/* Copyright 2014-2016 Freescale Semiconductor Inc. * Copyright 2016-2017 NXP * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "../../fsl-mc/include/mc.h" #include "dpaa2-eth.h" /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files * using trace events only need to #include */ #define CREATE_TRACE_POINTS #include "dpaa2-eth-trace.h" MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Freescale Semiconductor, Inc"); MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); const char dpaa2_eth_drv_version[] = "0.1"; static void *dpaa2_iova_to_virt(struct iommu_domain *domain, dma_addr_t iova_addr) { phys_addr_t phys_addr; phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; return phys_to_virt(phys_addr); } static void validate_rx_csum(struct dpaa2_eth_priv *priv, u32 fd_status, struct sk_buff *skb) { skb_checksum_none_assert(skb); /* HW checksum validation is disabled, nothing to do here */ if (!(priv->net_dev->features & NETIF_F_RXCSUM)) return; /* Read checksum validation bits */ if (!((fd_status & DPAA2_FAS_L3CV) && (fd_status & DPAA2_FAS_L4CV))) return; /* Inform the stack there's no need to compute L3/L4 csum anymore */ skb->ip_summed = CHECKSUM_UNNECESSARY; } /* Free a received FD. * Not to be used for Tx conf FDs or on any other paths. */ static void free_rx_fd(struct dpaa2_eth_priv *priv, const struct dpaa2_fd *fd, void *vaddr) { struct device *dev = priv->net_dev->dev.parent; dma_addr_t addr = dpaa2_fd_get_addr(fd); u8 fd_format = dpaa2_fd_get_format(fd); struct dpaa2_sg_entry *sgt; void *sg_vaddr; int i; /* If single buffer frame, just free the data buffer */ if (fd_format == dpaa2_fd_single) goto free_buf; else if (fd_format != dpaa2_fd_sg) /* We don't support any other format */ return; /* For S/G frames, we first need to free all SG entries */ sgt = vaddr + dpaa2_fd_get_offset(fd); for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { addr = dpaa2_sg_get_addr(&sgt[i]); sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE); skb_free_frag(sg_vaddr); if (dpaa2_sg_is_final(&sgt[i])) break; } free_buf: skb_free_frag(vaddr); } /* Build a linear skb based on a single-buffer frame descriptor */ static struct sk_buff *build_linear_skb(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, void *fd_vaddr) { struct sk_buff *skb = NULL; u16 fd_offset = dpaa2_fd_get_offset(fd); u32 fd_length = dpaa2_fd_get_len(fd); ch->buf_count--; skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); if (unlikely(!skb)) return NULL; skb_reserve(skb, fd_offset); skb_put(skb, fd_length); return skb; } /* Build a non linear (fragmented) skb based on a S/G table */ static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, struct dpaa2_sg_entry *sgt) { struct sk_buff *skb = NULL; struct device *dev = priv->net_dev->dev.parent; void *sg_vaddr; dma_addr_t sg_addr; u16 sg_offset; u32 sg_length; struct page *page, *head_page; int page_offset; int i; for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { struct dpaa2_sg_entry *sge = &sgt[i]; /* NOTE: We only support SG entries in dpaa2_sg_single format, * but this is the only format we may receive from HW anyway */ /* Get the address and length from the S/G entry */ sg_addr = dpaa2_sg_get_addr(sge); sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); dma_unmap_single(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE); sg_length = dpaa2_sg_get_len(sge); if (i == 0) { /* We build the skb around the first data buffer */ skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_SIZE + SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); if (unlikely(!skb)) { /* We still need to subtract the buffers used * by this FD from our software counter */ while (!dpaa2_sg_is_final(&sgt[i]) && i < DPAA2_ETH_MAX_SG_ENTRIES) i++; break; } sg_offset = dpaa2_sg_get_offset(sge); skb_reserve(skb, sg_offset); skb_put(skb, sg_length); } else { /* Rest of the data buffers are stored as skb frags */ page = virt_to_page(sg_vaddr); head_page = virt_to_head_page(sg_vaddr); /* Offset in page (which may be compound). * Data in subsequent SG entries is stored from the * beginning of the buffer, so we don't need to add the * sg_offset. */ page_offset = ((unsigned long)sg_vaddr & (PAGE_SIZE - 1)) + (page_address(page) - page_address(head_page)); skb_add_rx_frag(skb, i - 1, head_page, page_offset, sg_length, DPAA2_ETH_RX_BUF_SIZE); } if (dpaa2_sg_is_final(sge)) break; } /* Count all data buffers + SG table buffer */ ch->buf_count -= i + 2; return skb; } /* Main Rx frame processing routine */ static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, struct napi_struct *napi) { dma_addr_t addr = dpaa2_fd_get_addr(fd); u8 fd_format = dpaa2_fd_get_format(fd); void *vaddr; struct sk_buff *skb; struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_drv_stats *percpu_extras; struct device *dev = priv->net_dev->dev.parent; struct dpaa2_fas *fas; void *buf_data; u32 status = 0; /* Tracing point */ trace_dpaa2_rx_fd(priv->net_dev, fd); vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE); fas = dpaa2_get_fas(vaddr); prefetch(fas); buf_data = vaddr + dpaa2_fd_get_offset(fd); prefetch(buf_data); percpu_stats = this_cpu_ptr(priv->percpu_stats); percpu_extras = this_cpu_ptr(priv->percpu_extras); if (fd_format == dpaa2_fd_single) { skb = build_linear_skb(priv, ch, fd, vaddr); } else if (fd_format == dpaa2_fd_sg) { skb = build_frag_skb(priv, ch, buf_data); skb_free_frag(vaddr); percpu_extras->rx_sg_frames++; percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); } else { /* We don't support any other format */ goto err_frame_format; } if (unlikely(!skb)) goto err_build_skb; prefetch(skb->data); /* Check if we need to validate the L4 csum */ if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { status = le32_to_cpu(fas->status); validate_rx_csum(priv, status, skb); } skb->protocol = eth_type_trans(skb, priv->net_dev); percpu_stats->rx_packets++; percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); napi_gro_receive(napi, skb); return; err_build_skb: free_rx_fd(priv, fd, vaddr); err_frame_format: percpu_stats->rx_dropped++; } /* Consume all frames pull-dequeued into the store. This is the simplest way to * make sure we don't accidentally issue another volatile dequeue which would * overwrite (leak) frames already in the store. * * Observance of NAPI budget is not our concern, leaving that to the caller. */ static int consume_frames(struct dpaa2_eth_channel *ch) { struct dpaa2_eth_priv *priv = ch->priv; struct dpaa2_eth_fq *fq; struct dpaa2_dq *dq; const struct dpaa2_fd *fd; int cleaned = 0; int is_last; do { dq = dpaa2_io_store_next(ch->store, &is_last); if (unlikely(!dq)) { /* If we're here, we *must* have placed a * volatile dequeue comnmand, so keep reading through * the store until we get some sort of valid response * token (either a valid frame or an "empty dequeue") */ continue; } fd = dpaa2_dq_fd(dq); fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); fq->stats.frames++; fq->consume(priv, ch, fd, &ch->napi); cleaned++; } while (!is_last); return cleaned; } /* Create a frame descriptor based on a fragmented skb */ static int build_sg_fd(struct dpaa2_eth_priv *priv, struct sk_buff *skb, struct dpaa2_fd *fd) { struct device *dev = priv->net_dev->dev.parent; void *sgt_buf = NULL; dma_addr_t addr; int nr_frags = skb_shinfo(skb)->nr_frags; struct dpaa2_sg_entry *sgt; int i, err; int sgt_buf_size; struct scatterlist *scl, *crt_scl; int num_sg; int num_dma_bufs; struct dpaa2_eth_swa *swa; struct