#define DRV_NAME "advansys" #define ASC_VERSION "3.4" /* AdvanSys Driver Version */ /* * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters * * Copyright (c) 1995-2000 Advanced System Products, Inc. * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. * Copyright (c) 2007 Matthew Wilcox * All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ /* * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) * changed its name to ConnectCom Solutions, Inc. * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* FIXME: * * 1. Although all of the necessary command mapping places have the * appropriate dma_map.. APIs, the driver still processes its internal * queue using bus_to_virt() and virt_to_bus() which are illegal under * the API. The entire queue processing structure will need to be * altered to fix this. * 2. Need to add memory mapping workaround. Test the memory mapping. * If it doesn't work revert to I/O port access. Can a test be done * safely? * 3. Handle an interrupt not working. Keep an interrupt counter in * the interrupt handler. In the timeout function if the interrupt * has not occurred then print a message and run in polled mode. * 4. Need to add support for target mode commands, cf. CAM XPT. * 5. check DMA mapping functions for failure * 6. Use scsi_transport_spi * 7. advansys_info is not safe against multiple simultaneous callers * 8. Add module_param to override ISA/VLB ioport array */ #warning this driver is still not properly converted to the DMA API /* Enable driver /proc statistics. */ #define ADVANSYS_STATS /* Enable driver tracing. */ #undef ADVANSYS_DEBUG /* * Portable Data Types * * Any instance where a 32-bit long or pointer type is assumed * for precision or HW defined structures, the following define * types must be used. In Linux the char, short, and int types * are all consistent at 8, 16, and 32 bits respectively. Pointers * and long types are 64 bits on Alpha and UltraSPARC. */ #define ASC_PADDR __u32 /* Physical/Bus address data type. */ #define ASC_VADDR __u32 /* Virtual address data type. */ #define ASC_DCNT __u32 /* Unsigned Data count type. */ #define ASC_SDCNT __s32 /* Signed Data count type. */ typedef unsigned char uchar; #ifndef TRUE #define TRUE (1) #endif #ifndef FALSE #define FALSE (0) #endif #define ERR (-1) #define UW_ERR (uint)(0xFFFF) #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) #define PCI_VENDOR_ID_ASP 0x10cd #define PCI_DEVICE_ID_ASP_1200A 0x1100 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 /* * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists. * The SRB structure will have to be changed and the ASC_SRB2SCSIQ() * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the * SRB structure. */ #define CC_VERY_LONG_SG_LIST 0 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr) #define PortAddr unsigned int /* port address size */ #define inp(port) inb(port) #define outp(port, byte) outb((byte), (port)) #define inpw(port) inw(port) #define outpw(port, word) outw((word), (port)) #define ASC_MAX_SG_QUEUE 7 #define ASC_MAX_SG_LIST 255 #define ASC_CS_TYPE unsigned short #define ASC_IS_ISA (0x0001) #define ASC_IS_ISAPNP (0x0081) #define ASC_IS_EISA (0x0002) #define ASC_IS_PCI (0x0004) #define ASC_IS_PCI_ULTRA (0x0104) #define ASC_IS_PCMCIA (0x0008) #define ASC_IS_MCA (0x0020) #define ASC_IS_VL (0x0040) #define ASC_IS_WIDESCSI_16 (0x0100) #define ASC_IS_WIDESCSI_32 (0x0200) #define ASC_IS_BIG_ENDIAN (0x8000) #define ASC_CHIP_MIN_VER_VL (0x01) #define ASC_CHIP_MAX_VER_VL (0x07) #define ASC_CHIP_MIN_VER_PCI (0x09) #define ASC_CHIP_MAX_VER_PCI (0x0F) #define ASC_CHIP_VER_PCI_BIT (0x08) #define ASC_CHIP_MIN_VER_ISA (0x11) #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) #define ASC_CHIP_MAX_VER_ISA (0x27) #define ASC_CHIP_VER_ISA_BIT (0x30) #define ASC_CHIP_VER_ISAPNP_BIT (0x20) #define ASC_CHIP_VER_ASYN_BUG (0x21) #define ASC_CHIP_VER_PCI 0x08 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) #define ASC_CHIP_MIN_VER_EISA (0x41) #define ASC_CHIP_MAX_VER_EISA (0x47) #define ASC_CHIP_VER_EISA_BIT (0x40) #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) #define ASC_SCSI_ID_BITS 3 #define ASC_SCSI_TIX_TYPE uchar #define ASC_ALL_DEVICE_BIT_SET 0xFF #define ASC_SCSI_BIT_ID_TYPE uchar #define ASC_MAX_TID 7 #define ASC_MAX_LUN 7 #define ASC_SCSI_WIDTH_BIT_SET 0xFF #define ASC_MAX_SENSE_LEN 32 #define ASC_MIN_SENSE_LEN 14 #define ASC_SCSI_RESET_HOLD_TIME_US 60 /* * Narrow boards only support 12-byte commands, while wide boards * extend to 16-byte commands. */ #define ASC_MAX_CDB_LEN 12 #define ADV_MAX_CDB_LEN 16 #define MS_SDTR_LEN 0x03 #define MS_WDTR_LEN 0x02 #define ASC_SG_LIST_PER_Q 7 #define QS_FREE 0x00 #define QS_READY 0x01 #define QS_DISC1 0x02 #define QS_DISC2 0x04 #define QS_BUSY 0x08 #define QS_ABORTED 0x40 #define QS_DONE 0x80 #define QC_NO_CALLBACK 0x01 #define QC_SG_SWAP_QUEUE 0x02 #define QC_SG_HEAD 0x04 #define QC_DATA_IN 0x08 #define QC_DATA_OUT 0x10 #define QC_URGENT 0x20 #define QC_MSG_OUT 0x40 #define QC_REQ_SENSE 0x80 #define QCSG_SG_XFER_LIST 0x02 #define QCSG_SG_XFER_MORE 0x04 #define QCSG_SG_XFER_END 0x08 #define QD_IN_PROGRESS 0x00 #define QD_NO_ERROR 0x01 #define QD_ABORTED_BY_HOST 0x02 #define QD_WITH_ERROR 0x04 #define QD_INVALID_REQUEST 0x80 #define QD_INVALID_HOST_NUM 0x81 #define QD_INVALID_DEVICE 0x82 #define QD_ERR_INTERNAL 0xFF #define QHSTA_NO_ERROR 0x00 #define QHSTA_M_SEL_TIMEOUT 0x11 #define QHSTA_M_DATA_OVER_RUN 0x12 #define QHSTA_M_DATA_UNDER_RUN 0x12 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 #define QHSTA_D_HOST_ABORT_FAILED 0x23 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 #define QHSTA_M_WTM_TIMEOUT 0x41 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 #define QHSTA_M_BAD_TAG_CODE 0x46 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 #define QHSTA_D_LRAM_CMP_ERROR 0x81 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 #define ASC_FLAG_SCSIQ_REQ 0x01 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 #define ASC_FLAG_WIN16 0x10 #define ASC_FLAG_WIN32 0x20 #define ASC_FLAG_ISA_OVER_16MB 0x40 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 #define ASC_SCSIQ_CPY_BEG 4 #define ASC_SCSIQ_SGHD_CPY_BEG 2 #define ASC_SCSIQ_B_FWD 0 #define ASC_SCSIQ_B_BWD 1 #define ASC_SCSIQ_B_STATUS 2 #define ASC_SCSIQ_B_QNO 3 #define ASC_SCSIQ_B_CNTL 4 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 #define ASC_SCSIQ_D_DATA_ADDR 8 #define ASC_SCSIQ_D_DATA_CNT 12 #define ASC_SCSIQ_B_SENSE_LEN 20 #define ASC_SCSIQ_DONE_INFO_BEG 22 #define ASC_SCSIQ_D_SRBPTR 22 #define ASC_SCSIQ_B_TARGET_IX 26 #define ASC_SCSIQ_B_CDB_LEN 28 #define ASC_SCSIQ_B_TAG_CODE 29 #define ASC_SCSIQ_W_VM_ID 30 #define ASC_SCSIQ_DONE_STATUS 32 #define ASC_SCSIQ_HOST_STATUS 33 #define ASC_SCSIQ_SCSI_STATUS 34 #define ASC_SCSIQ_CDB_BEG 36 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 #define ASC_SCSIQ_B_SG_WK_QP 49 #define ASC_SCSIQ_B_SG_WK_IX 50 #define ASC_SCSIQ_W_ALT_DC1 52 #define ASC_SCSIQ_B_LIST_CNT 6 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 #define ASC_SGQ_B_SG_CNTL 4 #define ASC_SGQ_B_SG_HEAD_QP 5 #define ASC_SGQ_B_SG_LIST_CNT 6 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 #define ASC_SGQ_LIST_BEG 8 #define ASC_DEF_SCSI1_QNG 4 #define ASC_MAX_SCSI1_QNG 4 #define ASC_DEF_SCSI2_QNG 16 #define ASC_MAX_SCSI2_QNG 32 #define ASC_TAG_CODE_MASK 0x23 #define ASC_STOP_REQ_RISC_STOP 0x01 #define ASC_STOP_ACK_RISC_STOP 0x03 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) typedef struct asc_scsiq_1 { uchar status; uchar q_no; uchar cntl; uchar sg_queue_cnt; uchar target_id; uchar target_lun; ASC_PADDR data_addr; ASC_DCNT data_cnt; ASC_PADDR sense_addr; uchar sense_len; uchar extra_bytes; } ASC_SCSIQ_1; typedef struct asc_scsiq_2 { ASC_VADDR srb_ptr; uchar target_ix; uchar flag; uchar cdb_len; uchar tag_code; ushort vm_id; } ASC_SCSIQ_2; typedef struct asc_scsiq_3 { uchar done_stat; uchar host_stat; uchar scsi_stat; uchar scsi_msg; } ASC_SCSIQ_3; typedef struct asc_scsiq_4 { uchar cdb[ASC_MAX_CDB_LEN]; uchar y_first_sg_list_qp; uchar y_working_sg_qp; uchar y_working_sg_ix; uchar y_res; ushort x_req_count; ushort x_reconnect_rtn; ASC_PADDR x_saved_data_addr; ASC_DCNT x_saved_data_cnt; } ASC_SCSIQ_4; typedef struct asc_q_done_info { ASC_SCSIQ_2 d2; ASC_SCSIQ_3 d3; uchar q_status; uchar q_no; uchar cntl; uchar sense_len; uchar extra_bytes; uchar res; ASC_DCNT remain_bytes; } ASC_QDONE_INFO; typedef struct asc_sg_list { ASC_PADDR addr; ASC_DCNT bytes; } ASC_SG_LIST; typedef struct asc_sg_head { ushort entry_cnt; ushort queue_cnt; ushort entry_to_copy; ushort res; ASC_SG_LIST sg_list[0]; } ASC_SG_HEAD; typedef struct asc_scsi_q { ASC_SCSIQ_1 q1; ASC_SCSIQ_2 q2; uchar *cdbptr; ASC_SG_HEAD *sg_head; ushort remain_sg_entry_cnt; ushort next_sg_index; } ASC_SCSI_Q; typedef struct asc_scsi_req_q { ASC_SCSIQ_1 r1; ASC_SCSIQ_2 r2; uchar *cdbptr; ASC_SG_HEAD *sg_head; uchar *sense_ptr; ASC_SCSIQ_3 r3; uchar cdb[ASC_MAX_CDB_LEN]; uchar sense[ASC_MIN_SENSE_LEN]; } ASC_SCSI_REQ_Q; typedef struct asc_scsi_bios_req_q { ASC_SCSIQ_1 r1; ASC_SCSIQ_2 r2; uchar *cdbptr; ASC_SG_HEAD *sg_head; uchar *sense_ptr; ASC_SCSIQ_3 r3; uchar cdb[ASC_MAX_CDB_LEN]; uchar sense[ASC_MIN_SENSE_LEN]; } ASC_SCSI_BIOS_REQ_Q; typedef struct asc_risc_q { uchar fwd; uchar bwd; ASC_SCSIQ_1 i1; ASC_SCSIQ_2 i2; ASC_SCSIQ_3 i3; ASC_SCSIQ_4 i4; } ASC_RISC_Q; typedef struct asc_sg_list_q { uchar seq_no; uchar q_no; uchar cntl; uchar sg_head_qp; uchar sg_list_cnt; uchar sg_cur_list_cnt; } ASC_SG_LIST_Q; typedef struct asc_risc_sg_list_q { uchar fwd; uchar bwd; ASC_SG_LIST_Q sg; ASC_SG_LIST sg_list[7]; } ASC_RISC_SG_LIST_Q; #define ASCQ_ERR_Q_STATUS 0x0D #define ASCQ_ERR_CUR_QNG 0x17 #define ASCQ_ERR_SG_Q_LINKS 0x18 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C /* * Warning code values are set in ASC_DVC_VAR 'warn_code'. */ #define ASC_WARN_NO_ERROR 0x0000 #define ASC_WARN_IO_PORT_ROTATE 0x0001 #define ASC_WARN_EEPROM_CHKSUM 0x0002 #define ASC_WARN_IRQ_MODIFIED 0x0004 #define ASC_WARN_AUTO_CONFIG 0x0008 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 #define ASC_WARN_EEPROM_RECOVER 0x0020 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 /* * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. */ #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ #define ASC_IERR_SET_PC_ADDR 0x0004 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ #define ASC_IERR_NO_BUS_TYPE 0x0400 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ #define ASC_DEF_MAX_TOTAL_QNG (0xF0) #define ASC_MIN_TAG_Q_PER_DVC (0x04) #define ASC_MIN_FREE_Q (0x02) #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) #define ASC_MAX_TOTAL_QNG 240 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 #define ASC_MAX_INRAM_TAG_QNG 16 #define ASC_IOADR_GAP 0x10 #define ASC_SYN_MAX_OFFSET 0x0F #define ASC_DEF_SDTR_OFFSET 0x0F #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 /* The narrow chip only supports a limited selection of transfer rates. * These are encoded in the range 0..7 or 0..15 depending whether the chip * is Ultra-capable or not. These tables let us convert from one to the other. */ static const unsigned char asc_syn_xfer_period[8] = { 25, 30, 35, 40, 50, 60, 70, 85 }; static const unsigned char asc_syn_ultra_xfer_period[16] = { 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 }; typedef struct ext_msg { uchar msg_type; uchar msg_len; uchar msg_req; union { struct { uchar sdtr_xfer_period; uchar sdtr_req_ack_offset; } sdtr; struct { uchar wdtr_width; } wdtr; struct { uchar mdp_b3; uchar mdp_b2; uchar mdp_b1; uchar mdp_b0; } mdp; } u_ext_msg; uchar res; } EXT_MSG; #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset #define wdtr_width u_ext_msg.wdtr.wdtr_width #define mdp_b3 u_ext_msg.mdp_b3 #define mdp_b2 u_ext_msg.mdp_b2 #define mdp_b1 u_ext_msg.mdp_b1 #define mdp_b0 u_ext_msg.mdp_b0 typedef struct asc_dvc_cfg { ASC_SCSI_BIT_ID_TYPE can_tagged_qng; ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; ASC_SCSI_BIT_ID_TYPE disc_enable; ASC_SCSI_BIT_ID_TYPE sdtr_enable; uchar chip_scsi_id; uchar isa_dma_speed; uchar isa_dma_channel; uchar chip_version; ushort mcode_date; ushort mcode_version; uchar max_tag_qng[ASC_MAX_TID + 1]; uchar sdtr_period_offset[ASC_MAX_TID + 1]; uchar adapter_info[6]; } ASC_DVC_CFG; #define ASC_DEF_DVC_CNTL 0xFFFF #define ASC_DEF_CHIP_SCSI_ID 7 #define ASC_DEF_ISA_DMA_SPEED 4 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 #define ASC_INIT_STATE_END_GET_CFG 0x0002 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 #define ASC_INIT_STATE_END_SET_CFG 0x0008 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 #define ASC_INIT_STATE_END_INQUIRY 0x0080 #define ASC_INIT_RESET_SCSI_DONE 0x0100 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 #define ASC_MIN_TAGGED_CMD 7 #define ASC_MAX_SCSI_RESET_WAIT 30 #define ASC_OVERRUN_BSIZE 64 struct asc_dvc_var; /* Forward Declaration. */ typedef struct asc_dvc_var { PortAddr iop_base; ushort err_code; ushort dvc_cntl; ushort bug_fix_cntl; ushort bus_type; ASC_SCSI_BIT_ID_TYPE init_sdtr; ASC_SCSI_BIT_ID_TYPE sdtr_done; ASC_SCSI_BIT_ID_TYPE use_tagged_qng; ASC_SCSI_BIT_ID_TYPE unit_not_ready; ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; ASC_SCSI_BIT_ID_TYPE start_motor; uchar *overrun_buf; dma_addr_t overrun_dma; uchar scsi_reset_wait; uchar chip_no; char is_in_int; uchar max_total_qng; uchar cur_total_qng; uchar in_critical_cnt; uchar last_q_shortage; ushort init_state; uchar cur_dvc_qng[ASC_MAX_TID + 1]; uchar max_dvc_qng[ASC_MAX_TID + 1]; ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; const uchar *sdtr_period_tbl; ASC_DVC_CFG *cfg; ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; char redo_scam; ushort res2; uchar dos_int13_table[ASC_MAX_TID + 1]; ASC_DCNT max_dma_count; ASC_SCSI_BIT_ID_TYPE no_scam; ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; uchar min_sdtr_index; uchar max_sdtr_index; struct asc_board *drv_ptr; int ptr_map_count; void **ptr_map; ASC_DCNT uc_break; } ASC_DVC_VAR; typedef struct asc_dvc_inq_info { uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; } ASC_DVC_INQ_INFO; typedef struct asc_cap_info { ASC_DCNT lba; ASC_DCNT blk_size; } ASC_CAP_INFO; typedef struct asc_cap_info_array { ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; } ASC_CAP_INFO_ARRAY; #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 #define ASC_CNTL_INITIATOR (ushort)0x0001 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 #define ASC_CNTL_NO_SCAM (ushort)0x0010 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 #define ASC_CNTL_BURST_MODE (ushort)0x2000 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 #define ASC_EEP_DVC_CFG_BEG_VL 2 #define ASC_EEP_MAX_DVC_ADDR_VL 15 #define ASC_EEP_DVC_CFG_BEG 32 #define ASC_EEP_MAX_DVC_ADDR 45 #define ASC_EEP_MAX_RETRY 20 /* * These macros keep the chip SCSI id and ISA DMA speed * bitfields in board order. C bitfields aren't portable * between big and little-endian platforms so they are * not used. */ #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) typedef struct asceep_config { ushort cfg_lsw; ushort cfg_msw; uchar init_sdtr; uchar disc_enable; uchar use_cmd_qng; uchar start_motor; uchar max_total_qng; uchar max_tag_qng; uchar bios_scan; uchar power_up_wait; uchar no_scam; uchar id_speed; /* low order 4 bits is chip scsi id */ /* high order 4 bits is isa dma speed */ uchar dos_int13_table[ASC_MAX_TID + 1]; uchar adapter_info[6]; ushort cntl; ushort chksum; } ASCEEP_CONFIG; #define ASC_EEP_CMD_READ 0x80 #define ASC_EEP_CMD_WRITE 0x40 #define ASC_EEP_CMD_WRITE_ABLE 0x30 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 #define ASCV_MSGOUT_BEG 0x0000 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 #define ASCV_BREAK_ADDR (ushort)0x0028 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A #define ASCV_BREAK_CONTROL (ushort)0x002C #define ASCV_BREAK_HIT_COUNT (ushort)0x002E #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 #define ASCV_MCODE_SIZE_W (ushort)0x0034 #define ASCV_STOP_CODE_B (ushort)0x0036 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C #define ASCV_HALTCODE_W (ushort)0x0040 #define ASCV_CHKSUM_W (ushort)0x0042 #define ASCV_MC_DATE_W (ushort)0x0044 #define ASCV_MC_VER_W (ushort)0x0046 #define ASCV_NEXTRDY_B (ushort)0x0048 #define ASCV_DONENEXT_B (ushort)0x0049 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A #define ASCV_SCSIBUSY_B (ushort)0x004B #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C #define ASCV_CURCDB_B (ushort)0x004D #define ASCV_RCLUN_B (ushort)0x004E #define ASCV_BUSY_QHEAD_B (ushort)0x004F #define ASCV_DISC1_QHEAD_B (ushort)0x0050 #define ASCV_DISC_ENABLE_B (ushort)0x0052 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 #define ASCV_MCODE_CNTL_B (ushort)0x0056 #define ASCV_NULL_TARGET_B (ushort)0x0057 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) #define ASCV_HOST_FLAG_B (ushort)0x005D #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 #define ASCV_VER_SERIAL_B (ushort)0x0065 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 #define ASCV_WTM_FLAG_B (ushort)0x0068 #define ASCV_RISC_FLAG_B (ushort)0x006A #define ASCV_REQ_SG_LIST_QP (ushort)0x006B #define ASC_HOST_FLAG_IN_ISR 0x01 #define ASC_HOST_FLAG_ACK_INT 0x02 #define ASC_RISC_FLAG_GEN_INT 0x01 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 #define IOP_CTRL (0x0F) #define IOP_STATUS (0x0E) #define IOP_INT_ACK IOP_STATUS #define IOP_REG_IFC (0x0D) #define IOP_SYN_OFFSET (0x0B) #define IOP_EXTRA_CONTROL (0x0D) #define IOP_REG_PC (0x0C) #define IOP_RAM_ADDR (0x0A) #define IOP_RAM_DATA (0x08) #define IOP_EEP_DATA (0x06) #define IOP_EEP_CMD (0x07) #define IOP_VERSION (0x03) #define IOP_CONFIG_HIGH (0x04) #define IOP_CONFIG_LOW (0x02) #define IOP_SIG_BYTE (0x01) #define IOP_SIG_WORD (0x00) #define IOP_REG_DC1 (0x0E) #define IOP_REG_DC0 (0x0C) #define IOP_REG_SB (0x0B) #define IOP_REG_DA1 (0x0A) #define IOP_REG_DA0 (0x08) #define IOP_REG_SC (0x09) #define IOP_DMA_SPEED (0x07) #define IOP_REG_FLAG (0x07) #define IOP_FIFO_H (0x06) #define IOP_FIFO_L (0x04) #define IOP_REG_ID (0x05) #define IOP_REG_QP (0x03) #define IOP_REG_IH (0x02) #define IOP_REG_IX (0x01) #define IOP_REG_AX (0x00) #define IFC_REG_LOCK (0x00) #define IFC_REG_UNLOCK (0x09) #define IFC_WR_EN_FILTER (0x10) #define IFC_RD_NO_EEPROM (0x10) #define IFC_SLEW_RATE (0x20) #define IFC_ACT_NEG (0x40) #define IFC_INP_FILTER (0x80) #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) #define SC_SEL (uchar)(0x80) #define SC_BSY (uchar)(0x40) #define SC_ACK (uchar)(0x20) #define SC_REQ (uchar)(0x10) #define SC_ATN (uchar)(0x08) #define SC_IO (uchar)(0x04) #define SC_CD (uchar)(0x02) #define SC_MSG (uchar)(0x01) #define SEC_SCSI_CTL (uchar)(0x80) #define SEC_ACTIVE_NEGATE (uchar)(0x40) #define SEC_SLEW_RATE (uchar)(0x20) #define SEC_ENABLE_FILTER (uchar)(0x10) #define ASC_HALT_EXTMSG_IN (ushort)0x8000 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 #define ASC_MAX_QNO 0xF8 #define ASC_DATA_SEC_BEG (ushort)0x0080 #define ASC_DATA_SEC_END (ushort)0x0080 #define ASC_CODE_SEC_BEG (ushort)0x0080 #define ASC_CODE_SEC_END (ushort)0x0080 #define ASC_QADR_BEG (0x4000) #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) #define ASC_QADR_END (ushort)0x7FFF #define ASC_QLAST_ADR (ushort)0x7FC0 #define ASC_QBLK_SIZE 0x40 #define ASC_BIOS_DATA_QBEG 0xF8 #define ASC_MIN_ACTIVE_QNO 0x01 #define ASC_QLINK_END 0xFF #define ASC_EEPROM_WORDS 0x10 #define ASC_MAX_MGS_LEN 0x10 #define ASC_BIOS_ADDR_DEF 0xDC00 #define ASC_BIOS_SIZE 0x3800 #define ASC_BIOS_RAM_OFF 0x3800 #define ASC_BIOS_RAM_SIZE 0x800 #define ASC_BIOS_MIN_ADDR 0xC000 #define ASC_BIOS_MAX_ADDR 0xEC00 #define ASC_BIOS_BANK_SIZE 0x0400 #define ASC_MCODE_START_ADDR 0x0080 #define ASC_CFG0_HOST_INT_ON 0x0020 #define ASC_CFG0_BIOS_ON 0x0040 #define ASC_CFG0_VERA_BURST_ON 0x0080 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 #define ASC_CFG_MSW_CLR_MASK 0x3080 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 #define CSW_HALTED (ASC_CS_TYPE)0x0010 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 #define CC_CHIP_RESET (uchar)0x80 #define CC_SCSI_RESET (uchar)0x40 #define CC_HALT (uchar)0x20 #define CC_SINGLE_STEP (uchar)0x10 #define CC_DMA_ABLE (uchar)0x08 #define CC_TEST (uchar)0x04 #define CC_BANK_ONE (uchar)0x02 #define CC_DIAG (uchar)0x01 #define ASC_1000_ID0W 0x04C1 #define ASC_1000_ID0W_FIX 0x00C1 #define ASC_1000_ID1B 0x25 #define ASC_EISA_REV_IOP_MASK (0x0C83) #define ASC_EISA_CFG_IOP_MASK (0x0C86) #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) #define INS_HALTINT (ushort)0x6281 #define INS_HALT (ushort)0x6280 #define INS_SINT (ushort)0x6200 #define INS_RFLAG_WTM (ushort)0x7380 #define ASC_MC_SAVE_CODE_WSIZE 0x500 #define ASC_MC_SAVE_DATA_WSIZE 0x40 typedef struct asc_mc_saved { ushort data[ASC_MC_SAVE_DATA_WSIZE]; ushort code[ASC_MC_SAVE_CODE_WSIZE]; } ASC_MC_SAVED; #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) /* * Portable Data Types * * Any instance where a 32-bit long or pointer type is assumed * for precision or HW defined structures, the following define * types must be used. In Linux the char, short, and int types * are all consistent at 8, 16, and 32 bits respectively. Pointers * and long types are 64 bits on Alpha and UltraSPARC. */ #define ADV_PADDR __u32 /* Physical address data type. */ #define ADV_VADDR __u32 /* Virtual address data type. */ #define ADV_DCNT __u32 /* Unsigned Data count type. */ #define ADV_SDCNT __s32 /* Signed Data count type. */ /* * These macros are used to convert a virtual address to a * 32-bit value. This currently can be used on Linux Alpha * which uses 64-bit virtual address but a 32-bit bus address. * This is likely to break in the future, but doing this now * will give us time to change the HW and FW to handle 64-bit * addresses. */ #define ADV_VADDR_TO_U32 virt_to_bus #define ADV_U32_TO_VADDR bus_to_virt #define AdvPortAddr void __iomem * /* Virtual memory address size */ /* * Define Adv Library required memory access macros. */ #define ADV_MEM_READB(addr) readb(addr) #define ADV_MEM_READW(addr) readw(addr) #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) #define ADV_MEM_WRITEW(addr, word) writew(word, addr) #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15) /* * Define total number of simultaneous maximum element scatter-gather * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the * maximum number of outstanding commands per wide host adapter. Each * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather * elements. Allow each command to have at least one ADV_SG_BLOCK structure. * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK * structures or 255 scatter-gather elements. */ #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG /* * Define maximum number of scatter-gather elements per request. */ #define ADV_MAX_SG_LIST 255 #define NO_OF_SG_PER_BLOCK 15 #define ADV_EEP_DVC_CFG_BEGIN (0x00) #define ADV_EEP_DVC_CFG_END (0x15) #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ #define ADV_EEP_MAX_WORD_ADDR (0x1E) #define ADV_EEP_DELAY_MS 100 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ /* * For the ASC3550 Bit 13 is Termination Polarity control bit. * For later ICs Bit 13 controls whether the CIS (Card Information * Service Section) is loaded from EEPROM. */ #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ /* * ASC38C1600 Bit 11 * * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify * INT A in the PCI Configuration Space Int Pin field. If it is 1, then * Function 0 will specify INT B. * * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify * INT B in the PCI Configuration Space Int Pin field. If it is 1, then * Function 1 will specify INT A. */ #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ typedef struct adveep_3550_config { /* Word Offset, Description */ ushort cfg_lsw; /* 00 power up initialization */ /* bit 13 set - Term Polarity Control */ /* bit 14 set - BIOS Enable */ /* bit 15 set - Big Endian Mode */ ushort cfg_msw; /* 01 unused */ ushort disc_enable; /* 02 disconnect enable */ ushort wdtr_able; /* 03 Wide DTR able */ ushort sdtr_able; /* 04 Synchronous DTR able */ ushort start_motor; /* 05 send start up motor */ ushort tagqng_able; /* 06 tag queuing able */ ushort bios_scan; /* 07 BIOS device control */ ushort scam_tolerant; /* 08 no scam */ uchar adapter_scsi_id; /* 09 Host Adapter ID */ uchar bios_boot_delay; /* power up wait */ uchar scsi_reset_delay; /* 10 reset delay */ uchar bios_id_lun; /* first boot device scsi id & lun */ /* high nibble is lun */ /* low nibble is scsi id */ uchar termination; /* 11 0 - automatic */ /* 1 - low off / high off */ /* 2 - low off / high on */ /* 3 - low on / high on */ /* There is no low on / high off */ uchar reserved1; /* reserved byte (not used) */ ushort bios_ctrl; /* 12 BIOS control bits */ /* bit 0 BIOS don't act as initiator. */ /* bit 1 BIOS > 1 GB support */ /* bit 2 BIOS > 2 Disk Support */ /* bit 3 BIOS don't support removables */ /* bit 4 BIOS support bootable CD */ /* bit 5 BIOS scan enabled */ /* bit 6 BIOS support multiple LUNs */ /* bit 7 BIOS display of message */ /* bit 8 SCAM disabled */ /* bit 9 Reset SCSI bus during init. */ /* bit 10 */ /* bit 11 No verbose initialization. */ /* bit 12 SCSI parity enabled */ /* bit 13 */ /* bit 14 */ /* bit 15 */ ushort ultra_able; /* 13 ULTRA speed able */ ushort reserved2; /* 14 reserved */ uchar max_host_qng; /* 15 maximum host queuing */ uchar max_dvc_qng; /* maximum per device queuing */ ushort dvc_cntl; /* 16 control bit for driver */ ushort bug_fix; /* 17 control bit for bug fix */ ushort serial_number_word1; /* 18 Board serial number word 1 */ ushort serial_number_word2; /* 19 Board serial number word 2 */ ushort serial_number_word3; /* 20 Board serial number word 3 */ ushort check_sum; /* 21 EEP check sum */ uchar oem_name[16]; /* 22 OEM name */ ushort dvc_err_code; /* 30 last device driver error code */ ushort adv_err_code; /* 31 last uc and Adv Lib error code */ ushort adv_err_addr; /* 32 last uc error address */ ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ ushort saved_adv_err_addr; /* 35 saved last uc error address */ ushort num_of_err; /* 36 number of error */ } ADVEEP_3550_CONFIG; typedef struct adveep_38C0800_config { /* Word Offset, Description */ ushort cfg_lsw; /* 00 power up initialization */ /* bit 13 set - Load CIS */ /* bit 14 set - BIOS Enable */ /* bit 15 set - Big Endian Mode */ ushort cfg_msw; /* 01 unused */ ushort disc_enable; /* 02 disconnect enable */ ushort wdtr_able; /* 03 Wide DTR able */ ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ ushort start_motor; /* 05 send start up motor */ ushort tagqng_able; /* 06 tag queuing able */ ushort bios_scan; /* 07 BIOS device control */ ushort scam_tolerant; /* 08 no scam */ uchar adapter_scsi_id; /* 09 Host Adapter ID */ uchar bios_boot_delay; /* power up wait */ uchar scsi_reset_delay; /* 10 reset delay */ uchar bios_id_lun; /* first boot device scsi id & lun */ /* high nibble is lun */ /* low nibble is scsi id */ uchar termination_se; /* 11 0 - automatic */ /* 1 - low off / high off */ /* 2 - low off / high on */ /* 3 - low on / high on */ /* There is no low on / high off */ uchar termination_lvd; /* 11 0 - automatic */ /* 1 - low off / high off */ /* 2 - low off / high on */ /* 3 - low on / high on */ /* There is no low on / high off */ ushort bios_ctrl; /* 12 BIOS control bits */ /* bit 0 BIOS don't act as initiator. */ /* bit 1 BIOS > 1 GB support */ /* bit 2 BIOS > 2 Disk Support */ /* bit 3 BIOS don't support removables */ /* bit 4 BIOS support bootable CD */ /* bit 5 BIOS scan enabled */ /* bit 6 BIOS support multiple LUNs */ /* bit 7 BIOS display of message */ /* bit 8 SCAM disabled */ /* bit 9 Reset SCSI bus during init. */ /* bit 10 */ /* bit 11 No verbose initialization. */ /* bit 12 SCSI parity enabled */ /* bit 13 */ /* bit 14 */ /* bit 15 */ ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ uchar max_host_qng; /* 15 maximum host queueing */ uchar max_dvc_qng; /* maximum per device queuing */ ushort dvc_cntl; /* 16 control bit for driver */ ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ ushort serial_number_word1; /* 18 Board serial number word 1 */ ushort serial_number_word2; /* 19 Board serial number word 2 */ ushort serial_number_word3; /* 20 Board serial number word 3 */ ushort check_sum; /* 21 EEP check sum */ uchar oem_name[16]; /* 22 OEM name */ ushort dvc_err_code; /* 30 last device driver error code */ ushort adv_err_code; /* 31 last uc and Adv Lib error code */ ushort adv_err_addr; /* 32 last uc error address */ ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ ushort saved_adv_err_addr; /* 35 saved last uc error address */ ushort reserved36; /* 36 reserved */ ushort reserved37; /* 37 reserved */ ushort reserved38; /* 38 reserved */ ushort reserved39; /* 39 reserved */ ushort reserved40; /* 40 reserved */ ushort reserved41; /* 41 reserved */ ushort reserved42; /* 42 reserved */ ushort reserved43; /* 43 reserved */ ushort reserved44; /* 44 reserved */ ushort reserved45; /* 45 reserved */ ushort reserved46; /* 46 reserved */ ushort reserved47; /* 47 reserved */ ushort reserved48; /* 48 reserved */ ushort reserved49; /* 49 reserved */ ushort reserved50; /* 50 reserved */ ushort reserved51; /* 51 reserved */ ushort reserved52; /* 52 reserved */ ushort reserved53; /* 53 reserved */ ushort reserved54; /* 54 reserved */ ushort reserved55; /* 55 reserved */ ushort cisptr_lsw; /* 56 CIS PTR LSW */ ushort cisprt_msw; /* 57 CIS PTR MSW */ ushort subsysvid; /* 58 SubSystem Vendor ID */ ushort subsysid; /* 59 SubSystem ID */ ushort reserved60; /* 60 reserved */ ushort reserved61; /* 61 reserved */ ushort reserved62; /* 62 reserved */ ushort reserved63; /* 63 reserved */ } ADVEEP_38C0800_CONFIG; typedef struct adveep_38C1600_config { /* Word Offset, Description */ ushort cfg_lsw; /* 00 power up initialization */ /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ /* clear - Func. 0 INTA, Func. 1 INTB */ /* bit 13 set - Load CIS */ /* bit 14 set - BIOS Enable */ /* bit 15 set - Big Endian Mode */ ushort cfg_msw; /* 01 unused */ ushort disc_enable; /* 02 disconnect enable */ ushort wdtr_able; /* 03 Wide DTR able */ ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ ushort start_motor; /* 05 send start up motor */ ushort tagqng_able; /* 06 tag queuing able */ ushort bios_scan; /* 07 BIOS device control */ ushort scam_tolerant; /* 08 no scam */ uchar adapter_scsi_id; /* 09 Host Adapter ID */ uchar bios_boot_delay; /* power up wait */ uchar scsi_reset_delay; /* 10 reset delay */ uchar bios_id_lun; /* first boot device scsi id & lun */ /* high nibble is lun */ /* low nibble is scsi id */ uchar termination_se; /* 11 0 - automatic */ /* 1 - low off / high off */ /* 2 - low off / high on */ /* 3 - low on / high on */ /* There is no low on / high off */ uchar termination_lvd; /* 11 0 - automatic */ /* 1 - low off / high off */ /* 2 - low off / high on */ /* 3 - low on / high on */ /* There is no low on / high off */ ushort bios_ctrl; /* 12 BIOS control bits */ /* bit 0 BIOS don't act as initiator. */ /* bit 1 BIOS > 1 GB support */ /* bit 2 BIOS > 2 Disk Support */ /* bit 3 BIOS don't support removables */ /* bit 4 BIOS support bootable CD */ /* bit 5 BIOS scan enabled */ /* bit 6 BIOS support multiple LUNs */ /* bit 7 BIOS display of message */ /* bit 8 SCAM disabled */ /* bit 9 Reset SCSI bus during init. */ /* bit 10 Basic Integrity Checking disabled */ /* bit 11 No verbose initialization. */ /* bit 12 SCSI parity enabled */ /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ /* bit 14 */ /* bit 15 */ ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ uchar max_host_qng; /* 15 maximum host queueing */ uchar max_dvc_qng; /* maximum per device queuing */ ushort dvc_cntl; /* 16 control bit for driver */ ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ ushort serial_number_word1; /* 18 Board serial number word 1 */ ushort serial_number_word2; /* 19 Board serial number word 2 */ ushort serial_number_word3; /* 20 Board serial number word 3 */ ushort check_sum; /* 21 EEP check sum */ uchar oem_name[16]; /* 22 OEM name */ ushort dvc_err_code; /* 30 last device driver error code */ ushort adv_err_code; /* 31 last uc and Adv Lib error code */ ushort adv_err_addr; /* 32 last uc error address */ ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ ushort saved_adv_err_addr; /* 35 saved last uc error address */ ushort reserved36; /* 36 reserved */ ushort reserved37; /* 37 reserved */ ushort reserved38; /* 38 reserved */ ushort reserved39; /* 39 reserved */ ushort reserved40; /* 40 reserved */ ushort reserved41; /* 41 reserved */ ushort reserved42; /* 42 reserved */ ushort reserved43; /* 43 reserved */ ushort reserved44; /* 44 reserved */ ushort reserved45; /* 45 reserved */ ushort reserved46; /* 46 reserved */ ushort reserved47; /* 47 reserved */ ushort reserved48; /* 48 reserved */ ushort reserved49; /* 49 reserved */ ushort reserved50; /* 50 reserved */ ushort reserved51; /* 51 reserved */ ushort reserved52; /* 52 reserved */ ushort reserved53; /* 53 reserved */ ushort reserved54; /* 54 reserved */ ushort reserved55; /* 55 reserved */ ushort cisptr_lsw; /* 56 CIS PTR LSW */ ushort cisprt_msw; /* 57 CIS PTR MSW */ ushort subsysvid; /* 58 SubSystem Vendor ID */ ushort subsysid; /* 59 SubSystem ID */ ushort reserved60; /* 60 reserved */ ushort reserved61; /* 61 reserved */ ushort reserved62; /* 62 reserved */ ushort reserved63; /* 63 reserved */ } ADVEEP_38C1600_CONFIG; /* * EEPROM Commands */ #define ASC_EEP_CMD_DONE 0x0200 /* bios_ctrl */ #define BIOS_CTRL_BIOS 0x0001 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 #define BIOS_CTRL_GT_2_DISK 0x0004 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 #define BIOS_CTRL_BOOTABLE_CD 0x0010 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 #define BIOS_CTRL_DISPLAY_MSG 0x0080 #define BIOS_CTRL_NO_SCAM 0x0100 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 #define BIOS_CTRL_INIT_VERBOSE 0x0800 #define BIOS_CTRL_SCSI_PARITY 0x1000 #define BIOS_CTRL_AIPP_DIS 0x2000 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ /* * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is * a special 16K Adv Library and Microcode version. After the issue is * resolved, should restore 32K support. * * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * */ #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ /* * Byte I/O register address from base of 'iop_base'. */ #define IOPB_INTR_STATUS_REG 0x00 #define IOPB_CHIP_ID_1 0x01 #define IOPB_INTR_ENABLES 0x02 #define IOPB_CHIP_TYPE_REV 0x03 #define IOPB_RES_ADDR_4 0x04 #define IOPB_RES_ADDR_5 0x05 #define IOPB_RAM_DATA 0x06 #define IOPB_RES_ADDR_7 0x07 #define IOPB_FLAG_REG 0x08 #define IOPB_RES_ADDR_9 0x09 #define IOPB_RISC_CSR 0x0A #define IOPB_RES_ADDR_B 0x0B #define IOPB_RES_ADDR_C 0x0C #define IOPB_RES_ADDR_D 0x0D #define IOPB_SOFT_OVER_WR 0x0E #define IOPB_RES_ADDR_F 0x0F #define IOPB_MEM_CFG 0x10 #define IOPB_RES_ADDR_11 0x11 #define IOPB_GPIO_DATA 0x12 #define IOPB_RES_ADDR_13 0x13 #define IOPB_FLASH_PAGE 0x14 #define IOPB_RES_ADDR_15 0x15 #define IOPB_GPIO_CNTL 0x16 #define IOPB_RES_ADDR_17 0x17 #define IOPB_FLASH_DATA 0x18 #define IOPB_RES_ADDR_19 0x19 #define IOPB_RES_ADDR_1A 0x1A #define IOPB_RES_ADDR_1B 0x1B #define IOPB_RES_ADDR_1C 0x1C #define IOPB_RES_ADDR_1D 0x1D #define IOPB_RES_ADDR_1E 0x1E #define IOPB_RES_ADDR_1F 0x1F #define IOPB_DMA_CFG0 0x20 #define IOPB_DMA_CFG1 0x21 #define IOPB_TICKLE 0x22 #define IOPB_DMA_REG_WR 0x23 #define IOPB_SDMA_STATUS 0x24 #define IOPB_SCSI_BYTE_CNT 0x25 #define IOPB_HOST_BYTE_CNT 0x26 #define IOPB_BYTE_LEFT_TO_XFER 0x27 #define IOPB_BYTE_TO_XFER_0 0x28 #define IOPB_BYTE_TO_XFER_1 0x29 #define IOPB_BYTE_TO_XFER_2 0x2A #define IOPB_BYTE_TO_XFER_3 0x2B #define IOPB_ACC_GRP 0x2C #define IOPB_RES_ADDR_2D 0x2D #define IOPB_DEV_ID 0x2E #define IOPB_RES_ADDR_2F 0x2F #define IOPB_SCSI_DATA 0x30 #define IOPB_RES_ADDR_31 0x31 #define IOPB_RES_ADDR_32 0x32 #define IOPB_SCSI_DATA_HSHK 0x33 #define IOPB_SCSI_CTRL 0x34 #define IOPB_RES_ADDR_35 0x35 #define IOPB_RES_ADDR_36 0x36 #define IOPB_RES_ADDR_37 0x37 #define IOPB_RAM_BIST 0x38 #define IOPB_PLL_TEST 0x39 #define IOPB_PCI_INT_CFG 0x3A #define IOPB_RES_ADDR_3B 0x3B #define IOPB_RFIFO_CNT 0x3C #define IOPB_RES_ADDR_3D 0x3D #define IOPB_RES_ADDR_3E 0x3E #define IOPB_RES_ADDR_3F 0x3F /* * Word I/O register address from base of 'iop_base'. */ #define IOPW_CHIP_ID_0 0x00 /* CID0 */ #define IOPW_CTRL_REG 0x02 /* CC */ #define IOPW_RAM_ADDR 0x04 /* LA */ #define IOPW_RAM_DATA 0x06 /* LD */ #define IOPW_RES_ADDR_08 0x08 #define IOPW_RISC_CSR 0x0A /* CSR */ #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ #define IOPW_RES_ADDR_10 0x10 #define IOPW_SEL_MASK 0x12 /* SM */ #define IOPW_RES_ADDR_14 0x14 #define IOPW_FLASH_ADDR 0x16 /* FA */ #define IOPW_RES_ADDR_18 0x18 #define IOPW_EE_CMD 0x1A /* EC */ #define IOPW_EE_DATA 0x1C /* ED */ #define IOPW_SFIFO_CNT 0x1E /* SFC */ #define IOPW_RES_ADDR_20 0x20 #define IOPW_Q_BASE 0x22 /* QB */ #define IOPW_QP 0x24 /* QP */ #define IOPW_IX 0x26 /* IX */ #define IOPW_SP 0x28 /* SP */ #define IOPW_PC 0x2A /* PC */ #define IOPW_RES_ADDR_2C 0x2C #define IOPW_RES_ADDR_2E 0x2E #define IOPW_SCSI_DATA 0x30 /* SD */ #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ #define IOPW_SCSI_CTRL 0x34 /* SC */ #define IOPW_HSHK_CFG 0x36 /* HCFG */ #define IOPW_SXFR_STATUS 0x36 /* SXS */ #define IOPW_SXFR_CNTL 0x38 /* SXL */ #define IOPW_SXFR_CNTH 0x3A /* SXH */ #define IOPW_RES_ADDR_3C 0x3C #define IOPW_RFIFO_DATA 0x3E /* RFD */ /* * Doubleword I/O register address from base of 'iop_base'. */ #define IOPDW_RES_ADDR_0 0x00 #define IOPDW_RAM_DATA 0x04 #define IOPDW_RES_ADDR_8 0x08 #define IOPDW_RES_ADDR_C 0x0C #define IOPDW_RES_ADDR_10 0x10 #define IOPDW_COMMA 0x14 #define IOPDW_COMMB 0x18 #define IOPDW_RES_ADDR_1C 0x1C #define IOPDW_SDMA_ADDR0 0x20 #define IOPDW_SDMA_ADDR1 0x24 #define IOPDW_SDMA_COUNT 0x28 #define IOPDW_SDMA_ERROR 0x2C #define IOPDW_RDMA_ADDR0 0x30 #define IOPDW_RDMA_ADDR1 0x34 #define IOPDW_RDMA_COUNT 0x38 #define IOPDW_RDMA_ERROR 0x3C #define ADV_CHIP_ID_BYTE 0x25 #define ADV_CHIP_ID_WORD 0x04C1 #define ADV_INTR_ENABLE_HOST_INTR 0x01 #define ADV_INTR_ENABLE_SEL_INTR 0x02 #define ADV_INTR_ENABLE_DPR_INTR 0x04 #define ADV_INTR_ENABLE_RTA_INTR 0x08 #define ADV_INTR_ENABLE_RMA_INTR 0x10 #define ADV_INTR_ENABLE_RST_INTR 0x20 #define ADV_INTR_ENABLE_DPE_INTR 0x40 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 #define ADV_INTR_STATUS_INTRA 0x01 #define ADV_INTR_STATUS_INTRB 0x02 #define ADV_INTR_STATUS_INTRC 0x04 #define ADV_RISC_CSR_STOP (0x0000) #define ADV_RISC_TEST_COND (0x2000) #define ADV_RISC_CSR_RUN (0x4000) #define ADV_RISC_CSR_SINGLE_STEP (0x8000) #define ADV_CTRL_REG_HOST_INTR 0x0100 #define ADV_CTRL_REG_SEL_INTR 0x0200 #define ADV_CTRL_REG_DPR_INTR 0x0400 #define ADV_CTRL_REG_RTA_INTR 0x0800 #define ADV_CTRL_REG_RMA_INTR 0x1000 #define ADV_CTRL_REG_RES_BIT14 0x2000 #define ADV_CTRL_REG_DPE_INTR 0x4000 #define ADV_CTRL_REG_POWER_DONE 0x8000 #define ADV_CTRL_REG_ANY_INTR 0xFF00 #define ADV_CTRL_REG_CMD_RESET 0x00C6 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 #define ADV_TICKLE_NOP 0x00 #define ADV_TICKLE_A 0x01 #define ADV_TICKLE_B 0x02 #define ADV_TICKLE_C 0x03 #define AdvIsIntPending(port) \ (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) /* * SCSI_CFG0 Register bit definitions */ #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ #define EVEN_PARITY 0x1000 /* Select Even Parity */ #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ #define SCAM_EN 0x0080 /* Enable SCAM selection */ #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ #define OUR_ID 0x000F /* SCSI ID */ /* * SCSI_CFG1 Register bit definitions */ #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ #define FILTER_SEL 0x0C00 /* Filter Period Selection */ #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ /* * Addendum for ASC-38C0800 Chip * * The ASC-38C1600 Chip uses the same definitions except that the * bus mode override bits [12:10] have been moved to byte register * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. * Also each ASC-38C1600 function or channel uses only cable bits [5:4] * and [1:0]. Bits [14], [7:6], [3:2] are unused. */ #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ #define HVD 0x1000 /* HVD Device Detect */ #define LVD 0x0800 /* LVD Device Detect */ #define SE 0x0400 /* SE Device Detect */ #define TERM_LVD 0x00C0 /* LVD Termination Bits */ #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ #define TERM_SE 0x0030 /* SE Termination Bits */ #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ #define CABLE_ILLEGAL_A 0x7 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ #define CABLE_ILLEGAL_B 0xB /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ /* * MEM_CFG Register bit definitions */ #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ #define RAM_SZ_2KB 0x00 /* 2 KB */ #define RAM_SZ_4KB 0x04 /* 4 KB */ #define RAM_SZ_8KB 0x08 /* 8 KB */ #define RAM_SZ_16KB 0x0C /* 16 KB */ #define RAM_SZ_32KB 0x10 /* 32 KB */ #define RAM_SZ_64KB 0x14 /* 64 KB */ /* * DMA_CFG0 Register bit definitions * * This register is only accessible to the host. */ #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ #define FIFO_THRESH_16B 0x00 /* 16 bytes */ #define FIFO_THRESH_32B 0x20 /* 32 bytes */ #define FIFO_THRESH_48B 0x30 /* 48 bytes */ #define FIFO_THRESH_64B 0x40 /* 64 bytes */ #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ #define FIFO_THRESH_96B 0x60 /* 96 bytes */ #define FIFO_THRESH_112B 0x70 /* 112 bytes */ #define START_CTL 0x0C /* DMA start conditions */ #define START_CTL_TH 0x00 /* Wait threshold level (default) */ #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ #define READ_CMD 0x03 /* Memory Read Method */ #define READ_CMD_MR 0x00 /* Memory Read */ #define READ_CMD_MRL 0x02 /* Memory Read Long */ #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ /* * ASC-38C0800 RAM BIST Register bit definitions */ #define RAM_TEST_MODE 0x80 #define PRE_TEST_MODE 0x40 #define NORMAL_MODE 0x00 #define RAM_TEST_DONE 0x10 #define RAM_TEST_STATUS 0x0F #define RAM_TEST_HOST_ERROR 0x08 #define RAM_TEST_INTRAM_ERROR 0x04 #define RAM_TEST_RISC_ERROR 0x02 #define RAM_TEST_SCSI_ERROR 0x01 #define RAM_TEST_SUCCESS 0x00 #define PRE_TEST_VALUE 0x05 #define NORMAL_VALUE 0x00 /* * ASC38C1600 Definitions * * IOPB_PCI_INT_CFG Bit Field Definitions */ #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ /* * Bit 1 can be set to change the interrupt for the Function to operate in * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in * Open Drain mode. Both functions of the ASC38C1600 must be set to the same * mode, otherwise the operating mode is undefined. */ #define TOTEMPOLE 0x02 /* * Bit 0 can be used to change the Int Pin for the Function. The value is * 0 by default for both Functions with Function 0 using INT A and Function * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, * INT A is used. * * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin * value specified in the PCI Configuration Space. */ #define INTAB 0x01 /* * Adv Library Status Definitions */ #define ADV_TRUE 1 #define ADV_FALSE 0 #define ADV_SUCCESS 1 #define ADV_BUSY 0 #define ADV_ERROR (-1) /* * ADV_DVC_VAR 'warn_code' values */ #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ #define ADV_MAX_TID 15 /* max. target identifier */ #define ADV_MAX_LUN 7 /* max. logical unit number */ /* * Fixed locations of microcode operating variables. */ #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ #define ASC_MC_CHIP_TYPE 0x009A #define ASC_MC_INTRB_CODE 0x009B #define ASC_MC_WDTR_ABLE 0x009C #define ASC_MC_SDTR_ABLE 0x009E #define ASC_MC_TAGQNG_ABLE 0x00A0 #define ASC_MC_DISC_ENABLE 0x00A2 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 #define ASC_MC_IDLE_CMD 0x00A6 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 #define ASC_MC_SDTR_DONE 0x00B6 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ #define ASC_MC_WDTR_DONE 0x0124 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ #define ASC_MC_ICQ 0x0160 #define ASC_MC_IRQ 0x0164 #define ASC_MC_PPR_ABLE 0x017A /* * BIOS LRAM variable absolute offsets. */ #define BIOS_CODESEG 0x54 #define BIOS_CODELEN 0x56 #define BIOS_SIGNATURE 0x58 #define BIOS_VERSION 0x5A /* * Microcode Control Flags * * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) * and handled by the microcode. */ #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ /* * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format */ #define HSHK_CFG_WIDE_XFR 0x8000 #define HSHK_CFG_RATE 0x0F00 #define HSHK_CFG_OFFSET 0x001F #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ /* * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. */ #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ /* * All fields here are accessed by the board microcode and need to be * little-endian. */ typedef struct adv_carr_t { ADV_VADDR carr_va; /* Carrier Virtual Address */ ADV_PADDR carr_pa; /* Carrier Physical Address */ ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */ /* * next_vpa [31:4] Carrier Virtual or Physical Next Pointer * * next_vpa [3:1] Reserved Bits * next_vpa [0] Done Flag set in Response Queue. */ ADV_VADDR next_vpa; } ADV_CARR_T; /* * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. */ #define ASC_NEXT_VPA_MASK 0xFFFFFFF0 #define ASC_RQ_DONE 0x00000001 #define ASC_RQ_GOOD 0x00000002 #define ASC_CQ_STOPPER 0x00000000 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK) #define ADV_CARRIER_NUM_PAGE_CROSSING \ (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE) #define ADV_CARRIER_BUFSIZE \ ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T)) /* * ASC_SCSI_REQ_Q 'a_flag' definitions * * The Adv Library should limit use to the lower nibble (4 bits) of * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag. */ #define ADV_POLL_REQUEST 0x01 /* poll for request completion */ #define ADV_SCSIQ_DONE 0x02 /* request done */ #define ADV_DONT_RETRY 0x08 /* don't do retry */ #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ /* * Adapter temporary configuration structure * * This structure can be discarded after initialization. Don't add * fields here needed after initialization. * * Field naming convention: * * *_enable indicates the field enables or disables a feature. The * value of the field is never reset. */ typedef struct adv_dvc_cfg { ushort disc_enable; /* enable disconnection */ uchar chip_version; /* chip version */ uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ ushort control_flag; /* Microcode Control Flag */ ushort mcode_date; /* Microcode date */ ushort mcode_version; /* Microcode version */ ushort serial1; /* EEPROM serial number word 1 */ ushort serial2; /* EEPROM serial number word 2 */ ushort serial3; /* EEPROM serial number word 3 */ } ADV_DVC_CFG; struct adv_dvc_var; struct adv_scsi_req_q; typedef struct asc_sg_block { uchar reserved1; uchar reserved2; uchar reserved3; uchar sg_cnt; /* Valid entries in block. */ ADV_PADDR sg_ptr; /* Pointer to next sg block. */ struct { ADV_PADDR sg_addr; /* SG element address. */ ADV_DCNT sg_count; /* SG element count. */ } sg_list[NO_OF_SG_PER_BLOCK]; } ADV_SG_BLOCK; /* * ADV_SCSI_REQ_Q - microcode request structure * * All fields in this structure up to byte 60 are used by the microcode. * The microcode makes assumptions about the size and ordering of fields * in this structure. Do not change the structure definition here without * coordinating the change with the microcode. * * All fields accessed by microcode must be maintained in little_endian * order. */ typedef struct adv_scsi_req_q { uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ uchar target_cmd; uchar target_id; /* Device target identifier. */ uchar target_lun; /* Device target logical unit number. */ ADV_PADDR data_addr; /* Data buffer physical address. */ ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */ ADV_PADDR sense_addr; ADV_PADDR carr_pa; uchar mflag; uchar sense_len; uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ uchar scsi_cntl; uchar done_status; /* Completion status. */ uchar scsi_status; /* SCSI status byte. */ uchar host_status; /* Ucode host status. */ uchar sg_working_ix; uchar cdb[12]; /* SCSI CDB bytes 0-11. */ ADV_PADDR sg_real_addr; /* SG list physical address. */ ADV_PADDR scsiq_rptr; uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ ADV_VADDR scsiq_ptr; ADV_VADDR carr_va; /* * End of microcode structure - 60 bytes. The rest of the structure * is used by the Adv Library and ignored by the microcode. */ ADV_VADDR srb_ptr; ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ char *vdata_addr; /* Data buffer virtual address. */ uchar a_flag; uchar pad[2]; /* Pad out to a word boundary. */ } ADV_SCSI_REQ_Q; /* * The following two structures are used to process Wide Board requests. * * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the * Mid-Level SCSI request structure. * * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux * up to 255 scatter-gather elements may be used per request or * ADV_SCSI_REQ_Q. * * Both structures must be 32 byte aligned. */ typedef struct adv_sgblk { ADV_SG_BLOCK sg_block; /* Sgblock structure. */ uchar align[32]; /* Sgblock structure padding. */ struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ } adv_sgblk_t; typedef struct adv_req { ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ uchar align[32]; /* Request structure padding. */ struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ struct adv_req *next_reqp; /* Next Request Structure. */ } adv_req_t; /* * Adapter operation variable structure. * * One structure is required per host adapter. * * Field naming convention: * * *_able indicates both whether a feature should be enabled or disabled * and whether a device isi capable of the feature. At initialization * this field may be set, but later if a device is found to be incapable * of the feature, the field is cleared. */ typedef struct adv_dvc_var { AdvPortAddr iop_base; /* I/O port address */ ushort err_code; /* fatal error code */ ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ ushort wdtr_able; /* try WDTR for a device */ ushort sdtr_able; /* try SDTR for a device */ ushort ultra_able; /* try SDTR Ultra speed for a device */ ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ ushort tagqng_able; /* try tagged queuing with a device */ ushort ppr_able; /* PPR message capable per TID bitmask. */ uchar max_dvc_qng; /* maximum number of tagged commands per device */ ushort start_motor; /* start motor command allowed */ uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ uchar chip_no; /* should be assigned by caller */ uchar max_host_qng; /* maximum number of Q'ed command allowed */ ushort no_scam; /* scam_tolerant of EEPROM */ struct asc_board *drv_ptr; /* driver pointer to private structure */ uchar chip_scsi_id; /* chip SCSI target ID */ uchar chip_type; uchar bist_err_code; ADV_CARR_T *carrier_buf; ADV_CARR_T *carr_freelist; /* Carrier free list. */ ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ ushort carr_pending_cnt; /* Count of pending carriers. */ struct adv_req *orig_reqp; /* adv_req_t memory block. */ /* * Note: The following fields will not be used after initialization. The * driver may discard the buffer after initialization is done. */ ADV_DVC_CFG *cfg; /* temporary configuration structure */ } ADV_DVC_VAR; /* * Microcode idle loop commands */ #define IDLE_CMD_COMPLETED 0 #define IDLE_CMD_STOP_CHIP 0x0001 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 #define IDLE_CMD_SEND_INT 0x0004 #define IDLE_CMD_ABORT 0x0008 #define IDLE_CMD_DEVICE_RESET 0x0010 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ #define IDLE_CMD_SCSIREQ 0x0080 #define IDLE_CMD_STATUS_SUCCESS 0x0001 #define IDLE_CMD_STATUS_FAILURE 0x0002 /* * AdvSendIdleCmd() flag definitions. */ #define ADV_NOWAIT 0x01 /* * Wait loop time out values. */ #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ #define SCSI_MAX_RETRY 10 /* retry count */ #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ /* Read byte from a register. */ #define AdvReadByteRegister(iop_base, reg_off) \ (ADV_MEM_READB((iop_base) + (reg_off))) /* Write byte to a register. */ #define AdvWriteByteRegister(iop_base, reg_off, byte) \ (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) /* Read word (2 bytes) from a register. */ #define AdvReadWordRegister(iop_base, reg_off) \ (ADV_MEM_READW((iop_base) + (reg_off))) /* Write word (2 bytes) to a register. */ #define AdvWriteWordRegister(iop_base, reg_off, word) \ (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) /* Write dword (4 bytes) to a register. */ #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) /* Read byte from LRAM. */ #define AdvReadByteLram(iop_base, addr, byte) \ do { \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ } while (0) /* Write byte to LRAM. */ #define AdvWriteByteLram(iop_base, addr, byte) \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) /* Read word (2 bytes) from LRAM. */ #define AdvReadWordLram(iop_base, addr, word) \ do { \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ } while (0) /* Write word (2 bytes) to LRAM. */ #define AdvWriteWordLram(iop_base, addr, word) \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) /* Write little-endian double word (4 bytes) to LRAM */ /* Because of unspecified C language ordering don't use auto-increment. */ #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) /* Read word (2 bytes) from LRAM assuming that the address is already set. */ #define AdvReadWordAutoIncLram(iop_base) \ (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) /* Write word (2 bytes) to LRAM assuming that the address is already set. */ #define AdvWriteWordAutoIncLram(iop_base, word) \ (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) /* * Define macro to check for Condor signature. * * Evaluate to ADV_TRUE if a Condor chip is found the specified port * address 'iop_base'. Otherwise evalue to ADV_FALSE. */ #define AdvFindSignature(iop_base) \ (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ ADV_CHIP_ID_BYTE) && \ (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) /* * Define macro to Return the version number of the chip at 'iop_base'. * * The second parameter 'bus_type' is currently unused. */ #define AdvGetChipVersion(iop_base, bus_type) \ AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) /* * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must * match the ASC_SCSI_REQ_Q 'srb_ptr' field. * * If the request has not yet been sent to the device it will simply be * aborted from RISC memory. If the request is disconnected it will be * aborted on reselection by sending an Abort Message to the target ID. * * Return value: * ADV_TRUE(1) - Queue was successfully aborted. * ADV_FALSE(0) - Queue was not found on the active queue list. */ #define AdvAbortQueue(asc_dvc, scsiq) \ AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ (ADV_DCNT) (scsiq)) /* * Send a Bus Device Reset Message to the specified target ID. * * All outstanding commands will be purged if sending the * Bus Device Reset Message is successful. * * Return Value: * ADV_TRUE(1) - All requests on the target are purged. * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests * are not purged. */ #define AdvResetDevice(asc_dvc, target_id) \ AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ (ADV_DCNT) (target_id)) /* * SCSI Wide Type definition. */ #define ADV_SCSI_BIT_ID_TYPE ushort /* * AdvInitScsiTarget() 'cntl_flag' options. */ #define ADV_SCAN_LUN 0x01 #define ADV_CAPINFO_NOLUN 0x02 /* * Convert target id to target id bit mask. */ #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) /* * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values. */ #define QD_NO_STATUS 0x00 /* Request not completed yet. */ #define QD_NO_ERROR 0x01 #define QD_ABORTED_BY_HOST 0x02 #define QD_WITH_ERROR 0x04 #define QHSTA_NO_ERROR 0x00 #define QHSTA_M_SEL_TIMEOUT 0x11 #define QHSTA_M_DATA_OVER_RUN 0x12 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 #define QHSTA_M_QUEUE_ABORTED 0x15 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ #define QHSTA_M_WTM_TIMEOUT 0x41 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ /* Return the address that is aligned at the next doubleword >= to 'addr'. */ #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7) #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF) #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) /* * Total contiguous memory needed for driver SG blocks. * * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum * number of scatter-gather elements the driver supports in a * single request. */ #define ADV_SG_LIST_MAX_BYTE_SIZE \ (sizeof(ADV_SG_BLOCK) * \ ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) /* struct asc_board flags */ #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ #define ASC_INFO_SIZE 128 /* advansys_info() line size */ /* Asc Library return codes */ #define ASC_TRUE 1 #define ASC_FALSE 0 #define ASC_NOERROR 1 #define ASC_BUSY 0 #define ASC_ERROR (-1) /* struct scsi_cmnd function return codes */ #define STATUS_BYTE(byte) (byte) #define MSG_BYTE(byte) ((byte) << 8) #define HOST_BYTE(byte) ((byte) << 16) #define DRIVER_BYTE(byte) ((byte) << 24) #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) #ifndef ADVANSYS_STATS #define ASC_STATS_ADD(shost, counter, count) #else /* ADVANSYS_STATS */ #define ASC_STATS_ADD(shost, counter, count) \ (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) #endif /* ADVANSYS_STATS */ /* If the result wraps when calculating tenths, return 0. */ #define ASC_TENTHS(num, den) \ (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) /* * Display a message to the console. */ #define ASC_PRINT(s) \ { \ printk("advansys: "); \ printk(s); \ } #define ASC_PRINT1(s, a1) \ { \ printk("advansys: "); \ printk((s), (a1)); \ } #define ASC_PRINT2(s, a1, a2) \ { \ printk("advansys: "); \ printk((s), (a1), (a2)); \ } #define ASC_PRINT3(s, a1, a2, a3) \ { \ printk("advansys: "); \ printk((s), (a1), (a2), (a3)); \ } #define ASC_PRINT4(s, a1, a2, a3, a4) \ { \ printk("advansys: "); \ printk((s), (a1), (a2), (a3), (a4)); \ } #ifndef ADVANSYS_DEBUG #define ASC_DBG(lvl, s...) #define ASC_DBG_PRT_SCSI_HOST(lvl, s) #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) #define ASC_DBG_PRT_HEX(lvl, name, start, length) #define ASC_DBG_PRT_CDB(lvl, cdb, len) #define ASC_DBG_PRT_SENSE(lvl, sense, len) #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) #else /* ADVANSYS_DEBUG */ /* * Debugging Message Levels: * 0: Errors Only * 1: High-Level Tracing * 2-N: Verbose Tracing */ #define ASC_DBG(lvl, format, arg...) { \ if (asc_dbglvl >= (lvl)) \ printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ __func__ , ## arg); \ } #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_scsi_host(s); \ } \ } #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_asc_scsi_q(scsiqp); \ } \ } #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_asc_qdone_info(qdone); \ } \ } #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_adv_scsi_req_q(scsiqp); \ } \ } #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ { \ if (asc_dbglvl >= (lvl)) { \ asc_prt_hex((name), (start), (length)); \ } \ } #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); #endif /* ADVANSYS_DEBUG */ #ifdef ADVANSYS_STATS /* Per board statistics structure */ struct asc_stats { /* Driver Entrypoint Statistics */ ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */ ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */ ADV_DCNT biosparam; /* # calls to advansys_biosparam() */ ADV_DCNT interrupt; /* # advansys_interrupt() calls */ ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */ ADV_DCNT done; /* # calls to request's scsi_done function */ ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */ ADV_DCNT exe_busy; /* # ASC_BUSY returns. */ ADV_DCNT exe_error; /* # ASC_ERROR returns. */ ADV_DCNT exe_unknown; /* # unknown returns. */ /* Data Transfer Statistics */ ADV_DCNT xfer_cnt; /* # I/O requests received */ ADV_DCNT xfer_elem; /* # scatter-gather elements */ ADV_DCNT xfer_sect; /* # 512-byte blocks */ }; #endif /* ADVANSYS_STATS */ /* * Structure allocated for each board. * * This structure is allocated by scsi_host_alloc() at the end * of the 'Scsi_Host' structure starting at the 'hostdata' * field. It is guaranteed to be allocated from DMA-able memory. */ struct asc_board { struct device *dev; uint flags; /* Board flags */ unsigned int irq; union { ASC_DVC_VAR asc_dvc_var; /* Narrow board */ ADV_DVC_VAR adv_dvc_var; /* Wide board */ } dvc_var; union { ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ } dvc_cfg; ushort asc_n_io_port; /* Number I/O ports. */ ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ union { ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ } eep_config; ulong last_reset; /* Saved last reset time */ /* /proc/scsi/advansys/[0...] */ #ifdef ADVANSYS_STATS