map->depth != 1) || (map->length != 256)) { fb_err(info, "unsupported font parameters: width %d, height %d, depth %d, length %d\n", map->width, map->height, map->depth, map->length); return; } fb += 2; for (c = 0; c < map->length; c++) { for (i = 0; i < map->height; i++) { fb_writeb(font[i], fb + i * 4); // fb[i * 4] = font[i]; } fb += 128; font += map->height; } } /* Copy area in text (tileblit) mode */ void svga_tilecopy(struct fb_info *info, struct fb_tilearea *area) { int dx, dy; /* colstride is halved in this function because u16 are used */ int colstride = 1 << (info->fix.type_aux & FB_AUX_TEXT_SVGA_MASK); int rowstride = colstride * (info->var.xres_virtual / 8); u16 __iomem *fb = (u16 __iomem *) info->screen_base; u16 __iomem *src, *dst; if ((area->sy > area->dy) || ((area->sy == area->dy) && (area->sx > area->dx))) { src = fb + area->sx * colstride + area->sy * rowstride; dst = fb + area->dx * colstride + area->dy * rowstride; } else { src = fb + (area->sx + area->width - 1) * colstride + (area->sy + area->height - 1) * rowstride; dst = fb + (area->dx + area->width - 1) * colstride + (area->dy + area->height - 1) * rowstride; colstride = -colstride; rowstride = -rowstride; } for (dy = 0; dy < area->height; dy++) { u16 __iomem *src2 = src; u16 __iomem *dst2 = dst; for (dx = 0; dx < area->width; dx++) { fb_writew(fb_readw(src2), dst2); // *dst2 = *src2; src2 += colstride; dst2 += colstride; } src += rowstride; dst += rowstride; } } /* Fill area in text (tileblit) mode */ void svga_tilefill(struct fb_info *info, struct fb_tilerect *rect) { int dx, dy; int colstride = 2 << (info->fix.type_aux & FB_AUX_TEXT_SVGA_MASK); int rowstride = colstride * (info->var.xres_virtual / 8); int attr = (0x0F & rect->bg) << 4 | (0x0F & rect->fg); u8 __iomem *fb = (u8 __iomem *)info->screen_base; fb += rect->sx * colstride + rect->sy * rowstride; for (dy = 0; dy < rect->height; dy++) { u8 __iomem *fb2 = fb; for (dx = 0; dx < rect->width; dx++) { fb_writeb(rect->index, fb2); fb_writeb(attr, fb2 + 1); fb2 += colstride; } fb += rowstride; } } /* Write text in text (tileblit) mode */ void svga_tileblit(struct fb_info *info, struct fb_tileblit *blit) { int dx, dy, i; int colstride = 2 << (info->fix.type_aux & FB_AUX_TEXT_SVGA_MASK); int rowstride = colstride * (info->var.xres_virtual / 8); int attr = (0x0F & blit->bg) << 4 | (0x0F & blit->fg); u8 __iomem *fb = (u8 __iomem *)info->screen_base; fb += blit->sx * colstride + blit->sy * rowstride; i=0; for (dy=0; dy < blit->height; dy ++) { u8 __iomem *fb2 = fb; for (dx = 0; dx < blit->width; dx ++) { fb_writeb(blit->indices[i], fb2); fb_writeb(attr, fb2 + 1); fb2 += colstride; i ++; if (i == blit->length) return; } fb += rowstride; } } /* Set cursor in text (tileblit) mode */ void svga_tilecursor(void __iomem *regbase, struct fb_info *info, struct fb_tilecursor *cursor) { u8 cs = 0x0d; u8 ce = 0x0e; u16 pos = cursor->sx + (info->var.xoffset / 8) + (cursor->sy + (info->var.yoffset / 16)) * (info->var.xres_virtual / 8); if (! cursor -> mode) return; svga_wcrt_mask(regbase, 0x0A, 0x20, 0x20); /* disable cursor */ if (cursor -> shape == FB_TILE_CURSOR_NONE) return; switch (cursor -> shape) { case FB_TILE_CURSOR_UNDERLINE: cs = 