dpaa2_fas *fas; /* Create and map scatterlist. * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have * to go beyond nr_frags+1. * Note: We don't support chained scatterlists */ if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) return -EINVAL; scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); if (unlikely(!scl)) return -ENOMEM; sg_init_table(scl, nr_frags + 1); num_sg = skb_to_sgvec(skb, scl, 0, skb->len); num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); if (unlikely(!num_dma_bufs)) { err = -ENOMEM; goto dma_map_sg_failed; } /* Prepare the HW SGT structure */ sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry) * (1 + num_dma_bufs); sgt_buf = kzalloc(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN, GFP_ATOMIC); if (unlikely(!sgt_buf)) { err = -ENOMEM; goto sgt_buf_alloc_failed; } sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); /* PTA from egress side is passed as is to the confirmation side so * we need to clear some fields here in order to find consistent values * on TX confirmation. We are clearing FAS (Frame Annotation Status) * field from the hardware annotation area */ fas = dpaa2_get_fas(sgt_buf); memset(fas, 0, DPAA2_FAS_SIZE); sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); /* Fill in the HW SGT structure. * * sgt_buf is zeroed out, so the following fields are implicit * in all sgt entries: * - offset is 0 * - format is 'dpaa2_sg_single' */ for_each_sg(scl, crt_scl, num_dma_bufs, i) { dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); } dpaa2_sg_set_final(&sgt[i - 1], true); /* Store the skb backpointer in the SGT buffer. * Fit the scatterlist and the number of buffers alongside the * skb backpointer in the software annotation area. We'll need * all of them on Tx Conf. */ swa = (struct dpaa2_eth_swa *)sgt_buf; swa->skb = skb; swa->scl = scl; swa->num_sg = num_sg; swa->num_dma_bufs = num_dma_bufs; /* Separately map the SGT buffer */ addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) { err = -ENOMEM; goto dma_map_single_failed; } dpaa2_fd_set_offset(fd, priv->tx_data_offset); dpaa2_fd_set_format(fd, dpaa2_fd_sg); dpaa2_fd_set_addr(fd, addr); dpaa2_fd_set_len(fd, skb->len); dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL | DPAA2_FD_CTRL_PTA | DPAA2_FD_CTRL_PTV1); return 0; dma_map_single_failed: kfree(sgt_buf); sgt_buf_alloc_failed: dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); dma_map_sg_failed: kfree(scl); return err; } /* Create a frame descriptor based on a linear skb */ static int build_single_fd(struct dpaa2_eth_priv *priv, struct sk_buff *skb, struct dpaa2_fd *fd) { struct device *dev = priv->net_dev->dev.parent; u8 *buffer_start; struct dpaa2_fas *fas; struct sk_buff **skbh; dma_addr_t addr; buffer_start = PTR_ALIGN(skb->data - priv->tx_data_offset - DPAA2_ETH_TX_BUF_ALIGN, DPAA2_ETH_TX_BUF_ALIGN); /* PTA from egress side is passed as is to the confirmation side so * we need to clear some fields here in order to find consistent values * on TX confirmation. We are clearing FAS (Frame Annotation Status) * field from the hardware annotation area */ fas = dpaa2_get_fas(buffer_start); memset(fas, 0, DPAA2_FAS_SIZE); /* Store a backpointer to the skb at the beginning of the buffer * (in the private data area) such that we can release it * on Tx confirm */ skbh = (struct sk_buff **)buffer_start; *skbh = skb; addr = dma_map_single(dev, buffer_start, skb_tail_pointer(skb) - buffer_start, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(dev, addr))) return -ENOMEM; dpaa2_fd_set_addr(fd, addr); dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); dpaa2_fd_set_len(fd, skb->len); dpaa2_fd_set_format(fd, dpaa2_fd_single); dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL | DPAA2_FD_CTRL_PTA | DPAA2_FD_CTRL_PTV1); return 0; } /* FD freeing routine on the Tx path * * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb * back-pointed to is also freed. * This can be called either from dpaa2_eth_tx_conf() or on the error path of * dpaa2_eth_tx(). * Optionally, return the frame annotation status word (FAS), which needs * to be checked if we're on the confirmation path. */ static void free_tx_fd(const struct dpaa2_eth_priv *priv, const struct dpaa2_fd *fd, u32 *status) { struct device *dev = priv->net_dev->dev.parent; dma_addr_t fd_addr; struct sk_buff **skbh, *skb; unsigned char *buffer_start; int unmap_size; struct scatterlist *scl; int num_sg, num_dma_bufs; struct dpaa2_eth_swa *swa; u8 fd_format = dpaa2_fd_get_format(fd); struct dpaa2_fas *fas; fd_addr = dpaa2_fd_get_addr(fd); skbh = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); fas = dpaa2_get_fas(skbh); if (fd_format == dpaa2_fd_single) { skb = *skbh; buffer_start = (unsigned char *)skbh; /* Accessing the skb buffer is safe before dma unmap, because * we didn't map the actual skb shell. */ dma_unmap_single(dev, fd_addr, skb_tail_pointer(skb) - buffer_start, DMA_BIDIRECTIONAL); } else if (fd_format == dpaa2_fd_sg) { swa = (struct dpaa2_eth_swa *)skbh; skb = swa->skb; scl = swa->scl; num_sg = swa->num_sg; num_dma_bufs = swa->num_dma_bufs; /* Unmap the scatterlist */ dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); kfree(scl); /* Unmap the SGT buffer */ unmap_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry) * (1 + num_dma_bufs); dma_unmap_single(dev, fd_addr, unmap_size, DMA_BIDIRECTIONAL); } else { /* Unsupported format, mark it as errored and give up */ if (status) *status = ~0; return; } /* Read the status from the Frame Annotation after we unmap the first * buffer but before we free it. The caller function is responsible * for checking the status value. */ if (status) *status = le32_to_cpu(fas->status); /* Free SGT buffer kmalloc'ed on tx */ if (fd_format != dpaa2_fd_single) kfree(skbh); /* Move on with skb release */ dev_kfree_skb(skb); } static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct dpaa2_fd fd; struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_drv_stats *percpu_extras; struct dpaa2_eth_fq *fq; u16 queue_mapping; int err, i; percpu_stats = this_cpu_ptr(priv->percpu_stats); percpu_extras = this_cpu_ptr(priv->percpu_extras); if (unlikely(skb_headroom(skb) < DPAA2_ETH_NEEDED_HEADROOM(priv))) { struct sk_buff *ns; ns = skb_realloc_headroom(skb, DPAA2_ETH_NEEDED_HEADROOM(priv)); if (unlikely(!ns)) { percpu_stats->tx_dropped++; goto err_alloc_headroom; } dev_kfree_skb(skb); skb = ns; } /* We'll be holding a back-reference to the skb until Tx Confirmation; * we don't want that overwritten by a concurrent Tx with a cloned skb. */ skb = skb_unshare(skb, GFP_ATOMIC); if (unlikely(!skb)) { /* skb_unshare() has already freed the skb */ percpu_stats->tx_dropped++; return NETDEV_TX_OK; } /* Setup the FD fields */ memset(&fd, 0, sizeof(fd)); if (skb_is_nonlinear(skb)) { err = build_sg_fd(priv, skb, &fd); percpu_extras->tx_sg_frames++; percpu_extras->tx_sg_bytes += skb->len; } else { err = build_single_fd(priv, skb, &fd); } if (unlikely(err)) { percpu_stats->tx_dropped++; goto err_build_fd; } /* Tracing point */ trace_dpaa2_tx_fd(net_dev, &fd); /* TxConf FQ selection primarily based on cpu affinity; this is * non-migratable context, so it's safe to call smp_processor_id(). */ queue_mapping = smp_processor_id() % dpaa2_eth_queue_count(priv); fq = &priv->fq[queue_mapping]; for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { err = dpaa2_io_service_enqueue_qd(NULL, priv->tx_qdid, 0, fq->tx_qdbin, &fd); if (err != -EBUSY) break; } percpu_extras->tx_portal_busy += i; if (unlikely(err < 0)) { percpu_stats->tx_errors++; /* Clean up everything, including freeing the skb */ free_tx_fd(priv, &fd, NULL); } else { percpu_stats->tx_packets++; percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); } return NETDEV_TX_OK; err_build_fd: err_alloc_headroom: dev_kfree_skb(skb); return NETDEV_TX_OK; } /* Tx confirmation frame processing routine */ static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, const struct dpaa2_fd *fd, struct napi_struct *napi __always_unused) { struct rtnl_link_stats64 *percpu_stats; struct dpaa2_eth_drv_stats *percpu_extras; u32 status = 0; u32 fd_errors; bool has_fas_errors = false; /* Tracing point */ trace_dpaa2_tx_conf_fd(priv->net_dev, fd); percpu_extras = this_cpu_ptr(priv->percpu_extras); percpu_extras->tx_conf_frames++; percpu_extras->tx_conf_bytes += dpaa2_fd_get_len(fd); /* Check frame errors in the FD field */ fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; if (unlikely(fd_errors)) { /* We only check error bits in the FAS field if corresponding * FAERR bit is set in FD and the FAS field is marked as valid */ has_fas_errors = (fd_errors & DPAA2_FD_CTRL_FAERR) && !!(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV); if (net_ratelimit()) netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", fd_errors); } free_tx_fd(priv, fd, has_fas_errors ? &status : NULL); if (likely(!fd_errors)) return; percpu_stats = this_cpu_ptr(priv->percpu_stats); /* Tx-conf logically pertains to the egress path. */ percpu_stats->tx_errors++; if (has_fas_errors && net_ratelimit()) netdev_dbg(priv->net_dev, "TX frame FAS error: 0x%08x\n", status & DPAA2_FAS_TX_ERR_MASK); } static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) { int err; err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_RX_L3_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(RX_L3_CSUM) failed\n"); return err; } err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_RX_L4_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(RX_L4_CSUM) failed\n"); return err; } return 0; } static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) { int err; err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_TX_L3_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); return err; } err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, DPNI_OFF_TX_L4_CSUM, enable); if (err) { netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); return err; } return 0; } /* Perform a single release command to add buffers * to the specified buffer pool */ static int add_bufs(struct dpaa2_eth_priv *priv, u16 bpid) { struct device *dev = priv->net_dev->dev.parent; u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; void *buf; dma_addr_t addr; int i; for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { /* Allocate buffer visible to WRIOP + skb shared info + * alignment padding */ buf = napi_alloc_frag(DPAA2_ETH_BUF_RAW_SIZE); if (unlikely(!buf)) goto err_alloc; buf = PTR_ALIGN(buf, DPAA2_ETH_RX_BUF_ALIGN); addr = dma_map_single(dev, buf, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, addr))) goto err_map; buf_array[i] = addr; /* tracing point */ trace_dpaa2_eth_buf_seed(priv->net_dev, buf, DPAA2_ETH_BUF_RAW_SIZE, addr, DPAA2_ETH_RX_BUF_SIZE, bpid); } release_bufs: /* In case the portal is busy, retry until successful. * The buffer release function would only fail if the QBMan portal * was busy, which implies portal contention (i.e. more CPUs than * portals, i.e. GPPs w/o affine DPIOs). For all practical purposes, * there is little we can realistically do, short of giving up - * in which case we'd risk depleting the buffer pool and never again * receiving the Rx interrupt which would kick-start the refill logic. * So just keep retrying, at the risk of being moved to ksoftirqd. */ while (dpaa2_io_service_release(NULL, bpid, buf_array, i)) cpu_relax(); return i; err_map: skb_free_frag(buf); err_alloc: if (i) goto release_bufs; return 0; } static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) { int i, j; int new_count; /* This is the lazy seeding of Rx buffer pools. * dpaa2_add_bufs() is also used on the Rx hotpath and calls * napi_alloc_frag(). The trouble with that is that it in turn ends up * calling this_cpu_ptr(), which mandates execution in atomic context. * Rather than splitting up the code, do a one-off preempt disable. */ preempt_disable(); for (j = 0; j < priv->num_channels; j++) { for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) { new_count = add_bufs(priv, bpid); priv->channel[j]->buf_count += new_count; if (new_count < DPAA2_ETH_BUFS_PER_CMD) { preempt_enable(); return -ENOMEM; } } } preempt_enable(); return 0; } /** * Drain the specified number of buffers from the DPNI's private buffer pool. * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD */ static void drain_bufs(struct dpaa2_eth_priv *priv, int count) { struct device *dev = priv->net_dev->dev.parent; u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; void *vaddr; int ret, i; do { ret = dpaa2_io_service_acquire(NULL, priv->bpid, buf_array, count); if (ret < 0) { netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); return; } for (i = 0; i < ret; i++) { /* Same logic as on regular Rx path */ vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); dma_unmap_single(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE); skb_free_frag(vaddr); } } while (ret); } static void drain_pool(struct dpaa2_eth_priv *priv) { int i; drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); drain_bufs(priv, 1); for (i = 0; i < priv->num_channels; i++) priv->channel[i]->buf_count = 0; } /* Function is called from softirq context only, so we don't need to guard * the access to percpu count */ static int refill_pool(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch, u16 bpid) { int new_count; if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) return 0; do { new_count = add_bufs(priv, bpid); if (unlikely(!new_count)) { /* Out of memory; abort for now, we'll try later on */ break; } ch->buf_count += new_count; } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) return -ENOMEM; return 0; } static int pull_channel(struct dpaa2_eth_channel *ch) { int err; int dequeues = -1; /* Retry while portal is busy */ do { err = dpaa2_io_service_pull_channel(NULL, ch->ch_id, ch->store); dequeues++; cpu_relax(); } while (err == -EBUSY); ch->stats.dequeue_portal_busy += dequeues; if (unlikely(err)) ch->stats.pull_err++; return err; } /* NAPI poll routine * * Frames are dequeued from the QMan channel associated with this NAPI context. * Rx, Tx confirmation and (if configured) Rx error frames all count * towards the NAPI budget. */ static int dpaa2_eth_poll(struct napi_struct *napi, int budget) { struct dpaa2_eth_channel *ch; int cleaned = 0, store_cleaned; struct dpaa2_eth_priv *priv; int err; ch = container_of(napi, struct dpaa2_eth_channel, napi); priv = ch->priv; while (cleaned < budget) { err = pull_channel(ch); if (unlikely(err)) break; /* Refill pool if appropriate */ refill_pool(priv, ch, priv->bpid); store_cleaned = consume_frames(ch); cleaned += store_cleaned; /* If we have enough budget left for a full store, * try a new pull dequeue, otherwise we're done here */ if (store_cleaned == 0 || cleaned > budget - DPAA2_ETH_STORE_SIZE) break; } if (cleaned < budget) { napi_complete_done(napi, cleaned); /* Re-enable data available notifications */ do { err = dpaa2_io_service_rearm(NULL, &ch->nctx); cpu_relax(); } while (err == -EBUSY); } ch->stats.frames += cleaned; return cleaned; } static void enable_ch_napi(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *ch; int i; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; napi_enable(&ch->napi); } } static void disable_ch_napi(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *ch; int i; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; napi_disable(&ch->napi); } } static int link_state_update(struct dpaa2_eth_priv *priv) { struct dpni_link_state state; int err; err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); if (unlikely(err)) { netdev_err(priv->net_dev, "dpni_get_link_state() failed\n"); return err; } /* Chech link state; speed / duplex changes are not treated yet */ if (priv->link_state.up == state.up) return 0; priv->link_state = state; if (state.up) { netif_carrier_on(priv->net_dev); netif_tx_start_all_queues(priv->net_dev); } else { netif_tx_stop_all_queues(priv->net_dev); netif_carrier_off(priv->net_dev); } netdev_info(priv->net_dev, "Link Event: state %s\n", state.up ? "up" : "down"); return 0; } static int dpaa2_eth_open(struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int err; err = seed_pool(priv, priv->bpid); if (err) { /* Not much to do; the buffer pool, though not filled up, * may still contain some buffers which would enable us * to limp on. */ netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", priv->dpbp_dev->obj_desc.id, priv->bpid); } /* We'll only start the txqs when the link is actually ready; make sure * we don't race against the link up notification, which may come * immediately after dpni_enable(); */ netif_tx_stop_all_queues(net_dev); enable_ch_napi(priv); /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will * return true and cause 'ip link show' to report the LOWER_UP flag, * even though the link notification wasn't even received. */ netif_carrier_off(net_dev); err = dpni_enable(priv->mc_io, 0, priv->mc_token); if (err < 0) { netdev_err(net_dev, "dpni_enable() failed\n"); goto enable_err; } /* If the DPMAC object has already processed the link up interrupt, * we have to learn the link state ourselves. */ err = link_state_update(priv); if (err < 0) { netdev_err(net_dev, "Can't update link state\n"); goto link_state_err; } return 0; link_state_err: enable_err: disable_ch_napi(priv); drain_pool(priv); return err; } /* The DPIO store must be empty when we call this, * at the end of every NAPI cycle. */ static u32 drain_channel(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *ch) { u32 drained = 0, total = 0; do { pull_channel(ch); drained = consume_frames(ch); total += drained; } while (drained); return total; } static u32 drain_ingress_frames(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *ch; int i; u32 drained = 0; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; drained += drain_channel(priv, ch); } return drained; } static int dpaa2_eth_stop(struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int dpni_enabled; int retries = 10; u32 drained; netif_tx_stop_all_queues(net_dev); netif_carrier_off(net_dev); /* Loop while dpni_disable() attempts to drain the egress FQs * and confirm them back to us. */ do { dpni_disable(priv->mc_io, 0, priv->mc_token); dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); if (dpni_enabled) /* Allow the hardware some slack */ msleep(100); } while (dpni_enabled && --retries); if (!retries) { netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); /* Must go on and disable NAPI nonetheless, so we don't crash at * the next "ifconfig up" */ } /* Wait for NAPI to complete on every core and disable it. * In particular, this will also prevent NAPI from being rescheduled if * a new CDAN is serviced, effectively discarding the CDAN. We therefore * don't even need to disarm the channels, except perhaps for the case * of a huge coalescing value. */ disable_ch_napi(priv); /* Manually drain the Rx and TxConf queues */ drained = drain_ingress_frames(priv); if (drained) netdev_dbg(net_dev, "Drained %d frames.\n", drained); /* Empty the buffer pool */ drain_pool(priv); return 0; } static int dpaa2_eth_init(struct net_device *net_dev) { u64 supported = 0; u64 not_supported = 0; struct dpaa2_eth_priv *priv = netdev_priv(net_dev); u32 options = priv->dpni_attrs.options; /* Capabilities listing */ supported |= IFF_LIVE_ADDR_CHANGE; if (options & DPNI_OPT_NO_MAC_FILTER) not_supported |= IFF_UNICAST_FLT; else supported |= IFF_UNICAST_FLT; net_dev->priv_flags |= supported; net_dev->priv_flags &= ~not_supported; /* Features */ net_dev->features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_LLTX; net_dev->hw_features = net_dev->features; return 0; } static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct device *dev = net_dev->dev.parent; int err; err = eth_mac_addr(net_dev, addr); if (err < 0) { dev_err(dev, "eth_mac_addr() failed (%d)\n", err); return err; } err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, net_dev->dev_addr); if (err) { dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); return err; } return 0; } /** Fill in counters maintained by the GPP driver. These may be different from * the hardware counters obtained by ethtool. */ static void dpaa2_eth_get_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct rtnl_link_stats64 *percpu_stats; u64 *cpustats; u64 *netstats = (u64 *)stats; int i, j; int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); for_each_possible_cpu(i) { percpu_stats = per_cpu_ptr(priv->percpu_stats, i); cpustats = (u64 *)percpu_stats; for (j = 0; j < num; j++) netstats[j] += cpustats[j]; } } static int dpaa2_eth_change_mtu(struct net_device *net_dev, int mtu) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int err; /* Set the maximum Rx frame length to match the transmit side; * account for L2 headers when computing the MFL */ err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, (u16)DPAA2_ETH_L2_MAX_FRM(mtu)); if (err) { netdev_err(net_dev, "dpni_set_max_frame_length() failed\n"); return err; } net_dev->mtu = mtu; return 0; } /* Copy mac unicast addresses from @net_dev to @priv. * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. */ static void add_uc_hw_addr(const struct net_device *net_dev, struct dpaa2_eth_priv *priv) { struct netdev_hw_addr *ha; int err; netdev_for_each_uc_addr(ha, net_dev) { err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, ha->addr); if (err) netdev_warn(priv->net_dev, "Could not add ucast MAC %pM to the filtering table (err %d)\n", ha->addr, err); } } /* Copy mac multicast addresses from @net_dev to @priv * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. */ static void add_mc_hw_addr(const struct net_device *net_dev, struct dpaa2_eth_priv *priv) { struct netdev_hw_addr *ha; int err; netdev_for_each_mc_addr(ha, net_dev) { err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, ha->addr); if (err) netdev_warn(priv->net_dev, "Could not add mcast MAC %pM to the filtering table (err %d)\n", ha->addr, err); } } static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); int uc_count = netdev_uc_count(net_dev); int mc_count = netdev_mc_count(net_dev); u8 max_mac = priv->dpni_attrs.mac_filter_entries; u32 options = priv->dpni_attrs.options; u16 mc_token = priv->mc_token; struct fsl_mc_io *mc_io = priv->mc_io; int err; /* Basic sanity checks; these probably indicate a misconfiguration */ if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) netdev_info(net_dev, "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", max_mac); /* Force promiscuous if the uc or mc counts exceed our capabilities. */ if (uc_count > max_mac) { netdev_info(net_dev, "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", uc_count, max_mac); goto force_promisc; } if (mc_count + uc_count > max_mac) { netdev_info(net_dev, "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", uc_count + mc_count, max_mac); goto force_mc_promisc; } /* Adjust promisc settings due to flag combinations */ if (net_dev->flags & IFF_PROMISC) goto force_promisc; if (net_dev->flags & IFF_ALLMULTI) { /* First, rebuild unicast filtering table. This should be done * in promisc mode, in order to avoid frame loss while we * progressively add entries to the table. * We don't know whether we had been in promisc already, and * making an MC call to find out is expensive; so set uc promisc * nonetheless. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set uc promisc\n"); /* Actual uc table reconstruction. */ err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); if (err) netdev_warn(net_dev, "Can't clear uc filters\n"); add_uc_hw_addr(net_dev, priv); /* Finally, clear uc promisc and set mc promisc as requested. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); if (err) netdev_warn(net_dev, "Can't clear uc promisc\n"); goto force_mc_promisc; } /* Neither unicast, nor multicast promisc will be on... eventually. * For now, rebuild mac filtering tables while forcing both of them on. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); /* Actual mac filtering tables reconstruction */ err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); if (err) netdev_warn(net_dev, "Can't clear mac filters\n"); add_mc_hw_addr(net_dev, priv); add_uc_hw_addr(net_dev, priv); /* Now we can clear both ucast and mcast promisc, without risking * to drop legitimate frames anymore. */ err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); if (err) netdev_warn(net_dev, "Can't clear ucast promisc\n"); err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); if (err) netdev_warn(net_dev, "Can't clear mcast promisc\n"); return; force_promisc: err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set ucast promisc\n"); force_mc_promisc: err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); if (err) netdev_warn(net_dev, "Can't set mcast promisc\n"); } static int dpaa2_eth_set_features(struct net_device *net_dev, netdev_features_t features) { struct dpaa2_eth_priv *priv = netdev_priv(net_dev); netdev_features_t changed = features ^ net_dev->features; bool enable; int err; if (changed & NETIF_F_RXCSUM) { enable = !!(features & NETIF_F_RXCSUM); err = set_rx_csum(priv, enable); if (err) return err; } if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); err = set_tx_csum(priv, enable); if (err) return err; } return 0; } static const struct net_device_ops dpaa2_eth_ops = { .ndo_open = dpaa2_eth_open, .ndo_start_xmit = dpaa2_eth_tx, .ndo_stop = dpaa2_eth_stop, .ndo_init = dpaa2_eth_init, .ndo_set_mac_address = dpaa2_eth_set_addr, .ndo_get_stats64 = dpaa2_eth_get_stats, .ndo_change_mtu = dpaa2_eth_change_mtu, .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, .ndo_set_features = dpaa2_eth_set_features, }; static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) { struct dpaa2_eth_channel *ch; ch = container_of(ctx, struct dpaa2_eth_channel, nctx); /* Update NAPI statistics */ ch->stats.cdan++; napi_schedule_irqoff(&ch->napi); } /* Allocate and configure a DPCON object */ static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) { struct fsl_mc_device *dpcon; struct device *dev = priv->net_dev->dev.parent; struct dpcon_attr attrs; int err; err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPCON, &dpcon); if (err) { dev_info(dev, "Not enough DPCONs, will go on as-is\n"); return NULL; } err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); if (err) { dev_err(dev, "dpcon_open() failed\n"); goto err_open; } err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); if (err) { dev_err(dev, "dpcon_reset() failed\n"); goto err_reset; } err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); if (err) { dev_err(dev, "dpcon_get_attributes() failed\n"); goto err_get_attr; } err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); if (err) { dev_err(dev, "dpcon_enable() failed\n"); goto err_enable; } return dpcon; err_enable: err_get_attr: err_reset: dpcon_close(priv->mc_io, 0, dpcon->mc_handle); err_open: fsl_mc_object_free(dpcon); return NULL; } static void free_dpcon(struct dpaa2_eth_priv *priv, struct fsl_mc_device *dpcon) { dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); dpcon_close(priv->mc_io, 0, dpcon->mc_handle); fsl_mc_object_free(dpcon); } static struct dpaa2_eth_channel * alloc_channel(struct dpaa2_eth_priv *priv) { struct dpaa2_eth_channel *channel; struct dpcon_attr attr; struct device *dev = priv->net_dev->dev.parent; int err; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; channel->dpcon = setup_dpcon(priv); if (!channel->dpcon) goto err_setup; err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, &attr); if (err) { dev_err(dev, "dpcon_get_attributes() failed\n"); goto err_get_attr; } channel->dpcon_id = attr.id; channel->ch_id = attr.qbman_ch_id; channel->priv = priv; return channel; err_get_attr: free_dpcon(priv, channel->dpcon); err_setup: kfree(channel); return NULL; } static void free_channel(struct dpaa2_eth_priv *priv, struct dpaa2_eth_channel *channel) { free_dpcon(priv, channel->dpcon); kfree(channel); } /* DPIO setup: allocate and configure QBMan channels, setup core affinity * and register data availability notifications */ static int setup_dpio(struct dpaa2_eth_priv *priv) { struct dpaa2_io_notification_ctx *nctx; struct dpaa2_eth_channel *channel; struct dpcon_notification_cfg dpcon_notif_cfg; struct device *dev = priv->net_dev->dev.parent; int i, err; /* We want the ability to spread ingress traffic (RX, TX conf) to as * many cores as possible, so we need one channel for each core * (unless there's fewer queues than cores, in which case the extra * channels would be wasted). * Allocate one channel per core and register it to the core's * affine DPIO. If not enough channels are available for all cores * or if some cores don't have an affine DPIO, there will be no * ingress frame processing on those cores. */ cpumask_clear(&priv->dpio_cpumask); for_each_online_cpu(i) { /* Try to allocate a channel */ channel = alloc_channel(priv); if (!channel) { dev_info(dev, "No affine channel for cpu %d and above\n", i); err = -ENODEV; goto err_alloc_ch; } priv->channel[priv->num_channels] = channel; nctx = &channel->nctx; nctx->is_cdan = 1; nctx->cb = cdan_cb; nctx->id = channel->ch_id; nctx->desired_cpu = i; /* Register the new context */ err = dpaa2_io_service_register(NULL, nctx); if (err) { dev_dbg(dev, "No affine DPIO for cpu %d\n", i); /* If no affine DPIO for this core, there's probably * none available for next cores either. Signal we want * to retry later, in case the DPIO devices weren't * probed yet. */ err = -EPROBE_DEFER; goto err_service_reg; } /* Register DPCON notification with MC */ dpcon_notif_cfg.dpio_id = nctx->dpio_id; dpcon_notif_cfg.priority = 0; dpcon_notif_cfg.user_ctx = nctx->qman64; err = dpcon_set_notification(priv->mc_io, 0, channel->dpcon->mc_handle, &dpcon_notif_cfg); if (err) { dev_err(dev, "dpcon_set_notification failed()\n"); goto err_set_cdan; } /* If we managed to allocate a channel and also found an affine * DPIO for this