struct asc_stats asc_stats; /* Board statistics */ #endif /* ADVANSYS_STATS */ /* * The following fields are used only for Narrow Boards. */ uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ /* * The following fields are used only for Wide Boards. */ void __iomem *ioremap_addr; /* I/O Memory remap address. */ ushort ioport; /* I/O Port address. */ adv_req_t *adv_reqp; /* Request structures. */ adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */ ushort bios_signature; /* BIOS Signature. */ ushort bios_version; /* BIOS Version. */ ushort bios_codeseg; /* BIOS Code Segment. */ ushort bios_codelen; /* BIOS Code Segment Length. */ }; #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ dvc_var.asc_dvc_var) #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ dvc_var.adv_dvc_var) #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) #ifdef ADVANSYS_DEBUG static int asc_dbglvl = 3; /* * asc_prt_asc_dvc_var() */ static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) { printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, (unsigned)h->init_sdtr); printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " "chip_no 0x%x,\n", (unsigned)h->sdtr_done, (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, (unsigned)h->chip_no); printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " "%u,\n", (unsigned)h->queue_full_or_busy, (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " "in_critical_cnt %u,\n", (unsigned)h->is_in_int, (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, (unsigned)h->in_critical_cnt); printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, (unsigned)h->init_state, (unsigned)h->no_scam, (unsigned)h->pci_fix_asyn_xfer); printk(" cfg 0x%lx\n", (ulong)h->cfg); } /* * asc_prt_asc_dvc_cfg() */ static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) { printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", h->can_tagged_qng, h->cmd_qng_enabled); printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", h->disc_enable, h->sdtr_enable); printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, h->isa_dma_channel, h->chip_version); printk(" mcode_date 0x%x, mcode_version %d\n", h->mcode_date, h->mcode_version); } /* * asc_prt_adv_dvc_var() * * Display an ADV_DVC_VAR structure. */ static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) { printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n", (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, (ulong)h->carr_freelist); printk(" icq_sp 0x%lx, irq_sp 0x%lx\n", (ulong)h->icq_sp, (ulong)h->irq_sp); printk(" no_scam 0x%x, tagqng_able 0x%x\n", (unsigned)h->no_scam, (unsigned)h->tagqng_able); printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", (unsigned)h->chip_scsi_id, (ulong)h->cfg); } /* * asc_prt_adv_dvc_cfg() * * Display an ADV_DVC_CFG structure. */ static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) { printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); printk(" disc_enable 0x%x, termination 0x%x\n", h->disc_enable, h->termination); printk(" chip_version 0x%x, mcode_date 0x%x\n", h->chip_version, h->mcode_date); printk(" mcode_version 0x%x, control_flag 0x%x\n", h->mcode_version, h->control_flag); } /* * asc_prt_scsi_host() */ static void asc_prt_scsi_host(struct Scsi_Host *s) { struct asc_board *boardp = shost_priv(s); printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); printk(" host_busy %u, host_no %d,\n", s->host_busy, s->host_no); printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", (ulong)s->base, (ulong)s->io_port, boardp->irq); printk(" dma_channel %d, this_id %d, can_queue %d,\n", s->dma_channel, s->this_id, s->can_queue); printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); if (ASC_NARROW_BOARD(boardp)) { asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); } else { asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); } } /* * asc_prt_hex() * * Print hexadecimal output in 4 byte groupings 32 bytes * or 8 double-words per line. */ static void asc_prt_hex(char *f, uchar *s, int l) { int i; int j; int k; int m; printk("%s: (%d bytes)\n", f, l); for (i = 0; i < l; i += 32) { /* Display a maximum of 8 double-words per line. */ if ((k = (l - i) / 4) >= 8) { k = 8; m = 0; } else { m = (l - i) % 4; } for (j = 0; j < k; j++) { printk(" %2.2X%2.2X%2.2X%2.2X", (unsigned)s[i + (j * 4)], (unsigned)s[i + (j * 4) + 1], (unsigned)s[i + (j * 4) + 2], (unsigned)s[i + (j * 4) + 3]); } switch (m) { case 0: default: break; case 1: printk(" %2.2X", (unsigned)s[i + (j * 4)]); break; case 2: printk(" %2.2X%2.2X", (unsigned)s[i + (j * 4)], (unsigned)s[i + (j * 4) + 1]); break; case 3: printk(" %2.2X%2.2X%2.2X", (unsigned)s[i + (j * 4) + 1], (unsigned)s[i + (j * 4) + 2], (unsigned)s[i + (j * 4) + 3]); break; } printk("\n"); } } /* * asc_prt_asc_scsi_q() */ static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) { ASC_SG_HEAD *sgp; int i; printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); printk (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n", q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr, q->q2.tag_code); printk (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", (ulong)le32_to_cpu(q->q1.data_addr), (ulong)le32_to_cpu(q->q1.data_cnt), (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", (ulong)q->cdbptr, q->q2.cdb_len, (ulong)q->sg_head, q->q1.sg_queue_cnt); if (q->sg_head) { sgp = q->sg_head; printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, sgp->queue_cnt); for (i = 0; i < sgp->entry_cnt; i++) { printk(" [%u]: addr 0x%lx, bytes %lu\n", i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); } } } /* * asc_prt_asc_qdone_info() */ static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) { printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n", (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len, q->d2.tag_code); printk (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); } /* * asc_prt_adv_sgblock() * * Display an ADV_SG_BLOCK structure. */ static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) { int i; printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", (ulong)b, sgblockno); printk(" sg_cnt %u, sg_ptr 0x%lx\n", b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr)); BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); if (b->sg_ptr != 0) BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); for (i = 0; i < b->sg_cnt; i++) { printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n", i, (ulong)b->sg_list[i].sg_addr, (ulong)b->sg_list[i].sg_count); } } /* * asc_prt_adv_scsi_req_q() * * Display an ADV_SCSI_REQ_Q structure. */ static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) { int sg_blk_cnt; struct asc_sg_block *sg_ptr; printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n", q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag); printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n", q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr); printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", (ulong)le32_to_cpu(q->data_cnt), (ulong)le32_to_cpu(q->sense_addr), q->sense_len); printk (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", q->cdb_len, q->done_status, q->host_status, q->scsi_status); printk(" sg_working_ix 0x%x, target_cmd %u\n", q->sg_working_ix, q->target_cmd); printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", (ulong)le32_to_cpu(q->scsiq_rptr), (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); /* Display the request's ADV_SG_BLOCK structures. */ if (q->sg_list_ptr != NULL) { sg_blk_cnt = 0; while (1) { /* * 'sg_ptr' is a physical address. Convert it to a virtual * address by indexing 'sg_blk_cnt' into the virtual address * array 'sg_list_ptr'. * * XXX - Assumes all SG physical blocks are virtually contiguous. */ sg_ptr = &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]); asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); if (sg_ptr->sg_ptr == 0) { break; } sg_blk_cnt++; } } } #endif /* ADVANSYS_DEBUG */ /* * The advansys chip/microcode contains a 32-bit identifier for each command * known as the 'srb'. I don't know what it stands for. The driver used * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it * with bus_to_virt. Now the driver keeps a per-host map of integers to * pointers. It auto-expands when full, unless it can't allocate memory. * Note that an srb of 0 is treated specially by the chip/firmware, hence * the return of i+1 in this routine, and the corresponding subtraction in * the inverse routine. */ #define BAD_SRB 0 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr) { int i; void **new_ptr; for (i = 0; i < asc_dvc->ptr_map_count; i++) { if (!asc_dvc->ptr_map[i]) goto out; } if (asc_dvc->ptr_map_count == 0) asc_dvc->ptr_map_count = 1; else asc_dvc->ptr_map_count *= 2; new_ptr = krealloc(asc_dvc->ptr_map, asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC); if (!new_ptr) return BAD_SRB; asc_dvc->ptr_map = new_ptr; out: ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i); asc_dvc->ptr_map[i] = ptr; return i + 1; } static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb) { void *ptr; srb--; if (srb >= asc_dvc->ptr_map_count) { printk("advansys: bad SRB %u, max %u\n", srb, asc_dvc->ptr_map_count); return NULL; } ptr = asc_dvc->ptr_map[srb]; asc_dvc->ptr_map[srb] = NULL; ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb); return ptr; } /* * advansys_info() * * Return suitable for printing on the console with the argument * adapter's configuration information. * * Note: The information line should not exceed ASC_INFO_SIZE bytes, * otherwise the static 'info' array will be overrun. */ static const char *advansys_info(struct Scsi_Host *shost) { static char info[ASC_INFO_SIZE]; struct asc_board *boardp = shost_priv(shost); ASC_DVC_VAR *asc_dvc_varp; ADV_DVC_VAR *adv_dvc_varp; char *busname; char *widename = NULL; if (ASC_NARROW_BOARD(boardp)) { asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; ASC_DBG(1, "begin\n"); if (asc_dvc_varp->bus_type & ASC_IS_ISA) { if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == ASC_IS_ISAPNP) { busname = "ISA PnP"; } else { busname = "ISA"; } sprintf(info, "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", ASC_VERSION, busname, (ulong)shost->io_port, (ulong)shost->io_port + ASC_IOADR_GAP - 1, boardp->irq, shost->dma_channel); } else { if (asc_dvc_varp->bus_type & ASC_IS_VL) { busname = "VL"; } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { busname = "EISA"; } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { busname = "PCI Ultra"; } else { busname = "PCI"; } } else { busname = "?"; shost_printk(KERN_ERR, shost, "unknown bus " "type %d\n", asc_dvc_varp->bus_type); } sprintf(info, "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", ASC_VERSION, busname, (ulong)shost->io_port, (ulong)shost->io_port + ASC_IOADR_GAP - 1, boardp->irq); } } else { /* * Wide Adapter Information * * Memory-mapped I/O is used instead of I/O space to access * the adapter, but display the I/O Port range. The Memory * I/O address is displayed through the driver /proc file. */ adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { widename = "Ultra-Wide"; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { widename = "Ultra2-Wide"; } else { widename = "Ultra3-Wide"; } sprintf(info, "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); } BUG_ON(strlen(info) >= ASC_INFO_SIZE); ASC_DBG(1, "end\n"); return info; } #ifdef CONFIG_PROC_FS /* * asc_prt_board_devices() * * Print driver information for devices attached to the board. */ static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); int chip_scsi_id; int i; seq_printf(m, "\nDevice Information for AdvanSys SCSI Host %d:\n", shost->host_no); if (ASC_NARROW_BOARD(boardp)) { chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; } seq_printf(m, "Target IDs Detected:"); for (i = 0; i <= ADV_MAX_TID; i++) { if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) seq_printf(m, " %X,", i); } seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); } /* * Display Wide Board BIOS Information. */ static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); ushort major, minor, letter; seq_printf(m, "\nROM BIOS Version: "); /* * If the BIOS saved a valid signature, then fill in * the BIOS code segment base address. */ if (boardp->bios_signature != 0x55AA) { seq_printf(m, "Disabled or Pre-3.1\n"); seq_printf(m, "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"); seq_printf(m, "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); } else { major = (boardp->bios_version >> 12) & 0xF; minor = (boardp->bios_version >> 8) & 0xF; letter = (boardp->bios_version & 0xFF); seq_printf(m, "%d.%d%c\n", major, minor, letter >= 26 ? '?' : letter + 'A'); /* * Current available ROM BIOS release is 3.1I for UW * and 3.2I for U2W. This code doesn't differentiate * UW and U2W boards. */ if (major < 3 || (major <= 3 && minor < 1) || (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { seq_printf(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"); seq_printf(m, "ftp://ftp.connectcom.net/pub\n"); } } } /* * Add serial number to information bar if signature AAh * is found in at bit 15-9 (7 bits) of word 1. * * Serial Number consists fo 12 alpha-numeric digits. * * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) * 5 - Product revision (A-J) Word0: " " * * Signature Word1: 15-9 (7 bits) * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) * * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) * * Note 1: Only production cards will have a serial number. * * Note 2: Signature is most significant 7 bits (0xFE). * * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. */ static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) { ushort w, num; if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { return ASC_FALSE; } else { /* * First word - 6 digits. */ w = serialnum[0]; /* Product type - 1st digit. */ if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { /* Product type is P=Prototype */ *cp += 0x8; } cp++; /* Manufacturing location - 2nd digit. */ *cp++ = 'A' + ((w & 0x1C00) >> 10); /* Product ID - 3rd, 4th digits. */ num = w & 0x3FF; *cp++ = '0' + (num / 100); num %= 100; *cp++ = '0' + (num / 10); /* Product revision - 5th digit. */ *cp++ = 'A' + (num % 10); /* * Second word */ w = serialnum[1]; /* * Year - 6th digit. * * If bit 15 of third word is set, then the * last digit of the year is greater than 7. */ if (serialnum[2] & 0x8000) { *cp++ = '8' + ((w & 0x1C0) >> 6); } else { *cp++ = '0' + ((w & 0x1C0) >> 6); } /* Week of year - 7th, 8th digits. */ num = w & 0x003F; *cp++ = '0' + num / 10; num %= 10; *cp++ = '0' + num; /* * Third word */ w = serialnum[2] & 0x7FFF; /* Serial number - 9th digit. */ *cp++ = 'A' + (w / 1000); /* 10th, 11th, 12th digits. */ num = w % 1000; *cp++ = '0' + num / 100; num %= 100; *cp++ = '0' + num / 10; num %= 10; *cp++ = '0' + num; *cp = '\0'; /* Null Terminate the string. */ return ASC_TRUE; } } /* * asc_prt_asc_board_eeprom() * * Print board EEPROM configuration. */ static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); ASC_DVC_VAR *asc_dvc_varp; ASCEEP_CONFIG *ep; int i; #ifdef CONFIG_ISA int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; #endif /* CONFIG_ISA */ uchar serialstr[13]; asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; ep = &boardp->eep_config.asc_eep; seq_printf(m, "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", shost->host_no); if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) == ASC_TRUE) seq_printf(m, " Serial Number: %s\n", serialstr); else if (ep->adapter_info[5] == 0xBB) seq_printf(m, " Default Settings Used for EEPROM-less Adapter.\n"); else seq_printf(m, " Serial Number Signature Not Present.\n"); seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, ep->max_tag_qng); seq_printf(m, " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); seq_printf(m, " Target ID: "); for (i = 0; i <= ASC_MAX_TID; i++) seq_printf(m, " %d", i); seq_printf(m, "\n"); seq_printf(m, " Disconnects: "); for (i = 0; i <= ASC_MAX_TID; i++) seq_printf(m, " %c", (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); seq_printf(m, " Command Queuing: "); for (i = 0; i <= ASC_MAX_TID; i++) seq_printf(m, " %c", (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); seq_printf(m, " Start Motor: "); for (i = 0; i <= ASC_MAX_TID; i++) seq_printf(m, " %c", (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); seq_printf(m, " Synchronous Transfer:"); for (i = 0; i <= ASC_MAX_TID; i++) seq_printf(m, " %c", (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); #ifdef CONFIG_ISA if (asc_dvc_varp->bus_type & ASC_IS_ISA) { seq_printf(m, " Host ISA DMA speed: %d MB/S\n", isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); } #endif /* CONFIG_ISA */ } /* * asc_prt_adv_board_eeprom() * * Print board EEPROM configuration. */ static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); ADV_DVC_VAR *adv_dvc_varp; int i; char *termstr; uchar serialstr[13]; ADVEEP_3550_CONFIG *ep_3550 = NULL; ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; ushort word; ushort *wordp; ushort sdtr_speed = 0; adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { ep_3550 = &boardp->eep_config.adv_3550_eep; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; } else { ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; } seq_printf(m, "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", shost->host_no); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { wordp = &ep_3550->serial_number_word1; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { wordp = &ep_38C0800->serial_number_word1; } else { wordp = &ep_38C1600->serial_number_word1; } if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) seq_printf(m, " Serial Number: %s\n", serialstr); else seq_printf(m, " Serial Number Signature Not Present.