0x0d; break; case FB_TILE_CURSOR_LOWER_THIRD: cs = 0x09; break; case FB_TILE_CURSOR_LOWER_HALF: cs = 0x07; break; case FB_TILE_CURSOR_TWO_THIRDS: cs = 0x05; break; case FB_TILE_CURSOR_BLOCK: cs = 0x01; break; } /* set cursor position */ vga_wcrt(regbase, 0x0E, pos >> 8); vga_wcrt(regbase, 0x0F, pos & 0xFF); vga_wcrt(regbase, 0x0B, ce); /* set cursor end */ vga_wcrt(regbase, 0x0A, cs); /* set cursor start and enable it */ } int svga_get_tilemax(struct fb_info *info) { return 256; } /* Get capabilities of accelerator based on the mode */ void svga_get_caps(struct fb_info *info, struct fb_blit_caps *caps, struct fb_var_screeninfo *var) { if (var->bits_per_pixel == 0) { /* can only support 256 8x16 bitmap */ caps->x = 1 << (8 - 1); caps->y = 1 << (16 - 1); caps->len = 256; } else { caps->x = (var->bits_per_pixel == 4) ? 1 << (8 - 1) : ~(u32)0; caps->y = ~(u32)0; caps->len = ~(u32)0; } } EXPORT_SYMBOL(svga_get_caps); /* ------------------------------------------------------------------------- */ /* * Compute PLL settings (M, N, R) * F_VCO = (F_BASE * M) / N * F_OUT = F_VCO / (2^R) */ static inline u32 abs_diff(u32 a, u32 b) { return (a > b) ? (a - b) : (b - a); } int svga_compute_pll(const struct svga_pll *pll, u32 f_wanted, u16 *m, u16 *n, u16 *r, int node) { u16 am, an, ar; u32 f_vco, f_current, delta_current, delta_best; pr_debug("fb%d: ideal frequency: %d kHz\n", node, (unsigned int) f_wanted); ar = pll->r_max; f_vco = f_wanted << ar; /* overflow check */ if ((f_vco >> ar) != f_wanted) return -EINVAL; /* It is usually better to have greater VCO clock because of better frequency stability. So first try r_max, then r smaller. */ while ((ar > pll->r_min) && (f_vco > pll->f_vco_max)) { ar--; f_vco = f_vco >> 1; } /* VCO bounds check */ if ((f_vco < pll->f_vco_min) || (f_vco > pll->f_vco_max)) return -EINVAL; delta_best = 0xFFFFFFFF; *m = 0; *n = 0; *r = ar; am = pll->m_min; an = pll->n_min; while ((am <= pll->m_max) && (an <= pll->n_max)) { f_current = (pll->f_base * am) / an; delta_current = abs_diff (f_current, f_vco); if (delta_current < delta_best) { delta_best = delta_current; *m = am; *n = an; } if (f_current <= f_vco) { am ++; } else { an ++; } } f_current = (pll->f_base * *m) / *n; pr_debug("fb%d: found frequency: %d kHz (VCO %d kHz)\n", node, (int) (f_current >> ar), (int) f_current); pr_debug("fb%d: m = %d n = %d r = %d\n", node, (unsigned int) *m, (unsigned int) *n, (unsigned int) *r); return 0; } /* ------------------------------------------------------------------------- */ /* Check CRT timing values */ int svga_check_timings(const struct svga_timing_regs *tm, struct fb_var_screeninfo *var, int node) { u32 value; var->xres = (var->xres+7)&~7; var->left_margin = (var->left_margin+7)&~7; var->right_margin = (var->right_margin+7)&~7; var->hsync_len = (var->hsync_len+7)&~7; /* Check horizontal total */ value = var->xres + var->left_margin + var->right_margin + var->hsync_len; if (((value / 8) - 5) >= svga_regset_size (tm->h_total_regs)) return -EINVAL; /* Check horizontal display and blank start */ value = var->xres; if (((value / 8) - 1) >= svga_regset_size (tm->h_display_regs)) return -EINVAL; if (((value / 8) - 1) >= svga_regset_size (tm->h_blank_start_regs)) return -EINVAL; /* Check horizontal sync start */ value = var->xres + var->right_margin; if (((value / 8) - 1) >= svga_regset_size (tm->h_sync_start_regs)) return -EINVAL; /* Check horizontal blank end (or length) */ value = var->left_margin + var->right_margin + var->hsync_len; if ((value == 0) || ((value / 8) >= svga_regset_size (tm->h_blank_end_regs))) return -EINVAL; /* Check horizontal sync end (or length) */ value = var->hsync_len; if ((value == 0) || ((value / 8) >= svga_regset_size (tm->h_sync_end_regs))) return -EINVAL; /* Check vertical total */ value = var->yres + var->upper_margin + var->lower_margin + var->vsync_len; if ((value - 1) >= svga_regset_size(tm->v_total_regs)) return -EINVAL; /* Check vertical display and blank start */ value = var->yres; if ((value - 1) >= svga_regset_size(tm->v_display_regs)) return -EINVAL; if ((value - 1) >= svga_regset_size(tm->v_blank_start_regs)) return -EINVAL; /* Check vertical sync start */ value = var->yres + var->lower_margin; if ((value - 1) >= svga_regset_size(tm->v_sync_start_regs)) return -EINVAL; /* Check vertical blank end (or length) */ value = var->upper_margin + var->lower_margin + var->vsync_len; if ((value == 0) || (value >= svga_regset_size (tm->v_blank_end_regs))) return -EINVAL; /* Check vertical sync end (or length) */ value = var->vsync_len; if ((value == 0) || (value >= svga_regset_size (tm->v_sync_end_regs))) return -EINVAL; return 0; } /* Set CRT timing registers */ void svga_set_timings(void __iomem *regbase, const struct svga_timing_regs *tm, struct fb_var_screeninfo *var, u32 hmul, u32 hdiv, u32 vmul, u32 vdiv, u32 hborder, int node) { u8 regval; u32 value; value = var->xres + var->left_margin + var->right_margin + var->hsync_len; value = (value * hmul) / hdiv; pr_debug("fb%d: horizontal total : %d\n", node, value); svga_wcrt_multi(regbase, tm->h_total_regs, (value / 8) - 5); value = var->xres; value = (value * hmul) / hdiv; pr_debug("fb%d: horizontal display : %d\n", node, value); svga_wcrt_multi(regbase, tm->h_display_regs, (value / 8) - 1); value = var->xres; value = (value * hmul) / hdiv; pr_debug("fb%d: horizontal blank start: %d\n", node, value); svga_wcrt_multi(regbase, tm->h_blank_start_regs, (value / 8) - 1 + hborder); value = var->xres + var->left_margin + var->right_margin + var->hsync_len; value = (value * hmul) / hdiv; pr_debug("fb%d: horizontal blank end : %d\n", node, value); svga_wcrt_multi(regbase, tm->h_blank_end_regs, (value / 8) - 1 - hborder); value = var->xres + var->right_margin; value = (value * hmul) / hdiv; pr_debug("fb%d: horizontal sync start : %d\n", node, value); svga_wcrt_multi(regbase, tm->h_sync_start_regs, (value / 8)); value = var->xres + var->right_margin + var->hsync_len; value = (value * hmul) / hdiv; pr_debug("fb%d: horizontal sync end : %d\n", node, value); svga_wcrt_multi(regbase, tm->h_sync_end_regs, (value / 8)); value = var->yres + var->upper_margin + var->lower_margin + var->vsync_len; value = (value * vmul) / vdiv; pr_debug("fb%d: vertical total : %d\n", node, value); svga_wcrt_multi(regbase, tm->v_total_regs, value - 2); value = var->yres; value = (value * vmul) / vdiv; pr_debug("fb%d: vertical display : %d\n", node, value); svga_wcrt_multi(regbase, tm->v_display_regs, value - 1); value = var->yres; value = (value * vmul) / vdiv; pr_debug("fb%d: vertical blank start : %d\n", node, value); svga_wcrt_multi(regbase, tm->v_blank_start_regs, value); value = var->yres + var->upper_margin + var->lower_margin + var->vsync_len; value = (value * vmul) / vdiv; pr_debug("fb%d: vertical blank end : %d\n", node, value); svga_wcrt_multi(regbase, tm->v_blank_end_regs, value - 2); value = var->yres + var->lower_margin; value = (value * vmul) / vdiv; pr_debug("fb%d: vertical sync start : %d\n", node, value); svga_wcrt_multi(regbase, tm->v_sync_start_regs, value); value = var->yres + var->lower_margin + var->vsync_len; value = (value * vmul) / vdiv; pr_debug("fb%d: vertical sync end : %d\n", node, value); svga_wcrt_multi(regbase, tm->v_sync_end_regs, value); /* Set horizontal and vertical sync pulse polarity in misc register */ regval = vga_r(regbase, VGA_MIS_R); if (var->sync & FB_SYNC_HOR_HIGH_ACT) { pr_debug("fb%d: positive horizontal sync\n", node); regval = regval & ~0x80; } else { pr_debug("fb%d: negative horizontal sync\n", node); regval = regval | 0x80; } if (var->sync & FB_SYNC_VERT_HIGH_ACT) { pr_debug("fb%d: positive vertical sync\n", node); regval = regval & ~0x40; } else { pr_debug("fb%d: negative vertical sync\n\n", node); regval = regval | 0x40; } vga_w(regbase, VGA_MIS_W, regval); } /* ------------------------------------------------------------------------- */ static inline int match_format(const struct svga_fb_format *frm, struct fb_var_screeninfo *var) { int i = 0; int stored = -EINVAL; while (frm->bits_per_pixel != SVGA_FORMAT_END_VAL) { if ((var->bits_per_pixel == frm->bits_per_pixel) && (var->red.length <= frm->red.length) && (var->green.length <= frm->green.length) && (var->blue.length <= frm->blue.length) && (var->transp.length <= frm->transp.length) && (var->nonstd == frm->nonstd)) return i; if (var->bits_per_pixel == frm->bits_per_pixel) stored = i; i++; frm++; } return stored; } int svga_match_format(const struct svga_fb_format *frm, struct fb_var_screeninfo *var, struct fb_fix_screeninfo *fix) { int i = match_format(frm, var); if (i >= 0) { var->bits_per_pixel = frm[i].bits_per_pixel; var->red = frm[i].red; var->green = frm[i].green; var->blue = frm[i].blue; var->transp = frm[i].transp; var->nonstd = frm[i].nonstd; if (fix != NULL) { fix->type = frm[i].type; fix->type_aux = frm[i].type_aux; fix->visual = frm[i].visual; fix->xpanstep = frm[i].xpanstep; } } return i; } EXPORT_SYMBOL(svga_wcrt_multi); EXPORT_SYMBOL(svga_wseq_multi); EXPORT_SYMBOL(svga_set_default_gfx_regs); EXPORT_SYMBOL(svga_set_default_atc_regs); EXPORT_SYMBOL(svga_set_default_seq_regs); EXPORT_SYMBOL(svga_set_default_crt_regs); EXPORT_SYMBOL(svga_set_textmode_vga_regs); EXPORT_SYMBOL(svga_settile); EXPORT_SYMBOL(svga_tilecopy); EXPORT_SYMBOL(svga_tilefill); EXPORT_SYMBOL(svga_tileblit); EXPORT_SYMBOL(svga_tilecursor); EXPORT_SYMBOL(svga_get_tilemax); EXPORT_SYMBOL(svga_compute_pll); EXPORT_SYMBOL(svga_check_timings); EXPORT_SYMBOL(svga_set_timings); EXPORT_SYMBOL(svga_match_format); MODULE_AUTHOR("Ondrej Zajicek "); MODULE_DESCRIPTION("Common utility functions for VGA-based graphics cards"); MODULE_LICENSE("GPL");