core, add it to the final mask */ cpumask_set_cpu(i, &priv->dpio_cpumask); priv->num_channels++; /* Stop if we already have enough channels to accommodate all * RX and TX conf queues */ if (priv->num_channels == dpaa2_eth_queue_count(priv)) break; } return 0; err_set_cdan: dpaa2_io_service_deregister(NULL, nctx); err_service_reg: free_channel(priv, channel); err_alloc_ch: if (cpumask_empty(&priv->dpio_cpumask)) { dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); return err; } dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", cpumask_pr_args(&priv->dpio_cpumask)); return 0; } static void free_dpio(struct dpaa2_eth_priv *priv) { int i; struct dpaa2_eth_channel *ch; /* deregister CDAN notifications and free channels */ for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; dpaa2_io_service_deregister(NULL, &ch->nctx); free_channel(priv, ch); } } static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, int cpu) { struct device *dev = priv->net_dev->dev.parent; int i; for (i = 0; i < priv->num_channels; i++) if (priv->channel[i]->nctx.desired_cpu == cpu) return priv->channel[i]; /* We should never get here. Issue a warning and return * the first channel, because it's still better than nothing */ dev_warn(dev, "No affine channel found for cpu %d\n", cpu); return priv->channel[0]; } static void set_fq_affinity(struct dpaa2_eth_priv *priv) { struct device *dev = priv->net_dev->dev.parent; struct dpaa2_eth_fq *fq; int rx_cpu, txc_cpu; int i; /* For each FQ, pick one channel/CPU to deliver frames to. * This may well change at runtime, either through irqbalance or * through direct user intervention. */ rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); for (i = 0; i < priv->num_fqs; i++) { fq = &priv->fq[i]; switch (fq->type) { case DPAA2_RX_FQ: fq->target_cpu = rx_cpu; rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); if (rx_cpu >= nr_cpu_ids) rx_cpu = cpumask_first(&priv->dpio_cpumask); break; case DPAA2_TX_CONF_FQ: fq->target_cpu = txc_cpu; txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); if (txc_cpu >= nr_cpu_ids) txc_cpu = cpumask_first(&priv->dpio_cpumask); break; default: dev_err(dev, "Unknown FQ type: %d\n", fq->type); } fq->channel = get_affine_channel(priv, fq->target_cpu); } } static void setup_fqs(struct dpaa2_eth_priv *priv) { int i; /* We have one TxConf FQ per Tx flow. * The number of Tx and Rx queues is the same. * Tx queues come first in the fq array. */ for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; priv->fq[priv->num_fqs++].flowid = (u16)i; } for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; priv->fq[priv->num_fqs++].flowid = (u16)i; } /* For each FQ, decide on which core to process incoming frames */ set_fq_affinity(priv); } /* Allocate and configure one buffer pool for each interface */ static int setup_dpbp(struct dpaa2_eth_priv *priv) { int err; struct fsl_mc_device *dpbp_dev; struct device *dev = priv->net_dev->dev.parent; struct dpbp_attr dpbp_attrs; err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, &dpbp_dev); if (err) { dev_err(dev, "DPBP device allocation failed\n"); return err; } priv->dpbp_dev = dpbp_dev; err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, &dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_open() failed\n"); goto err_open; } err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_reset() failed\n"); goto err_reset; } err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); if (err) { dev_err(dev, "dpbp_enable() failed\n"); goto err_enable; } err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, &dpbp_attrs); if (err) { dev_err(dev, "dpbp_get_attributes() failed\n"); goto err_get_attr; } priv->bpid = dpbp_attrs.bpid; return 0; err_get_attr: dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); err_enable: err_reset: dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); err_open: fsl_mc_object_free(dpbp_dev); return err; } static void free_dpbp(struct dpaa2_eth_priv *priv) { drain_pool(priv); dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); fsl_mc_object_free(priv->dpbp_dev); } /* Configure the DPNI object this interface is associated with */ static int setup_dpni(struct fsl_mc_device *ls_dev) { struct device *dev = &ls_dev->dev; struct dpaa2_eth_priv *priv; struct net_device *net_dev; struct dpni_buffer_layout buf_layout = {0}; int err; net_dev = dev_get_drvdata(dev); priv = netdev_priv(net_dev); /* get a handle for the DPNI object */ err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); if (err) { dev_err(dev, "dpni_open() failed\n"); goto err_open; } ls_dev->mc_io = priv->mc_io; ls_dev->mc_handle = priv->mc_token; err = dpni_reset(priv->mc_io, 0, priv->mc_token); if (err) { dev_err(dev, "dpni_reset() failed\n"); goto err_reset; } err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, &priv->dpni_attrs); if (err) { dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); goto err_get_attr; } /* Configure buffer layouts */ /* rx buffer */ buf_layout.pass_parser_result = true; buf_layout.pass_frame_status = true; buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; buf_layout.data_align = DPAA2_ETH_RX_BUF_ALIGN; buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | DPNI_BUF_LAYOUT_OPT_DATA_ALIGN; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, &buf_layout); if (err) { dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); goto err_buf_layout; } /* tx buffer */ buf_layout.options = DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, &buf_layout); if (err) { dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); goto err_buf_layout; } /* tx-confirm buffer */ buf_layout.options = DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX_CONFIRM, &buf_layout); if (err) { dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); goto err_buf_layout; } /* Now that we've set our tx buffer layout, retrieve the minimum * required tx data offset. */ err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, &priv->tx_data_offset); if (err) { dev_err(dev, "dpni_get_tx_data_offset() failed\n"); goto err_data_offset; } if ((priv->tx_data_offset % 64) != 0) dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", priv->tx_data_offset); /* Accommodate software annotation space (SWA) */ priv->tx_data_offset += DPAA2_ETH_SWA_SIZE; return 0; err_data_offset: err_buf_layout: err_get_attr: err_reset: dpni_close(priv->mc_io, 0, priv->mc_token); err_open: return err; } static void free_dpni(struct dpaa2_eth_priv *priv) { int err; err = dpni_reset(priv->mc_io, 0, priv->mc_token); if (err) netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", err); dpni_close(priv->mc_io, 0, priv->mc_token); } static int setup_rx_flow(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq) { struct device *dev = priv->net_dev->dev.parent; struct dpni_queue queue; struct dpni_queue_id qid; struct dpni_taildrop td; int err; err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); if (err) { dev_err(dev, "dpni_get_queue(RX) failed\n"); return err; } fq->fqid = qid.fqid; queue.destination.id = fq->channel->dpcon_id; queue.destination.type = DPNI_DEST_DPCON; queue.destination.priority = 1; queue.user_context = (u64)(uintptr_t)fq; err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_RX, 0, fq->flowid, DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, &queue); if (err) { dev_err(dev, "dpni_set_queue(RX) failed\n"); return err; } td.enable = 1; td.threshold = DPAA2_ETH_TAILDROP_THRESH; err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, DPNI_QUEUE_RX, 