\n"); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", ep_3550->adapter_scsi_id, ep_3550->max_host_qng, ep_3550->max_dvc_qng); else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", ep_38C0800->adapter_scsi_id, ep_38C0800->max_host_qng, ep_38C0800->max_dvc_qng); else seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", ep_38C1600->adapter_scsi_id, ep_38C1600->max_host_qng, ep_38C1600->max_dvc_qng); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { word = ep_3550->termination; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { word = ep_38C0800->termination_lvd; } else { word = ep_38C1600->termination_lvd; } switch (word) { case 1: termstr = "Low Off/High Off"; break; case 2: termstr = "Low Off/High On"; break; case 3: termstr = "Low On/High On"; break; default: case 0: termstr = "Automatic"; break; } if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) seq_printf(m, " termination: %u (%s), bios_ctrl: 0x%x\n", ep_3550->termination, termstr, ep_3550->bios_ctrl); else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) seq_printf(m, " termination: %u (%s), bios_ctrl: 0x%x\n", ep_38C0800->termination_lvd, termstr, ep_38C0800->bios_ctrl); else seq_printf(m, " termination: %u (%s), bios_ctrl: 0x%x\n", ep_38C1600->termination_lvd, termstr, ep_38C1600->bios_ctrl); seq_printf(m, " Target ID: "); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %X", i); seq_printf(m, "\n"); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { word = ep_3550->disc_enable; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { word = ep_38C0800->disc_enable; } else { word = ep_38C1600->disc_enable; } seq_printf(m, " Disconnects: "); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %c", (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { word = ep_3550->tagqng_able; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { word = ep_38C0800->tagqng_able; } else { word = ep_38C1600->tagqng_able; } seq_printf(m, " Command Queuing: "); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %c", (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { word = ep_3550->start_motor; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { word = ep_38C0800->start_motor; } else { word = ep_38C1600->start_motor; } seq_printf(m, " Start Motor: "); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %c", (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { seq_printf(m, " Synchronous Transfer:"); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %c", (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); } if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { seq_printf(m, " Ultra Transfer: "); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %c", (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); } if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { word = ep_3550->wdtr_able; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { word = ep_38C0800->wdtr_able; } else { word = ep_38C1600->wdtr_able; } seq_printf(m, " Wide Transfer: "); for (i = 0; i <= ADV_MAX_TID; i++) seq_printf(m, " %c", (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); seq_printf(m, "\n"); if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { seq_printf(m, " Synchronous Transfer Speed (Mhz):\n "); for (i = 0; i <= ADV_MAX_TID; i++) { char *speed_str; if (i == 0) { sdtr_speed = adv_dvc_varp->sdtr_speed1; } else if (i == 4) { sdtr_speed = adv_dvc_varp->sdtr_speed2; } else if (i == 8) { sdtr_speed = adv_dvc_varp->sdtr_speed3; } else if (i == 12) { sdtr_speed = adv_dvc_varp->sdtr_speed4; } switch (sdtr_speed & ADV_MAX_TID) { case 0: speed_str = "Off"; break; case 1: speed_str = " 5"; break; case 2: speed_str = " 10"; break; case 3: speed_str = " 20"; break; case 4: speed_str = " 40"; break; case 5: speed_str = " 80"; break; default: speed_str = "Unk"; break; } seq_printf(m, "%X:%s ", i, speed_str); if (i == 7) seq_printf(m, "\n "); sdtr_speed >>= 4; } seq_printf(m, "\n"); } } /* * asc_prt_driver_conf() */ static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); int chip_scsi_id; seq_printf(m, "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", shost->host_no); seq_printf(m, " host_busy %u, max_id %u, max_lun %u, max_channel %u\n", shost->host_busy, shost->max_id, shost->max_lun, shost->max_channel); seq_printf(m, " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", shost->unique_id, shost->can_queue, shost->this_id, shost->sg_tablesize, shost->cmd_per_lun); seq_printf(m, " unchecked_isa_dma %d, use_clustering %d\n", shost->unchecked_isa_dma, shost->use_clustering); seq_printf(m, " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", boardp->flags, boardp->last_reset, jiffies, boardp->asc_n_io_port); seq_printf(m, " io_port 0x%lx\n", shost->io_port); if (ASC_NARROW_BOARD(boardp)) { chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; } } /* * asc_prt_asc_board_info() * * Print dynamic board configuration information. */ static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); int chip_scsi_id; ASC_DVC_VAR *v; ASC_DVC_CFG *c; int i; int renegotiate = 0; v = &boardp->dvc_var.asc_dvc_var; c = &boardp->dvc_cfg.asc_dvc_cfg; chip_scsi_id = c->chip_scsi_id; seq_printf(m, "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", shost->host_no); seq_printf(m, " chip_version %u, mcode_date 0x%x, " "mcode_version 0x%x, err_code %u\n", c->chip_version, c->mcode_date, c->mcode_version, v->err_code); /* Current number of commands waiting for the host. */ seq_printf(m, " Total Command Pending: %d\n", v->cur_total_qng); seq_printf(m, " Command Queuing:"); for (i = 0; i <= ASC_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%c", i, (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); } seq_printf(m, "\n"); /* Current number of commands waiting for a device. */ seq_printf(m, " Command Queue Pending:"); for (i = 0; i <= ASC_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); } seq_printf(m, "\n"); /* Current limit on number of commands that can be sent to a device. */ seq_printf(m, " Command Queue Limit:"); for (i = 0; i <= ASC_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); } seq_printf(m, "\n"); /* Indicate whether the device has returned queue full status. */ seq_printf(m, " Command Queue Full:"); for (i = 0; i <= ASC_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) seq_printf(m, " %X:Y-%d", i, boardp->queue_full_cnt[i]); else seq_printf(m, " %X:N", i); } seq_printf(m, "\n"); seq_printf(m, " Synchronous Transfer:"); for (i = 0; i <= ASC_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%c", i, (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); } seq_printf(m, "\n"); for (i = 0; i <= ASC_MAX_TID; i++) { uchar syn_period_ix; if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:", i); if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { seq_printf(m, " Asynchronous"); } else { syn_period_ix = (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 1); seq_printf(m, " Transfer Period Factor: %d (%d.%d Mhz),", v->sdtr_period_tbl[syn_period_ix], 250 / v->sdtr_period_tbl[syn_period_ix], ASC_TENTHS(250, v->sdtr_period_tbl[syn_period_ix])); seq_printf(m, " REQ/ACK Offset: %d", boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); } if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { seq_printf(m, "*\n"); renegotiate = 1; } else { seq_printf(m, "\n"); } } if (renegotiate) { seq_printf(m, " * = Re-negotiation pending before next command.\n"); } } /* * asc_prt_adv_board_info() * * Print dynamic board configuration information. */ static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); int i; ADV_DVC_VAR *v; ADV_DVC_CFG *c; AdvPortAddr iop_base; ushort chip_scsi_id; ushort lramword; uchar lrambyte; ushort tagqng_able; ushort sdtr_able, wdtr_able; ushort wdtr_done, sdtr_done; ushort period = 0; int renegotiate = 0; v = &boardp->dvc_var.adv_dvc_var; c = &boardp->dvc_cfg.adv_dvc_cfg; iop_base = v->iop_base; chip_scsi_id = v->chip_scsi_id; seq_printf(m, "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", shost->host_no); seq_printf(m, " iop_base 0x%lx, cable_detect: %X, err_code %u\n", (unsigned long)v->iop_base, AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, v->err_code); seq_printf(m, " chip_version %u, mcode_date 0x%x, " "mcode_version 0x%x\n", c->chip_version, c->mcode_date, c->mcode_version); AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); seq_printf(m, " Queuing Enabled:"); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%c", i, (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); } seq_printf(m, "\n"); seq_printf(m, " Queue Limit:"); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, lrambyte); seq_printf(m, " %X:%d", i, lrambyte); } seq_printf(m, "\n"); seq_printf(m, " Command Pending:"); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, lrambyte); seq_printf(m, " %X:%d", i, lrambyte); } seq_printf(m, "\n"); AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); seq_printf(m, " Wide Enabled:"); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%c", i, (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); } seq_printf(m, "\n"); AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); seq_printf(m, " Transfer Bit Width:"); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } AdvReadWordLram(iop_base, ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), lramword); seq_printf(m, " %X:%d", i, (lramword & 0x8000) ? 16 : 8); if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { seq_printf(m, "*"); renegotiate = 1; } } seq_printf(m, "\n"); AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); seq_printf(m, " Synchronous Enabled:"); for (i = 0; i <= ADV_MAX_TID; i++) { if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:%c", i, (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); } seq_printf(m, "\n"); AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); for (i = 0; i <= ADV_MAX_TID; i++) { AdvReadWordLram(iop_base, ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), lramword); lramword &= ~0x8000; if ((chip_scsi_id == i) || ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { continue; } seq_printf(m, " %X:", i); if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ seq_printf(m, " Asynchronous"); } else { seq_printf(m, " Transfer Period Factor: "); if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ seq_printf(m, "9 (80.0 Mhz),"); } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ seq_printf(m, "10 (40.0 Mhz),"); } else { /* 20 Mhz or below. */ period = (((lramword >> 8) * 25) + 50) / 4; if (period == 0) { /* Should never happen. */ seq_printf(m, "%d (? Mhz), ", period); } else { seq_printf(m, "%d (%d.%d Mhz),", period, 250 / period, ASC_TENTHS(250, period)); } } seq_printf(m, " REQ/ACK Offset: %d", lramword & 0x1F); } if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { seq_printf(m, "*\n"); renegotiate = 1; } else { seq_printf(m, "\n"); } } if (renegotiate) { seq_printf(m, " * = Re-negotiation pending before next command.\n"); } } #ifdef ADVANSYS_STATS /* * asc_prt_board_stats() */ static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); struct asc_stats *s = &boardp->asc_stats; seq_printf(m, "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", shost->host_no); seq_printf(m, " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", s->queuecommand, s->reset, s->biosparam, s->interrupt); seq_printf(m, " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", s->callback, s->done, s->build_error, s->adv_build_noreq, s->adv_build_nosg); seq_printf(m, " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", s->exe_noerror, s->exe_busy, s->exe_error, s->exe_unknown); /* * Display data transfer statistics. */ if (s->xfer_cnt > 0) { seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", s->xfer_cnt, s->xfer_elem); seq_printf(m, "xfer_bytes %u.%01u kb\n", s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); /* Scatter gather transfer statistics */ seq_printf(m, " avg_num_elem %u.%01u, ", s->xfer_elem / s->xfer_cnt, ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); seq_printf(m, "avg_elem_size %u.%01u kb, ", (s->xfer_sect / 2) / s->xfer_elem, ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); seq_printf(m, "avg_xfer_size %u.%01u kb\n", (s->xfer_sect / 2) / s->xfer_cnt, ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); } } #endif /* ADVANSYS_STATS */ /* * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} * * m: seq_file to print into * shost: Scsi_Host * * Return the number of bytes read from or written to a * /proc/scsi/advansys/[0...] file. */ static int advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) { struct asc_board *boardp = shost_priv(shost); ASC_DBG(1, "begin\n"); /* * User read of /proc/scsi/advansys/[0...] file. */ /* * Get board configuration information. * * advansys_info() returns the board string from its own static buffer. */ /* Copy board information. */ seq_printf(m, "%s\n", (char *)advansys_info(shost)); /* * Display Wide Board BIOS Information. */ if (!ASC_NARROW_BOARD(boardp)) asc_prt_adv_bios(m, shost); /* * Display driver information for each device attached to the board. */ asc_prt_board_devices(m, shost); /* * Display EEPROM configuration for the board. */ if (ASC_NARROW_BOARD(boardp)) asc_prt_asc_board_eeprom(m, shost); else asc_prt_adv_board_eeprom(m, shost); /* * Display driver configuration and information for the board. */ asc_prt_driver_conf(m, shost); #ifdef ADVANSYS_STATS /* * Display driver statistics for the board. */ asc_prt_board_stats(m, shost); #endif /* ADVANSYS_STATS */ /* * Display Asc Library dynamic configuration information * for the board. */ if (ASC_NARROW_BOARD(boardp)) asc_prt_asc_board_info(m, shost); else asc_prt_adv_board_info(m, shost); return 0; } #endif /* CONFIG_PROC_FS */ static void asc_scsi_done(struct scsi_cmnd *scp) { scsi_dma_unmap(scp); ASC_STATS(scp->device->host, done); scp->scsi_done(scp); } static void AscSetBank(PortAddr iop_base, uchar bank) { uchar val; val = AscGetChipControl(iop_base) & (~ (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | CC_CHIP_RESET)); if (bank == 1) { val |= CC_BANK_ONE; } else if (bank == 2) { val |= CC_DIAG | CC_BANK_ONE; } else { val &= ~CC_BANK_ONE; } AscSetChipControl(iop_base, val); } static void AscSetChipIH(PortAddr iop_base, ushort ins_code) { AscSetBank(iop_base, 1); AscWriteChipIH(iop_base, ins_code); AscSetBank(iop_base, 0); } static int AscStartChip(PortAddr iop_base) { AscSetChipControl(iop_base, 0); if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { return (0); } return (1); } static int AscStopChip(PortAddr iop_base) { uchar cc_val; cc_val = AscGetChipControl(iop_base) & (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); AscSetChipIH(iop_base, INS_HALT); AscSetChipIH(iop_base, INS_RFLAG_WTM); if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { return (0); } return (1); } static int AscIsChipHalted(PortAddr iop_base) { if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { return (1); } } return (0); } static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) { PortAddr iop_base; int i = 10; iop_base = asc_dvc->iop_base; while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { mdelay(100); } AscStopChip(iop_base); AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); udelay(60); AscSetChipIH(iop_base, INS_RFLAG_WTM); AscSetChipIH(iop_base, INS_HALT); AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); AscSetChipControl(iop_base, CC_HALT); mdelay(200); AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); AscSetChipStatus(iop_base, 0); return (AscIsChipHalted(iop_base)); } static int AscFindSignature(PortAddr iop_base) { ushort sig_word; ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", iop_base, AscGetChipSignatureByte(iop_base)); if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", iop_base, AscGetChipSignatureWord(iop_base)); sig_word = AscGetChipSignatureWord(iop_base); if ((sig_word == (ushort)ASC_1000_ID0W) || (sig_word == (ushort)ASC_1000_ID0W_FIX)) { return (1); } } return (0); } static void AscEnableInterrupt(PortAddr iop_base) { ushort cfg; cfg = AscGetChipCfgLsw(iop_base); AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); } static void AscDisableInterrupt(PortAddr iop_base) { ushort cfg; cfg = AscGetChipCfgLsw(iop_base); AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); } static uchar AscReadLramByte(PortAddr iop_base, ushort addr) { unsigned char byte_data; unsigned short word_data; if (isodd_word(addr)) { AscSetChipLramAddr(iop_base, addr - 1); word_data = AscGetChipLramData(iop_base); byte_data = (word_data >> 8) & 0xFF; } else { AscSetChipLramAddr(iop_base, addr); word_data = AscGetChipLramData(iop_base); byte_data = word_data & 0xFF; } return byte_data; } static ushort AscReadLramWord(PortAddr iop_base, ushort addr) { ushort word_data; AscSetChipLramAddr(iop_base, addr); word_data = AscGetChipLramData(iop_base); return (word_data); } #if CC_VERY_LONG_SG_LIST static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr) { ushort val_low, val_high; ASC_DCNT dword_data; AscSetChipLramAddr(iop_base, addr); val_low = AscGetChipLramData(iop_base); val_high = AscGetChipLramData(iop_base); dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low; return (dword_data); } #endif /* CC_VERY_LONG_SG_LIST */ static void AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) { int i; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < words; i++) { AscSetChipLramData(iop_base, set_wval); } } static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) { AscSetChipLramAddr(iop_base, addr); AscSetChipLramData(iop_base, word_val); } static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) { ushort word_data; if (isodd_word(addr)) { addr--; word_data = AscReadLramWord(iop_base, addr); word_data &= 0x00FF; word_data |= (((ushort)byte_val << 8) & 0xFF00); } else { word_data = AscReadLramWord(iop_base, addr); word_data &= 0xFF00; word_data |= ((ushort)byte_val & 0x00FF); } AscWriteLramWord(iop_base, addr, word_data); } /* * Copy 2 bytes to LRAM. * * The source data is assumed to be in little-endian order in memory * and is maintained in little-endian order when written to LRAM. */ static void AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, const uchar *s_buffer, int words) { int i; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < 2 * words; i += 2) { /* * On a little-endian system the second argument below * produces a little-endian ushort which is written to * LRAM in little-endian order. On a big-endian system * the second argument produces a big-endian ushort which * is "transparently" byte-swapped by outpw() and written * in little-endian order to LRAM. */ outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); } } /* * Copy 4 bytes to LRAM. * * The source data is assumed to be in little-endian order in memory * and is maintained in little-endian order when written to LRAM. */ static void AscMemDWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, uchar *s_buffer, int dwords) { int i; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < 4 * dwords; i += 4) { outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ } } /* * Copy 2 bytes from LRAM. * * The source data is assumed to be in little-endian order in LRAM * and is maintained in little-endian order when written to memory. */ static void AscMemWordCopyPtrFromLram(PortAddr iop_base, ushort s_addr, uchar *d_buffer, int words) { int i; ushort word; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < 2 * words; i += 2) { word = inpw(iop_base + IOP_RAM_DATA); d_buffer[i] = word & 0xff; d_buffer[i + 1] = (word >> 8) & 0xff; } } static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) { ASC_DCNT sum; int i; sum = 0L; for (i = 0; i < words; i++, s_addr += 2) { sum += AscReadLramWord(iop_base, s_addr); } return (sum); } static ushort AscInitLram(ASC_DVC_VAR *asc_dvc) { uchar i; ushort s_addr; PortAddr iop_base; ushort warn_code; iop_base = asc_dvc->iop_base; warn_code = 0; AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 64) >> 1)); i = ASC_MIN_ACTIVE_QNO; s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), (uchar)(i + 1)); AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), (uchar)(asc_dvc->max_total_qng)); AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), (uchar)i); i++; s_addr += ASC_QBLK_SIZE; for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), (uchar)(i + 1)); AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), (uchar)(i - 1)); AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), (uchar)i); } AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), (uchar)ASC_QLINK_END); AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), (uchar)(asc_dvc->max_total_qng - 1)); AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), (uchar)asc_dvc->max_total_qng); i++; s_addr += ASC_QBLK_SIZE; for (; i <= (uchar)(asc_dvc->max_total_qng + 3); i++, s_addr += ASC_QBLK_SIZE) { AscWriteLramByte(iop_base, (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); AscWriteLramByte(iop_base, (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); AscWriteLramByte(iop_base, (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); } return warn_code; } static ASC_DCNT AscLoadMicroCode(PortAddr iop_base, ushort s_addr, const uchar *mcode_buf, ushort mcode_size) { ASC_DCNT chksum; ushort mcode_word_size; ushort mcode_chksum; /* Write the microcode buffer starting at LRAM address 0. */ mcode_word_size = (ushort)(mcode_size >> 1); AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); mcode_chksum = (ushort)AscMemSumLramWord(iop_base, (ushort)ASC_CODE_SEC_BEG, (ushort)((mcode_size - s_addr - (ushort) ASC_CODE_SEC_BEG) / 2)); ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); return chksum; } static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) { PortAddr iop_base; int i; ushort lram_addr; iop_base = asc_dvc->iop_base; AscPutRiscVarFreeQHead(iop_base, 1); AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); AscPutVarFreeQHead(iop_base, 1); AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, (uchar)((int)asc_dvc->max_total_qng + 1)); AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, (uchar)((int)asc_dvc->max_total_qng + 2)); AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, asc_dvc->max_total_qng); AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); AscPutQDoneInProgress(iop_base, 0); lram_addr = ASC_QADR_BEG; for (i = 0; i < 32; i++, lram_addr += 2) { AscWriteLramWord(iop_base, lram_addr, 0); } } static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) { int i; ushort warn_code; PortAddr iop_base; ASC_PADDR phy_addr; ASC_DCNT phy_size; struct asc_board *board = asc_dvc_to_board(asc_dvc); iop_base = asc_dvc->iop_base; warn_code = 0; for (i = 0; i <= ASC_MAX_TID; i++) { AscPutMCodeInitSDTRAtID(iop_base, i, asc_dvc->cfg->sdtr_period_offset[i]); } AscInitQLinkVar(asc_dvc); AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, asc_dvc->cfg->disc_enable); AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); /* Ensure overrun buffer is aligned on an 8 byte boundary. */ BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { warn_code = -ENOMEM; goto err_dma_map; } phy_addr = cpu_to_le32(asc_dvc->overrun_dma); AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, (uchar *)&phy_addr, 1); phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, (uchar *)&phy_size, 1); asc_dvc->cfg->mcode_date = AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); asc_dvc->cfg->mcode_version = AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; warn_code = UW_ERR; goto err_mcode_start; } if (AscStartChip(iop_base) != 1) { asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; warn_code = UW_ERR; goto err_mcode_start; } return warn_code; err_mcode_start: dma_unmap_single(board->dev, asc_dvc->overrun_dma, ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); err_dma_map: asc_dvc->overrun_dma = 0; return warn_code; } static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) { const struct firmware *fw; const char fwname[] = "advansys/mcode.bin"; int err; unsigned long chksum; ushort warn_code; PortAddr iop_base; iop_base = asc_dvc->iop_base; warn_code = 0; if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { AscResetChipAndScsiBus(asc_dvc); mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ } asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; if (asc_dvc->err_code != 0) return UW_ERR; if (!AscFindSignature(asc_dvc->iop_base)) { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; return warn_code; } AscDisableInterrupt(iop_base); warn_code |= AscInitLram(asc_dvc); if (asc_dvc->err_code != 0) return UW_ERR; err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); if (err) { printk(KERN_ERR "Failed to load image \"%s\" err %d\n", fwname, err); asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; return err; } if (fw->size < 4) { printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", fw->size, fwname); release_firmware(fw); asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; return -EINVAL; } chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | (fw->data[1] << 8) | fw->data[0]; ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); if (AscLoadMicroCode(iop_base, 0, &fw->data[4], fw->size - 4) != chksum) { asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; release_firmware(fw); return warn_code; } release_firmware(fw); warn_code |= AscInitMicroCodeVar(asc_dvc); if (!asc_dvc->overrun_dma) return warn_code; asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; AscEnableInterrupt(iop_base); return warn_code; } /* * Load the Microcode * * Write the microcode image to RISC memory starting at address 0. * * The microcode is stored compressed in the following format: * * 254 word (508 byte) table indexed by byte code followed * by the following byte codes: * * 1-Byte Code: * 00: Emit word 0 in table. * 01: Emit word 1 in table. * . * FD: Emit word 253 in table. * * Multi-Byte Code: * FE WW WW: (3 byte code) Word to emit is the next word WW WW. * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. * * Returns 0 or an error if the checksum doesn't match */ static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, int size, int memsize, int chksum) { int i, j, end, len = 0; ADV_DCNT sum; AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); for (i = 253 * 2; i < size; i++) { if (buf[i] == 0xff) { unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; for (j = 0; j < buf[i + 1]; j++) { AdvWriteWordAutoIncLram(iop_base, word); len += 2; } i += 3; } else if (buf[i] == 0xfe) { unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; AdvWriteWordAutoIncLram(iop_base, word); i += 2; len += 2; } else { unsigned int off = buf[i] * 2; unsigned short word = (buf[off + 1] << 8) | buf[off]; AdvWriteWordAutoIncLram(iop_base, word); len += 2; } } end = len; while (len < memsize) { AdvWriteWordAutoIncLram(iop_base, 0); len += 2; } /* Verify the microcode checksum. */ sum = 0; AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); for (len = 0; len < end; len += 2) { sum += AdvReadWordAutoIncLram(iop_base); } if (sum != chksum) return ASC_IERR_MCODE_CHKSUM; return 0; } static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc) { ADV_CARR_T *carrp; ADV_SDCNT buf_size; ADV_PADDR carr_paddr; carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf); asc_dvc->carr_freelist = NULL; if (carrp == asc_dvc->carrier_buf) { buf_size = ADV_CARRIER_BUFSIZE; } else { buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T); } do { /* Get physical address of the carrier 'carrp'. */ carr_paddr = cpu_to_le32(virt_to_bus(carrp)); buf_size -= sizeof(ADV_CARR_T); carrp->carr_pa = carr_paddr; carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp)); /* * Insert the carrier at the beginning of the freelist. */ carrp->next_vpa = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); asc_dvc->carr_freelist = carrp; carrp++; } while (buf_size > 0); } /* * Send an idle command to the chip and wait for completion. * * Command completion is polled for once per microsecond. * * The function can be called from anywhere including an interrupt handler. * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() * functions to prevent reentrancy. * * Return Values: * ADV_TRUE - command completed successfully * ADV_FALSE - command failed * ADV_ERROR - command timed out */ static int AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, ushort idle_cmd, ADV_DCNT idle_cmd_parameter) { int result; ADV_DCNT i, j; AdvPortAddr iop_base; iop_base = asc_dvc->iop_base; /* * Clear the idle command status which is set by the microcode * to a non-zero value to indicate when the command is completed. * The non-zero result is one of the IDLE_CMD_STATUS_* values */ AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); /* * Write the idle command value after the idle command parameter * has been written to avoid a race condition. If the order is not * followed, the microcode may process the idle command before the * parameters have been written to LRAM. */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, cpu_to_le32(idle_cmd_parameter)); AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); /* * Tickle the RISC to tell it to process the idle command. */ AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { /* * Clear the tickle value. In the ASC-3550 the RISC flag * command 'clr_tickle_b' does not work unless the host * value is cleared. */ AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); } /* Wait for up to 100 millisecond for the idle command to timeout. */ for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { /* Poll once each microsecond for command completion. */ for (j = 0; j < SCSI_US_PER_MSEC; j++) { AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, result); if (result != 0) return result; udelay(1); } } BUG(); /* The idle command should never timeout. */ return ADV_ERROR; } /* * Reset SCSI Bus and purge all outstanding requests. * * Return Value: * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. * ADV_FALSE(0) - Microcode command failed. * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC * may be hung which requires driver recovery. */ static int AdvResetSB(ADV_DVC_VAR *asc_dvc) { int status; /* * Send the SCSI Bus Reset idle start idle command which asserts * the SCSI Bus Reset signal. */ status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); if (status != ADV_TRUE) { return status; } /* * Delay for the specified SCSI Bus Reset hold time. * * The hold time delay is done on the host because the RISC has no * microsecond accurate timer. */ udelay(ASC_SCSI_RESET_HOLD_TIME_US); /* * Send the SCSI Bus Reset end idle command which de-asserts * the SCSI Bus Reset signal and purges any pending requests. */ status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); if (status != ADV_TRUE) { return status; } mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ return status; } /* * Initialize the ASC-3550. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Needed after initialization for error recovery. */ static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) { const struct firmware *fw; const char fwname[] = "advansys/3550.bin"; AdvPortAddr iop_base; ushort warn_code; int begin_addr; int end_addr; ushort code_sum; int word; int i; int err; unsigned long chksum; ushort scsi_cfg1; uchar tid; ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ ushort wdtr_able = 0, sdtr_able, tagqng_able; uchar max_cmd[ADV_MAX_TID + 1]; /* If there is already an error, don't continue. */ if (asc_dvc->err_code != 0) return ADV_ERROR; /* * The caller must set 'chip_type' to ADV_CHIP_ASC3550. */ if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; return ADV_ERROR; } warn_code = 0; iop_base = asc_dvc->iop_base; /* * Save the RISC memory BIOS region before writing the microcode. * The BIOS may already be loaded and using its RISC LRAM region * so its region must be saved and restored. * * Note: This code makes the assumption, which is currently true, * that a chip reset does not clear RISC LRAM. */ for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]); } /* * Save current per TID negotiated values. */ if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { ushort bios_version, major, minor; bios_version = bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; major = (bios_version >> 12) & 0xF; minor = (bios_version >> 8) & 0xF; if (major < 3 || (major == 3 && minor == 1)) { /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ AdvReadWordLram(iop_base, 0x120, wdtr_able); } else { AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); } } AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADV_MAX_TID; tid++) { AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); if (err) { printk(KERN_ERR "Failed to load image \"%s\" err %d\n", fwname, err); asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; return err; } if (fw->size < 4) { printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", fw->size, fwname); release_firmware(fw); asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; return -EINVAL; } chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | (fw->data[1] << 8) | fw->data[0]; asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], fw->size - 4, ADV_3550_MEMSIZE, chksum); release_firmware(fw); if (asc_dvc->err_code) return ADV_ERROR; /* * Restore the RISC memory BIOS region. */ for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]); } /* * Calculate and write the microcode code checksum to the microcode * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). */ AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); code_sum = 0; AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); for (word = begin_addr; word < end_addr; word += 2) { code_sum += AdvReadWordAutoIncLram(iop_base); } AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); /* * Read and save microcode version and date. */ AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, asc_dvc->cfg->mcode_date); AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, asc_dvc->cfg->mcode_version); /* * Set the chip type to indicate the ASC3550. */ AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); /* * If the PCI Configuration Command Register "Parity Error Response * Control" Bit was clear (0), then set the microcode variable * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode * to ignore DMA parity errors. */ if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); word |= CONTROL_FLAG_IGNORE_PERR; AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); } /* * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO * threshold of 128 bytes. This register is only accessible to the host. */ AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, START_CTL_EMFU | READ_CMD_MRM); /* * Microcode operating variables for WDTR, SDTR, and command tag * queuing will be set in slave_configure() based on what a * device reports it is capable of in Inquiry byte 7. * * If SCSI Bus Resets have been disabled, then directly set * SDTR and WDTR from the EEPROM configuration. This will allow * the BIOS and warm boot to work without a SCSI bus hang on * the Inquiry caused by host and target mismatched DTR values. * Without the SCSI Bus Reset, before an Inquiry a device can't * be assumed to be in Asynchronous, Narrow mode. */ if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, asc_dvc->wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, asc_dvc->sdtr_able); } /* * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID * bitmask. These values determine the maximum SDTR speed negotiated * with a device. * * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them * without determining here whether the device supports SDTR. * * 4-bit speed SDTR speed name * =========== =============== * 0000b (0x0) SDTR disabled * 0001b (0x1) 5 Mhz * 0010b (0x2) 10 Mhz * 0011b (0x3) 20 Mhz (Ultra) * 0100b (0x4) 40 Mhz (LVD/Ultra2) * 0101b (0x5) 80 Mhz (LVD2/Ultra3) * 0110b (0x6) Undefined * . * 1111b (0xF) Undefined */ word = 0; for (tid = 0; tid <= ADV_MAX_TID; tid++) { if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { /* Set Ultra speed for TID 'tid'. */ word |= (0x3 << (4 * (tid % 4))); } else { /* Set Fast speed for TID 'tid'. */ word |= (0x2 << (4 * (tid % 4))); } if (tid == 3) { /* Check if done with sdtr_speed1. */ AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); word = 0; } else if (tid == 7) { /* Check if done with sdtr_speed2. */ AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); word = 0; } else if (tid == 11) { /* Check if done with sdtr_speed3. */ AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); word = 0; } else if (tid == 15) { /* Check if done with sdtr_speed4. */ AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); /* End of loop. */ } } /* * Set microcode operating variable for the disconnect per TID bitmask. */ AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, asc_dvc->cfg->disc_enable); /* * Set SCSI_CFG0 Microcode Default Value. * * The microcode will set the SCSI_CFG0 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | asc_dvc->chip_scsi_id); /* * Determine SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ /* Read current SCSI_CFG1 Register value. */ scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); /* * If all three connectors are in use, return an error. */ if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; return ADV_ERROR; } /* * If the internal narrow cable is reversed all of the SCSI_CTRL * register signals will be set. Check for and return an error if * this condition is found. */ if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; return ADV_ERROR; } /* * If this is a differential board and a single-ended device * is attached to one of the connectors, return an error. */ if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; return ADV_ERROR; } /* * If automatic termination control is enabled, then set the * termination value based on a table listed in a_condor.h. * * If manual termination was specified with an EEPROM setting * then 'termination' was set-up in AdvInitFrom3550EEPROM() and * is ready to be 'ored' into SCSI_CFG1. */ if (asc_dvc->cfg->termination == 0) { /* * The software always controls termination by setting TERM_CTL_SEL. * If TERM_CTL_SEL were set to 0, the hardware would set termination. */ asc_dvc->cfg->termination |= TERM_CTL_SEL; switch (scsi_cfg1 & CABLE_DETECT) { /* TERM_CTL_H: on, TERM_CTL_L: on */ case 0x3: case 0x7: case 0xB: case 0xD: case 0xE: case 0xF: asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); break; /* TERM_CTL_H: on, TERM_CTL_L: off */ case 0x1: case 0x5: case 0x9: case 0xA: case 0xC: asc_dvc->cfg->termination |= TERM_CTL_H; break; /* TERM_CTL_H: off, TERM_CTL_L: off */ case 0x2: case 0x6: break; } } /* * Clear any set TERM_CTL_H and TERM_CTL_L bits. */ scsi_cfg1 &= ~TERM_CTL; /* * Invert the TERM_CTL_H and TERM_CTL_L bits and then * set 'scsi_cfg1'. The TERM_POL bit does not need to be * referenced, because the hardware internally inverts * the Termination High and Low bits if TERM_POL is set. */ scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); /* * Set SCSI_CFG1 Microcode Default Value * * Set filter value and possibly modified termination control * bits in the Microcode SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, FLTR_DISABLE | scsi_cfg1); /* * Set MEM_CFG Microcode Default Value * * The microcode will set the MEM_CFG register using this value * after it is started below. * * MEM_CFG may be accessed as a word or byte, but only bits 0-7 * are defined. * * ASC-3550 has 8KB internal memory. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, BIOS_EN | RAM_SZ_8KB); /* * Set SEL_MASK Microcode Default Value * * The microcode will set the SEL_MASK register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); AdvBuildCarrierFreelist(asc_dvc); /* * Set-up the Host->RISC Initiator Command Queue (ICQ). */ if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { asc_dvc->err_code |= ASC_IERR_NO_CARRIER; return ADV_ERROR; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); /* * The first command issued will be placed in the stopper carrier. */ asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Set RISC ICQ physical address start value. */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); /* * Set-up the RISC->Host Initiator Response Queue (IRQ). */ if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { asc_dvc->err_code |= ASC_IERR_NO_CARRIER; return ADV_ERROR; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); /* * The first command completed by the RISC will be placed in * the stopper. * * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is * completed the RISC will set the ASC_RQ_STOPPER bit. */ asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Set RISC IRQ physical address start value. */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); asc_dvc->carr_pending_cnt = 0; AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, (ADV_INTR_ENABLE_HOST_INTR | ADV_INTR_ENABLE_GLOBAL_INTR)); AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); AdvWriteWordRegister(iop_base, IOPW_PC, word); /* finally, finally, gentlemen, start your engine */ AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); /* * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus * Resets should be performed. The RISC has to be running * to issue a SCSI Bus Reset. */ if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { /* * If the BIOS Signature is present in memory, restore the * BIOS Handshake Configuration Table and do not perform * a SCSI Bus Reset. */ if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { /* * Restore per TID negotiated values. */ AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADV_MAX_TID; tid++) { AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } } else { if (AdvResetSB(asc_dvc) != ADV_TRUE) { warn_code = ASC_WARN_BUSRESET_ERROR; } } } return warn_code; } /* * Initialize the ASC-38C0800. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Needed after initialization for error recovery. */ static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) { const struct firmware *fw; const char fwname[] = "advansys/38C0800.bin"; AdvPortAddr iop_base; ushort warn_code; int begin_addr; int end_addr; ushort code_sum; int word; int i; int err; unsigned long chksum; ushort scsi_cfg1; uchar byte; uchar tid; ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ ushort wdtr_able, sdtr_able, tagqng_able; uchar max_cmd[ADV_MAX_TID + 1]; /* If there is already an error, don't continue. */ if (asc_dvc->err_code != 0) return ADV_ERROR; /* * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. */ if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; return ADV_ERROR; } warn_code = 0; iop_base = asc_dvc->iop_base; /* * Save the RISC memory BIOS region before writing the microcode. * The BIOS may already be loaded and using its RISC LRAM region * so its region must be saved and restored. * * Note: This code makes the assumption, which is currently true, * that a chip reset does not clear RISC LRAM. */ for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]); } /* * Save current per TID negotiated values. */ AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADV_MAX_TID; tid++) { AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } /* * RAM BIST (RAM Built-In Self Test) * * Address : I/O base + offset 0x38h register (byte). * Function: Bit 7-6(RW) : RAM mode * Normal Mode : 0x00 * Pre-test Mode : 0x40 * RAM Test Mode : 0x80 * Bit 5 : unused * Bit 4(RO) : Done bit * Bit 3-0(RO) : Status * Host Error : 0x08 * Int_RAM Error : 0x04 * RISC Error : 0x02 * SCSI Error : 0x01 * No Error : 0x00 * * Note: RAM BIST code should be put right here, before loading the * microcode and after saving the RISC memory BIOS region. */ /* * LRAM Pre-test * * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset * to NORMAL_MODE, return an error too. */ for (i = 0; i < 2; i++) { AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); mdelay(10); /* Wait for 10ms before reading back. */ byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) != PRE_TEST_VALUE) { asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; return ADV_ERROR; } AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); mdelay(10); /* Wait for 10ms before reading back. */ if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) != NORMAL_VALUE) { asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; return ADV_ERROR; } } /* * LRAM Test - It takes about 1.5 ms to run through the test. * * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. * If Done bit not set or Status not 0, save register byte, set the * err_code, and return an error. */ AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); mdelay(10); /* Wait for 10ms before checking status. */ byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { /* Get here if Done bit not set or Status not 0. */ asc_dvc->bist_err_code = byte; /* for BIOS display message */ asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; return ADV_ERROR; } /* We need to reset back to normal mode after LRAM test passes. */ AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); if (err) { printk(KERN_ERR "Failed to load image \"%s\" err %d\n", fwname, err); asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; return err; } if (fw->size < 4) { printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", fw->size, fwname); release_firmware(fw); asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; return -EINVAL; } chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | (fw->data[1] << 8) | fw->data[0]; asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], fw->size - 4, ADV_38C0800_MEMSIZE, chksum); release_firmware(fw); if (asc_dvc->err_code) return ADV_ERROR; /* * Restore the RISC memory BIOS region. */ for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]); } /* * Calculate and write the microcode code checksum to the microcode * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). */ AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); code_sum = 0; AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); for (word = begin_addr; word < end_addr; word += 2) { code_sum += AdvReadWordAutoIncLram(iop_base); } AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); /* * Read microcode version and date. */ AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, asc_dvc->cfg->mcode_date); AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, asc_dvc->cfg->mcode_version); /* * Set the chip type to indicate the ASC38C0800. */ AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); /* * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current * cable detection and then we are able to read C_DET[3:0]. * * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 * Microcode Default Value' section below. */ scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, scsi_cfg1 | DIS_TERM_DRV); /* * If the PCI Configuration Command Register "Parity Error Response * Control" Bit was clear (0), then set the microcode variable * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode * to ignore DMA parity errors. */ if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); word |= CONTROL_FLAG_IGNORE_PERR; AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); } /* * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] * bits for the default FIFO threshold. * * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. * * For DMA Errata #4 set the BC_THRESH_ENB bit. */ AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); /* * Microcode operating variables for WDTR, SDTR, and command tag * queuing will be set in slave_configure() based on what a * device reports it is capable of in Inquiry byte 7. * * If SCSI Bus Resets have been disabled, then directly set * SDTR and WDTR from the EEPROM configuration. This will allow * the BIOS and warm boot to work without a SCSI bus hang on * the Inquiry caused by host and target mismatched DTR values. * Without the SCSI Bus Reset, before an Inquiry a device can't * be assumed to be in Asynchronous, Narrow mode. */ if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, asc_dvc->wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, asc_dvc->sdtr_able); } /* * Set microcode operating variables for DISC and SDTR_SPEED1, * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM * configuration values. * * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them * without determining here whether the device supports SDTR. */ AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, asc_dvc->cfg->disc_enable); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); /* * Set SCSI_CFG0 Microcode Default Value. * * The microcode will set the SCSI_CFG0 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | asc_dvc->chip_scsi_id); /* * Determine SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ /* Read current SCSI_CFG1 Register value. */ scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); /* * If the internal narrow cable is reversed all of the SCSI_CTRL * register signals will be set. Check for and return an error if * this condition is found. */ if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; return ADV_ERROR; } /* * All kind of combinations of devices attached to one of four * connectors are acceptable except HVD device attached. For example, * LVD device can be attached to SE connector while SE device attached * to LVD connector. If LVD device attached to SE connector, it only * runs up to Ultra speed. * * If an HVD device is attached to one of LVD connectors, return an * error. However, there is no way to detect HVD device attached to * SE connectors. */ if (scsi_cfg1 & HVD) { asc_dvc->err_code = ASC_IERR_HVD_DEVICE; return ADV_ERROR; } /* * If either SE or LVD automatic termination control is enabled, then * set the termination value based on a table listed in a_condor.h. * * If manual termination was specified with an EEPROM setting then * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready * to be 'ored' into SCSI_CFG1. */ if ((asc_dvc->cfg->termination & TERM_SE) == 0) { /* SE automatic termination control is enabled. */ switch (scsi_cfg1 & C_DET_SE) { /* TERM_SE_HI: on, TERM_SE_LO: on */ case 0x1: case 0x2: case 0x3: asc_dvc->cfg->termination |= TERM_SE; break; /* TERM_SE_HI: on, TERM_SE_LO: off */ case 0x0: asc_dvc->cfg->termination |= TERM_SE_HI; break; } } if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { /* LVD automatic termination control is enabled. */ switch (scsi_cfg1 & C_DET_LVD) { /* TERM_LVD_HI: on, TERM_LVD_LO: on */ case 0x4: case 0x8: case 0xC: asc_dvc->cfg->termination |= TERM_LVD; break; /* TERM_LVD_HI: off, TERM_LVD_LO: off */ case 0x0: break; } } /* * Clear any set TERM_SE and TERM_LVD bits. */ scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); /* * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. */ scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); /* * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE * bits and set possibly modified termination control bits in the * Microcode SCSI_CFG1 Register Value. */ scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); /* * Set SCSI_CFG1 Microcode Default Value * * Set possibly modified termination control and reset DIS_TERM_DRV * bits in the Microcode SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); /* * Set MEM_CFG Microcode Default Value * * The microcode will set the MEM_CFG register using this value * after it is started below. * * MEM_CFG may be accessed as a word or byte, but only bits 0-7 * are defined. * * ASC-38C0800 has 16KB internal memory. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, BIOS_EN | RAM_SZ_16KB); /* * Set SEL_MASK Microcode Default Value * * The microcode will set the SEL_MASK register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); AdvBuildCarrierFreelist(asc_dvc); /* * Set-up the Host->RISC Initiator Command Queue (ICQ). */ if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { asc_dvc->err_code |= ASC_IERR_NO_CARRIER; return ADV_ERROR; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); /* * The first command issued will be placed in the stopper carrier. */ asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Set RISC ICQ physical address start value. * carr_pa is LE, must be native before write */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); /* * Set-up the RISC->Host Initiator Response Queue (IRQ). */ if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { asc_dvc->err_code |= ASC_IERR_NO_CARRIER; return ADV_ERROR; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); /* * The first command completed by the RISC will be placed in * the stopper. * * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is * completed the RISC will set the ASC_RQ_STOPPER bit. */ asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Set RISC IRQ physical address start value. * * carr_pa is LE, must be native before write * */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); asc_dvc->carr_pending_cnt = 0; AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, (ADV_INTR_ENABLE_HOST_INTR | ADV_INTR_ENABLE_GLOBAL_INTR)); AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); AdvWriteWordRegister(iop_base, IOPW_PC, word); /* finally, finally, gentlemen, start your engine */ AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); /* * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus * Resets should be performed. The RISC has to be running * to issue a SCSI Bus Reset. */ if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { /* * If the BIOS Signature is present in memory, restore the * BIOS Handshake Configuration Table and do not perform * a SCSI Bus Reset. */ if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { /* * Restore per TID negotiated values. */ AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADV_MAX_TID; tid++) { AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } } else { if (AdvResetSB(asc_dvc) != ADV_TRUE) { warn_code = ASC_WARN_BUSRESET_ERROR; } } } return warn_code; } /* * Initialize the ASC-38C1600. * * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Needed after initialization for error recovery. */ static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) { const struct firmware *fw; const char fwname[] = "advansys/38C1600.bin"; AdvPortAddr iop_base; ushort warn_code; int begin_addr; int end_addr; ushort code_sum; long word; int i; int err; unsigned long chksum; ushort scsi_cfg1; uchar byte; uchar tid; ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; uchar max_cmd[ASC_MAX_TID + 1]; /* If there is already an error, don't continue. */ if (asc_dvc->err_code != 0) { return ADV_ERROR; } /* * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. */ if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; return ADV_ERROR; } warn_code = 0; iop_base = asc_dvc->iop_base; /* * Save the RISC memory BIOS region before writing the microcode. * The BIOS may already be loaded and using its RISC LRAM region * so its region must be saved and restored. * * Note: This code makes the assumption, which is currently true, * that a chip reset does not clear RISC LRAM. */ for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]); } /* * Save current per TID negotiated values. */ AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ASC_MAX_TID; tid++) { AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } /* * RAM BIST (Built-In Self Test) * * Address : I/O base + offset 0x38h register (byte). * Function: Bit 7-6(RW) : RAM mode * Normal Mode : 0x00 * Pre-test Mode : 0x40 * RAM Test Mode : 0x80 * Bit 5 : unused * Bit 4(RO) : Done bit * Bit 3-0(RO) : Status * Host Error : 0x08 * Int_RAM Error : 0x04 * RISC Error : 0x02 * SCSI Error : 0x01 * No Error : 0x00 * * Note: RAM BIST code should be put right here, before loading the * microcode and after saving the RISC memory BIOS region. */ /* * LRAM Pre-test * * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset * to NORMAL_MODE, return an error too. */ for (i = 0; i < 2; i++) { AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); mdelay(10); /* Wait for 10ms before reading back. */ byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) != PRE_TEST_VALUE) { asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; return ADV_ERROR; } AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); mdelay(10); /* Wait for 10ms before reading back. */ if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) != NORMAL_VALUE) { asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; return ADV_ERROR; } } /* * LRAM Test - It takes about 1.5 ms to run through the test. * * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. * If Done bit not set or Status not 0, save register byte, set the * err_code, and return an error. */ AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); mdelay(10); /* Wait for 10ms before checking status. */ byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { /* Get here if Done bit not set or Status not 0. */ asc_dvc->bist_err_code = byte; /* for BIOS display message */ asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; return ADV_ERROR; } /* We need to reset back to normal mode after LRAM test passes. */ AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); if (err) { printk(KERN_ERR "Failed to load image \"%s\" err %d\n", fwname, err); asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; return err; } if (fw->size < 4) { printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", fw->size, fwname); release_firmware(fw); asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; return -EINVAL; } chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | (fw->data[1] << 8) | fw->data[0]; asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], fw->size - 4, ADV_38C1600_MEMSIZE, chksum); release_firmware(fw); if (asc_dvc->err_code) return ADV_ERROR; /* * Restore the RISC memory BIOS region. */ for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), bios_mem[i]); } /* * Calculate and write the microcode code checksum to the microcode * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). */ AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); code_sum = 0; AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); for (word = begin_addr; word < end_addr; word += 2) { code_sum += AdvReadWordAutoIncLram(iop_base); } AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); /* * Read microcode version and date. */ AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, asc_dvc->cfg->mcode_date); AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, asc_dvc->cfg->mcode_version); /* * Set the chip type to indicate the ASC38C1600. */ AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); /* * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current * cable detection and then we are able to read C_DET[3:0]. * * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 * Microcode Default Value' section below. */ scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, scsi_cfg1 | DIS_TERM_DRV); /* * If the PCI Configuration Command Register "Parity Error Response * Control" Bit was clear (0), then set the microcode variable * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode * to ignore DMA parity errors. */ if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); word |= CONTROL_FLAG_IGNORE_PERR; AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); } /* * If the BIOS control flag AIPP (Asynchronous Information * Phase Protection) disable bit is not set, then set the firmware * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable * AIPP checking and encoding. */ if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); word |= CONTROL_FLAG_ENABLE_AIPP; AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); } /* * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], * and START_CTL_TH [3:2]. */ AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); /* * Microcode operating variables for WDTR, SDTR, and command tag * queuing will be set in slave_configure() based on what a * device reports it is capable of in Inquiry byte 7. * * If SCSI Bus Resets have been disabled, then directly set * SDTR and WDTR from the EEPROM configuration. This will allow * the BIOS and warm boot to work without a SCSI bus hang on * the Inquiry caused by host and target mismatched DTR values. * Without the SCSI Bus Reset, before an Inquiry a device can't * be assumed to be in Asynchronous, Narrow mode. */ if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, asc_dvc->wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, asc_dvc->sdtr_able); } /* * Set microcode operating variables for DISC and SDTR_SPEED1, * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM * configuration values. * * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them * without determining here whether the device supports SDTR. */ AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, asc_dvc->cfg->disc_enable); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); /* * Set SCSI_CFG0 Microcode Default Value. * * The microcode will set the SCSI_CFG0 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | asc_dvc->chip_scsi_id); /* * Calculate SCSI_CFG1 Microcode Default Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. * * Each ASC-38C1600 function has only two cable detect bits. * The bus mode override bits are in IOPB_SOFT_OVER_WR. */ scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); /* * If the cable is reversed all of the SCSI_CTRL register signals * will be set. Check for and return an error if this condition is * found. */ if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; return ADV_ERROR; } /* * Each ASC-38C1600 function has two connectors. Only an HVD device * can not be connected to either connector. An LVD device or SE device * may be connected to either connecor. If an SE device is connected, * then at most Ultra speed (20 Mhz) can be used on both connectors. * * If an HVD device is attached, return an error. */ if (scsi_cfg1 & HVD) { asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; return ADV_ERROR; } /* * Each function in the ASC-38C1600 uses only the SE cable detect and * termination because there are two connectors for each function. Each * function may use either LVD or SE mode. Corresponding the SE automatic * termination control EEPROM bits are used for each function. Each * function has its own EEPROM. If SE automatic control is enabled for * the function, then set the termination value based on a table listed * in a_condor.h. * * If manual termination is specified in the EEPROM for the function, * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is * ready to be 'ored' into SCSI_CFG1. */ if ((asc_dvc->cfg->termination & TERM_SE) == 0) { struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); /* SE automatic termination control is enabled. */ switch (scsi_cfg1 & C_DET_SE) { /* TERM_SE_HI: on, TERM_SE_LO: on */ case 0x1: case 0x2: case 0x3: asc_dvc->cfg->termination |= TERM_SE; break; case 0x0: if (PCI_FUNC(pdev->devfn) == 0) { /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ } else { /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ asc_dvc->cfg->termination |= TERM_SE_HI; } break; } } /* * Clear any set TERM_SE