0, fq->flowid, &td); if (err) { dev_err(dev, "dpni_set_threshold() failed\n"); return err; } return 0; } static int setup_tx_flow(struct dpaa2_eth_priv *priv, struct dpaa2_eth_fq *fq) { struct device *dev = priv->net_dev->dev.parent; struct dpni_queue queue; struct dpni_queue_id qid; int err; err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); if (err) { dev_err(dev, "dpni_get_queue(TX) failed\n"); return err; } fq->tx_qdbin = qid.qdbin; err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, &queue, &qid); if (err) { dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); return err; } fq->fqid = qid.fqid; queue.destination.id = fq->channel->dpcon_id; queue.destination.type = DPNI_DEST_DPCON; queue.destination.priority = 0; queue.user_context = (u64)(uintptr_t)fq; err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, &queue); if (err) { dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); return err; } return 0; } /* Hash key is a 5-tuple: IPsrc, IPdst, IPnextproto, L4src, L4dst */ static const struct dpaa2_eth_hash_fields hash_fields[] = { { /* IP header */ .rxnfc_field = RXH_IP_SRC, .cls_prot = NET_PROT_IP, .cls_field = NH_FLD_IP_SRC, .size = 4, }, { .rxnfc_field = RXH_IP_DST, .cls_prot = NET_PROT_IP, .cls_field = NH_FLD_IP_DST, .size = 4, }, { .rxnfc_field = RXH_L3_PROTO, .cls_prot = NET_PROT_IP, .cls_field = NH_FLD_IP_PROTO, .size = 1, }, { /* Using UDP ports, this is functionally equivalent to raw * byte pairs from L4 header. */ .rxnfc_field = RXH_L4_B_0_1, .cls_prot = NET_PROT_UDP, .cls_field = NH_FLD_UDP_PORT_SRC, .size = 2, }, { .rxnfc_field = RXH_L4_B_2_3, .cls_prot = NET_PROT_UDP, .cls_field = NH_FLD_UDP_PORT_DST, .size = 2, }, }; /* Set RX hash options * flags is a combination of RXH_ bits */ static int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) { struct device *dev = net_dev->dev.parent; struct dpaa2_eth_priv *priv = netdev_priv(net_dev); struct dpkg_profile_cfg cls_cfg; struct dpni_rx_tc_dist_cfg dist_cfg; u8 *dma_mem; int i; int err = 0; if (!dpaa2_eth_hash_enabled(priv)) { dev_dbg(dev, "Hashing support is not enabled\n"); return 0; } memset(&cls_cfg, 0, sizeof(cls_cfg)); for (i = 0; i < ARRAY_SIZE(hash_fields); i++) { struct dpkg_extract *key = &cls_cfg.extracts[cls_cfg.num_extracts]; if (!(flags & hash_fields[i].rxnfc_field)) continue; if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { dev_err(dev, "error adding key extraction rule, too many rules?\n"); return -E2BIG; } key->type = DPKG_EXTRACT_FROM_HDR; key->extract.from_hdr.prot = hash_fields[i].cls_prot; key->extract.from_hdr.type = DPKG_FULL_FIELD; key->extract.from_hdr.field = hash_fields[i].cls_field; cls_cfg.num_extracts++; priv->rx_hash_fields |= hash_fields[i].rxnfc_field; } dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); if (!dma_mem) return -ENOMEM; err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); if (err) { dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); goto err_prep_key; } memset(&dist_cfg, 0, sizeof(dist_cfg)); /* Prepare for setting the rx dist */ dist_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, dist_cfg.key_cfg_iova)) { dev_err(dev, "DMA mapping failed\n"); err = -ENOMEM; goto err_dma_map; } dist_cfg.dist_size = dpaa2_eth_queue_count(priv); dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); dma_unmap_single(dev, dist_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, DMA_TO_DEVICE); if (err) dev_err(dev, "dpni_set_rx_tc_dist() error %d\n", err); err_dma_map: err_prep_key: kfree(dma_mem); return err; } /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, * frame queues and channels */ static int bind_dpni(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; struct dpni_pools_cfg pools_params; struct dpni_error_cfg err_cfg; int err = 0; int i; pools_params.num_dpbp = 1; pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; pools_params.pools[0].backup_pool = 0; pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); if (err) { dev_err(dev, "dpni_set_pools() failed\n"); return err; } /* have the interface implicitly distribute traffic based on supported * header fields */ err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_SUPPORTED); if (err) netdev_err(net_dev, "Failed to configure hashing\n"); /* Configure handling of error frames */ err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; err_cfg.set_frame_annotation = 1; err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, &err_cfg); if (err) { dev_err(dev, "dpni_set_errors_behavior failed\n"); return err; } /* Configure Rx and Tx conf queues to generate CDANs */ for (i = 0; i < priv->num_fqs; i++) { switch (priv->fq[i].type) { case DPAA2_RX_FQ: err = setup_rx_flow(priv, &priv->fq[i]); break; case DPAA2_TX_CONF_FQ: err = setup_tx_flow(priv, &priv->fq[i]); break; default: dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); return -EINVAL; } if (err) return err; } err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, DPNI_QUEUE_TX, &priv->tx_qdid); if (err) { dev_err(dev, "dpni_get_qdid() failed\n"); return err; } return 0; } /* Allocate rings for storing incoming frame descriptors */ static int alloc_rings(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; int i; for (i = 0; i < priv->num_channels; i++) { priv->channel[i]->store = dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); if (!priv->channel[i]->store) { netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); goto err_ring; } } return 0; err_ring: for (i = 0; i < priv->num_channels; i++) { if (!priv->channel[i]->store) break; dpaa2_io_store_destroy(priv->channel[i]->store); } return -ENOMEM; } static void free_rings(struct dpaa2_eth_priv *priv) { int i; for (i = 0; i < priv->num_channels; i++) dpaa2_io_store_destroy(priv->channel[i]->store); } static int set_mac_addr(struct dpaa2_eth_priv *priv) { struct net_device *net_dev = priv->net_dev; struct device *dev = net_dev->dev.parent; u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; int err; /* Get firmware address, if any */ err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); if (err) { dev_err(dev, "dpni_get_port_mac_addr() failed\n"); return err; } /* Get DPNI attributes address, if any */ err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, dpni_mac_addr); if (err) { dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); return err; } /* First check if firmware has any address configured by bootloader */ if (!is_zero_ether_addr(mac_addr)) { /* If the DPMAC addr != DPNI addr, update it */ if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); if (err) { dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); return err; } } memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); } else if (is_zero_ether_addr(dpni_mac_addr)) { /* No MAC address configured, fill in net_dev->dev_addr * with a random one */ eth_hw_addr_random(net_dev); dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, net_dev->dev_addr); if (err) { dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); return err; } /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all * practical purposes, this will be our "permanent" mac address, * at least until the next reboot. This move will also permit * register_netdevice() to properly fill up net_dev->perm_addr. */ net_dev->addr_assign_type = NET_ADDR_PERM; } else { /* NET_ADDR_PERM is default, all we have to do is * fill in the device addr. */ memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); } return 0; } static int netdev_init(struct net_device *net_dev) { struct device *dev = net_dev->dev.parent; struct dpaa2_eth_priv *priv = netdev_priv(net_dev); u8 bcast_addr[ETH_ALEN]; u8 num_queues; int err; net_dev->netdev_ops = &dpaa2_eth_ops; err = set_mac_addr(priv); if (err) return err; /* Explicitly add the broadcast address to the MAC filtering table */ eth_broadcast_addr(bcast_addr); err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); if (err) { dev_err(dev, "dpni_add_mac_addr() failed\n"); return err; } /* Reserve enough space to align buffer as per hardware requirement; * NOTE: priv->tx_data_offset MUST be initialized at this point. */ net_dev->needed_headroom = DPAA2_ETH_NEEDED_HEADROOM(priv); /* Set MTU limits */ net_dev->min_mtu = 68; net_dev->max_mtu = DPAA2_ETH_MAX_MTU; /* Set actual number of queues in the net device */ num_queues = dpaa2_eth_queue_count(priv); err = netif_set_real_num_tx_queues(net_dev, num_queues); if (err) { dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); return err; } err = netif_set_real_num_rx_queues(net_dev, num_queues); if (err) { dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); return err; } /* Our .ndo_init will be called herein */ err = register_netdev(net_dev); if (err < 0) { dev_err(dev, "register_netdev() failed\n"); return err; } return 0; } static int poll_link_state(void *arg) { struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; int err; while (!kthread_should_stop()) { err = link_state_update(priv); if (unlikely(err)) return err; msleep(DPAA2_ETH_LINK_STATE_REFRESH); } return 0; } static irqreturn_t dpni_irq0_handler(int irq_num, void *arg) { return IRQ_WAKE_THREAD; } static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) { u32 status = 0, clear = 0; struct device *dev = (struct device *)arg; struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); struct net_device *net_dev = dev_get_drvdata(dev); int err; err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, DPNI_IRQ_INDEX, &status); if (unlikely(err)) { netdev_err(net_dev, "Can't get irq status (err %d)\n", err); clear = 0xffffffff; goto out; } if (status & DPNI_IRQ_EVENT_LINK_CHANGED) { clear |= DPNI_IRQ_EVENT_LINK_CHANGED; link_state_update(netdev_priv(net_dev)); } out: dpni_clear_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, DPNI_IRQ_INDEX, clear); return IRQ_HANDLED; } static int setup_irqs(struct fsl_mc_device *ls_dev) { int err = 0; struct fsl_mc_device_irq *irq; err = fsl_mc_allocate_irqs(ls_dev); if (err) { dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); return err; } irq = ls_dev->irqs[0]; err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, dpni_irq0_handler, dpni_irq0_handler_thread, IRQF_NO_SUSPEND | IRQF_ONESHOT, dev_name(&ls_dev->dev), &ls_dev->dev); if (err < 0) { dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); goto free_mc_irq; } err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); if (err < 0) { dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); goto free_irq; } err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, DPNI_IRQ_INDEX, 1); if (err < 0) { dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); goto free_irq; } return 0; free_irq: devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); free_mc_irq: fsl_mc_free_irqs(ls_dev); return err; } static void add_ch_napi(struct dpaa2_eth_priv *priv) { int i; struct dpaa2_eth_channel *ch; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, NAPI_POLL_WEIGHT); } } static void del_ch_napi(struct dpaa2_eth_priv *priv) { int i; struct dpaa2_eth_channel *ch; for (i = 0; i < priv->num_channels; i++) { ch = priv->channel[i]; netif_napi_del(&ch->napi); } } static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) { struct device *dev; struct net_device *net_dev = NULL; struct dpaa2_eth_priv *priv = NULL; int err = 0; dev = &dpni_dev->dev; /* Net device */ net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); if (!net_dev) { dev_err(dev, "alloc_etherdev_mq() failed\n"); return -ENOMEM; } SET_NETDEV_DEV(net_dev, dev); dev_set_drvdata(dev, net_dev); priv = netdev_priv(net_dev); priv->net_dev = net_dev; priv->iommu_domain = iommu_get_domain_for_dev(dev); /* Obtain a MC portal */ err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, &priv->mc_io); if (err) { dev_err(dev, "MC portal allocation failed\n"); goto err_portal_alloc; } /* MC objects initialization and configuration */ err = setup_dpni(dpni_dev); if (err) goto err_dpni_setup; err = setup_dpio(priv); if (err) goto err_dpio_setup; setup_fqs(priv); err = setup_dpbp(priv); if (err) goto err_dpbp_setup; err = bind_dpni(priv); if (err) goto err_bind; /* Add a NAPI context for each channel */ add_ch_napi(priv); /* Percpu statistics */ priv->percpu_stats = alloc_percpu(*priv->percpu_stats); if (!priv->percpu_stats) { dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); err = -ENOMEM; goto err_alloc_percpu_stats; } priv->percpu_extras = alloc_percpu(*priv->percpu_extras); if (!priv->percpu_extras) { dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); err = -ENOMEM; goto err_alloc_percpu_extras; } err = netdev_init(net_dev); if (err) goto err_netdev_init; /* Configure checksum offload based on current interface flags */ err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); if (err) goto err_csum; err = set_tx_csum(priv, !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); if (err) goto err_csum; err = alloc_rings(priv); if (err) goto err_alloc_rings; net_dev->ethtool_ops = &dpaa2_ethtool_ops; err = setup_irqs(dpni_dev); if (err) { netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); priv->poll_thread = kthread_run(poll_link_state, priv, "%s_poll_link", net_dev->name); if (IS_ERR(priv->poll_thread)) { netdev_err(net_dev, "Error starting polling thread\n"); goto err_poll_thread; } priv->do_link_poll = true; } dev_info(dev, "Probed interface %s\n", net_dev->name); return 0; err_poll_thread: free_rings(priv); err_alloc_rings: err_csum: unregister_netdev(net_dev); err_netdev_init: free_percpu(priv->percpu_extras); err_alloc_percpu_extras: free_percpu(priv->percpu_stats); err_alloc_percpu_stats: del_ch_napi(priv); err_bind: free_dpbp(priv); err_dpbp_setup: free_dpio(priv); err_dpio_setup: free_dpni(priv); err_dpni_setup: fsl_mc_portal_free(priv->mc_io); err_portal_alloc: dev_set_drvdata(dev, NULL); free_netdev(net_dev); return err; } static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) { struct device *dev; struct net_device *net_dev; struct dpaa2_eth_priv *priv; dev = &ls_dev->dev; net_dev = dev_get_drvdata(dev); priv = netdev_priv(net_dev); unregister_netdev(net_dev); dev_info(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); if (priv->do_link_poll) kthread_stop(priv->poll_thread); else fsl_mc_free_irqs(ls_dev); free_rings(priv); free_percpu(priv->percpu_stats); free_percpu(priv->percpu_extras); del_ch_napi(priv); free_dpbp(priv); free_dpio(priv); free_dpni(priv); fsl_mc_portal_free(priv->mc_io); dev_set_drvdata(dev, NULL); free_netdev(net_dev); return 0; } static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { { .vendor = FSL_MC_VENDOR_FREESCALE, .obj_type = "dpni", }, { .vendor = 0x0 } }; MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); static struct fsl_mc_driver dpaa2_eth_driver = { .driver = { .name = KBUILD_MODNAME, .owner = THIS_MODULE, }, .probe = dpaa2_eth_probe, .remove = dpaa2_eth_remove, .match_id_table = dpaa2_eth_match_id_table }; module_fsl_mc_driver(dpaa2_eth_driver);