bits. */ scsi_cfg1 &= ~TERM_SE; /* * Invert the TERM_SE bits and then set 'scsi_cfg1'. */ scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); /* * Clear Big Endian and Terminator Polarity bits and set possibly * modified termination control bits in the Microcode SCSI_CFG1 * Register Value. * * Big Endian bit is not used even on big endian machines. */ scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); /* * Set SCSI_CFG1 Microcode Default Value * * Set possibly modified termination control bits in the Microcode * SCSI_CFG1 Register Value. * * The microcode will set the SCSI_CFG1 register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); /* * Set MEM_CFG Microcode Default Value * * The microcode will set the MEM_CFG register using this value * after it is started below. * * MEM_CFG may be accessed as a word or byte, but only bits 0-7 * are defined. * * ASC-38C1600 has 32KB internal memory. * * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come * out a special 16K Adv Library and Microcode version. After the issue * resolved, we should turn back to the 32K support. Both a_condor.h and * mcode.sas files also need to be updated. * * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, * BIOS_EN | RAM_SZ_32KB); */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, BIOS_EN | RAM_SZ_16KB); /* * Set SEL_MASK Microcode Default Value * * The microcode will set the SEL_MASK register using this value * after it is started below. */ AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); AdvBuildCarrierFreelist(asc_dvc); /* * Set-up the Host->RISC Initiator Command Queue (ICQ). */ if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { asc_dvc->err_code |= ASC_IERR_NO_CARRIER; return ADV_ERROR; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); /* * The first command issued will be placed in the stopper carrier. */ asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Set RISC ICQ physical address start value. Initialize the * COMMA register to the same value otherwise the RISC will * prematurely detect a command is available. */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); AdvWriteDWordRegister(iop_base, IOPDW_COMMA, le32_to_cpu(asc_dvc->icq_sp->carr_pa)); /* * Set-up the RISC->Host Initiator Response Queue (IRQ). */ if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { asc_dvc->err_code |= ASC_IERR_NO_CARRIER; return ADV_ERROR; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); /* * The first command completed by the RISC will be placed in * the stopper. * * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is * completed the RISC will set the ASC_RQ_STOPPER bit. */ asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Set RISC IRQ physical address start value. */ AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); asc_dvc->carr_pending_cnt = 0; AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, (ADV_INTR_ENABLE_HOST_INTR | ADV_INTR_ENABLE_GLOBAL_INTR)); AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); AdvWriteWordRegister(iop_base, IOPW_PC, word); /* finally, finally, gentlemen, start your engine */ AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); /* * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus * Resets should be performed. The RISC has to be running * to issue a SCSI Bus Reset. */ if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { /* * If the BIOS Signature is present in memory, restore the * per TID microcode operating variables. */ if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { /* * Restore per TID negotiated values. */ AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ASC_MAX_TID; tid++) { AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } } else { if (AdvResetSB(asc_dvc) != ADV_TRUE) { warn_code = ASC_WARN_BUSRESET_ERROR; } } } return warn_code; } /* * Reset chip and SCSI Bus. * * Return Value: * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. */ static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) { int status; ushort wdtr_able, sdtr_able, tagqng_able; ushort ppr_able = 0; uchar tid, max_cmd[ADV_MAX_TID + 1]; AdvPortAddr iop_base; ushort bios_sig; iop_base = asc_dvc->iop_base; /* * Save current per TID negotiated values. */ AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); } AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADV_MAX_TID; tid++) { AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } /* * Force the AdvInitAsc3550/38C0800Driver() function to * perform a SCSI Bus Reset by clearing the BIOS signature word. * The initialization functions assumes a SCSI Bus Reset is not * needed if the BIOS signature word is present. */ AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); /* * Stop chip and reset it. */ AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); mdelay(100); AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_WR_IO_REG); /* * Reset Adv Library error code, if any, and try * re-initializing the chip. */ asc_dvc->err_code = 0; if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { status = AdvInitAsc38C1600Driver(asc_dvc); } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { status = AdvInitAsc38C0800Driver(asc_dvc); } else { status = AdvInitAsc3550Driver(asc_dvc); } /* Translate initialization return value to status value. */ if (status == 0) { status = ADV_TRUE; } else { status = ADV_FALSE; } /* * Restore the BIOS signature word. */ AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); /* * Restore per TID negotiated values. */ AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); } AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); for (tid = 0; tid <= ADV_MAX_TID; tid++) { AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, max_cmd[tid]); } return status; } /* * adv_async_callback() - Adv Library asynchronous event callback function. */ static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) { switch (code) { case ADV_ASYNC_SCSI_BUS_RESET_DET: /* * The firmware detected a SCSI Bus reset. */ ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); break; case ADV_ASYNC_RDMA_FAILURE: /* * Handle RDMA failure by resetting the SCSI Bus and * possibly the chip if it is unresponsive. Log the error * with a unique code. */ ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); AdvResetChipAndSB(adv_dvc_varp); break; case ADV_HOST_SCSI_BUS_RESET: /* * Host generated SCSI bus reset occurred. */ ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); break; default: ASC_DBG(0, "unknown code 0x%x\n", code); break; } } /* * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). * * Callback function for the Wide SCSI Adv Library. */ static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) { struct asc_board *boardp; adv_req_t *reqp; adv_sgblk_t *sgblkp; struct scsi_cmnd *scp; struct Scsi_Host *shost; ADV_DCNT resid_cnt; ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n", (ulong)adv_dvc_varp, (ulong)scsiqp); ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); /* * Get the adv_req_t structure for the command that has been * completed. The adv_req_t structure actually contains the * completed ADV_SCSI_REQ_Q structure. */ reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr); ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); if (reqp == NULL) { ASC_PRINT("adv_isr_callback: reqp is NULL\n"); return; } /* * Get the struct scsi_cmnd structure and Scsi_Host structure for the * command that has been completed. * * Note: The adv_req_t request structure and adv_sgblk_t structure, * if any, are dropped, because a board structure pointer can not be * determined. */ scp = reqp->cmndp; ASC_DBG(1, "scp 0x%p\n", scp); if (scp == NULL) { ASC_PRINT ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); return; } ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); shost = scp->device->host; ASC_STATS(shost, callback); ASC_DBG(1, "shost 0x%p\n", shost); boardp = shost_priv(shost); BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var); /* * 'done_status' contains the command's ending status. */ switch (scsiqp->done_status) { case QD_NO_ERROR: ASC_DBG(2, "QD_NO_ERROR\n"); scp->result = 0; /* * Check for an underrun condition. * * If there was no error and an underrun condition, then * then return the number of underrun bytes. */ resid_cnt = le32_to_cpu(scsiqp->data_cnt); if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && resid_cnt <= scsi_bufflen(scp)) { ASC_DBG(1, "underrun condition %lu bytes\n", (ulong)resid_cnt); scsi_set_resid(scp, resid_cnt); } break; case QD_WITH_ERROR: ASC_DBG(2, "QD_WITH_ERROR\n"); switch (scsiqp->host_status) { case QHSTA_NO_ERROR: if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); ASC_DBG_PRT_SENSE(2, scp->sense_buffer, SCSI_SENSE_BUFFERSIZE); /* * Note: The 'status_byte()' macro used by * target drivers defined in scsi.h shifts the * status byte returned by host drivers right * by 1 bit. This is why target drivers also * use right shifted status byte definitions. * For instance target drivers use * CHECK_CONDITION, defined to 0x1, instead of * the SCSI defined check condition value of * 0x2. Host drivers are supposed to return * the status byte as it is defined by SCSI. */ scp->result = DRIVER_BYTE(DRIVER_SENSE) | STATUS_BYTE(scsiqp->scsi_status); } else { scp->result = STATUS_BYTE(scsiqp->scsi_status); } break; default: /* Some other QHSTA error occurred. */ ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); scp->result = HOST_BYTE(DID_BAD_TARGET); break; } break; case QD_ABORTED_BY_HOST: ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); scp->result = HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); break; default: ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); scp->result = HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); break; } /* * If the 'init_tidmask' bit isn't already set for the target and the * current request finished normally, then set the bit for the target * to indicate that a device is present. */ if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && scsiqp->done_status == QD_NO_ERROR && scsiqp->host_status == QHSTA_NO_ERROR) { boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); } asc_scsi_done(scp); /* * Free all 'adv_sgblk_t' structures allocated for the request. */ while ((sgblkp = reqp->sgblkp) != NULL) { /* Remove 'sgblkp' from the request list. */ reqp->sgblkp = sgblkp->next_sgblkp; /* Add 'sgblkp' to the board free list. */ sgblkp->next_sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = sgblkp; } /* * Free the adv_req_t structure used with the command by adding * it back to the board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; ASC_DBG(1, "done\n"); } /* * Adv Library Interrupt Service Routine * * This function is called by a driver's interrupt service routine. * The function disables and re-enables interrupts. * * When a microcode idle command is completed, the ADV_DVC_VAR * 'idle_cmd_done' field is set to ADV_TRUE. * * Note: AdvISR() can be called when interrupts are disabled or even * when there is no hardware interrupt condition present. It will * always check for completed idle commands and microcode requests. * This is an important feature that shouldn't be changed because it * allows commands to be completed from polling mode loops. * * Return: * ADV_TRUE(1) - interrupt was pending * ADV_FALSE(0) - no interrupt was pending */ static int AdvISR(ADV_DVC_VAR *asc_dvc) { AdvPortAddr iop_base; uchar int_stat; ushort target_bit; ADV_CARR_T *free_carrp; ADV_VADDR irq_next_vpa; ADV_SCSI_REQ_Q *scsiq; iop_base = asc_dvc->iop_base; /* Reading the register clears the interrupt. */ int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | ADV_INTR_STATUS_INTRC)) == 0) { return ADV_FALSE; } /* * Notify the driver of an asynchronous microcode condition by * calling the adv_async_callback function. The function * is passed the microcode ASC_MC_INTRB_CODE byte value. */ if (int_stat & ADV_INTR_STATUS_INTRB) { uchar intrb_code; AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && asc_dvc->carr_pending_cnt != 0) { AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); } } } adv_async_callback(asc_dvc, intrb_code); } /* * Check if the IRQ stopper carrier contains a completed request. */ while (((irq_next_vpa = le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) { /* * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. * The RISC will have set 'areq_vpa' to a virtual address. * * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr * field to the carrier ADV_CARR_T.areq_vpa field. The conversion * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr' * in AdvExeScsiQueue(). */ scsiq = (ADV_SCSI_REQ_Q *) ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa)); /* * Request finished with good status and the queue was not * DMAed to host memory by the firmware. Set all status fields * to indicate good status. */ if ((irq_next_vpa & ASC_RQ_GOOD) != 0) { scsiq->done_status = QD_NO_ERROR; scsiq->host_status = scsiq->scsi_status = 0; scsiq->data_cnt = 0L; } /* * Advance the stopper pointer to the next carrier * ignoring the lower four bits. Free the previous * stopper carrier. */ free_carrp = asc_dvc->irq_sp; asc_dvc->irq_sp = (ADV_CARR_T *) ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa)); free_carrp->next_vpa = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); asc_dvc->carr_freelist = free_carrp; asc_dvc->carr_pending_cnt--; target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); /* * Clear request microcode control flag. */ scsiq->cntl = 0; /* * Notify the driver of the completed request by passing * the ADV_SCSI_REQ_Q pointer to its callback function. */ scsiq->a_flag |= ADV_SCSIQ_DONE; adv_isr_callback(asc_dvc, scsiq); /* * Note: After the driver callback function is called, 'scsiq' * can no longer be referenced. * * Fall through and continue processing other completed * requests... */ } return ADV_TRUE; } static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) { if (asc_dvc->err_code == 0) { asc_dvc->err_code = err_code; AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, err_code); } return err_code; } static void AscAckInterrupt(PortAddr iop_base) { uchar host_flag; uchar risc_flag; ushort loop; loop = 0; do { risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); if (loop++ > 0x7FFF) { break; } } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); host_flag = AscReadLramByte(iop_base, ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); AscSetChipStatus(iop_base, CIW_INT_ACK); loop = 0; while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { AscSetChipStatus(iop_base, CIW_INT_ACK); if (loop++ > 3) { break; } } AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); } static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) { const uchar *period_table; int max_index; int min_index; int i; period_table = asc_dvc->sdtr_period_tbl; max_index = (int)asc_dvc->max_sdtr_index; min_index = (int)asc_dvc->min_sdtr_index; if ((syn_time <= period_table[max_index])) { for (i = min_index; i < (max_index - 1); i++) { if (syn_time <= period_table[i]) { return (uchar)i; } } return (uchar)max_index; } else { return (uchar)(max_index + 1); } } static uchar AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) { EXT_MSG sdtr_buf; uchar sdtr_period_index; PortAddr iop_base; iop_base = asc_dvc->iop_base; sdtr_buf.msg_type = EXTENDED_MESSAGE; sdtr_buf.msg_len = MS_SDTR_LEN; sdtr_buf.msg_req = EXTENDED_SDTR; sdtr_buf.xfer_period = sdtr_period; sdtr_offset &= ASC_SYN_MAX_OFFSET; sdtr_buf.req_ack_offset = sdtr_offset; sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); if (sdtr_period_index <= asc_dvc->max_sdtr_index) { AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, (uchar *)&sdtr_buf, sizeof(EXT_MSG) >> 1); return ((sdtr_period_index << 4) | sdtr_offset); } else { sdtr_buf.req_ack_offset = 0; AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, (uchar *)&sdtr_buf, sizeof(EXT_MSG) >> 1); return 0; } } static uchar AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) { uchar byte; uchar sdtr_period_ix; sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); if (sdtr_period_ix > asc_dvc->max_sdtr_index) return 0xFF; byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); return byte; } static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) { ASC_SCSI_BIT_ID_TYPE org_id; int i; int sta = TRUE; AscSetBank(iop_base, 1); org_id = AscReadChipDvcID(iop_base); for (i = 0; i <= ASC_MAX_TID; i++) { if (org_id == (0x01 << i)) break; } org_id = (ASC_SCSI_BIT_ID_TYPE) i; AscWriteChipDvcID(iop_base, id); if (AscReadChipDvcID(iop_base) == (0x01 << id)) { AscSetBank(iop_base, 0); AscSetChipSyn(iop_base, sdtr_data); if (AscGetChipSyn(iop_base) != sdtr_data) { sta = FALSE; } } else { sta = FALSE; } AscSetBank(iop_base, 1); AscWriteChipDvcID(iop_base, org_id); AscSetBank(iop_base, 0); return (sta); } static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) { AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); } static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) { EXT_MSG ext_msg; EXT_MSG out_msg; ushort halt_q_addr; int sdtr_accept; ushort int_halt_code; ASC_SCSI_BIT_ID_TYPE scsi_busy; ASC_SCSI_BIT_ID_TYPE target_id; PortAddr iop_base; uchar tag_code; uchar q_status; uchar halt_qp; uchar sdtr_data; uchar target_ix; uchar q_cntl, tid_no; uchar cur_dvc_qng; uchar asyn_sdtr; uchar scsi_status; struct asc_board *boardp; BUG_ON(!asc_dvc->drv_ptr); boardp = asc_dvc->drv_ptr; iop_base = asc_dvc->iop_base; int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); target_ix = AscReadLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_TARGET_IX)); q_cntl = AscReadLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); tid_no = ASC_TIX_TO_TID(target_ix); target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); if (asc_dvc->pci_fix_asyn_xfer & target_id) { asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; } else { asyn_sdtr = 0; } if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { if (asc_dvc->pci_fix_asyn_xfer & target_id) { AscSetChipSDTR(iop_base, 0, tid_no); boardp->sdtr_data[tid_no] = 0; } AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { if (asc_dvc->pci_fix_asyn_xfer & target_id) { AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); boardp->sdtr_data[tid_no] = asyn_sdtr; } AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { AscMemWordCopyPtrFromLram(iop_base, ASCV_MSGIN_BEG, (uchar *)&ext_msg, sizeof(EXT_MSG) >> 1); if (ext_msg.msg_type == EXTENDED_MESSAGE && ext_msg.msg_req == EXTENDED_SDTR && ext_msg.msg_len == MS_SDTR_LEN) { sdtr_accept = TRUE; if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { sdtr_accept = FALSE; ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; } if ((ext_msg.xfer_period < asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) || (ext_msg.xfer_period > asc_dvc->sdtr_period_tbl[asc_dvc-> max_sdtr_index])) { sdtr_accept = FALSE; ext_msg.xfer_period = asc_dvc->sdtr_period_tbl[asc_dvc-> min_sdtr_index]; } if (sdtr_accept) { sdtr_data = AscCalSDTRData(asc_dvc, ext_msg.xfer_period, ext_msg.req_ack_offset); if ((sdtr_data == 0xFF)) { q_cntl |= QC_MSG_OUT; asc_dvc->init_sdtr &= ~target_id; asc_dvc->sdtr_done &= ~target_id; AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); boardp->sdtr_data[tid_no] = asyn_sdtr; } } if (ext_msg.req_ack_offset == 0) { q_cntl &= ~QC_MSG_OUT; asc_dvc->init_sdtr &= ~target_id; asc_dvc->sdtr_done &= ~target_id; AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); } else { if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { q_cntl &= ~QC_MSG_OUT; asc_dvc->sdtr_done |= target_id; asc_dvc->init_sdtr |= target_id; asc_dvc->pci_fix_asyn_xfer &= ~target_id; sdtr_data = AscCalSDTRData(asc_dvc, ext_msg.xfer_period, ext_msg. req_ack_offset); AscSetChipSDTR(iop_base, sdtr_data, tid_no); boardp->sdtr_data[tid_no] = sdtr_data; } else { q_cntl |= QC_MSG_OUT; AscMsgOutSDTR(asc_dvc, ext_msg.xfer_period, ext_msg.req_ack_offset); asc_dvc->pci_fix_asyn_xfer &= ~target_id; sdtr_data = AscCalSDTRData(asc_dvc, ext_msg.xfer_period, ext_msg. req_ack_offset); AscSetChipSDTR(iop_base, sdtr_data, tid_no); boardp->sdtr_data[tid_no] = sdtr_data; asc_dvc->sdtr_done |= target_id; asc_dvc->init_sdtr |= target_id; } } AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (ext_msg.msg_type == EXTENDED_MESSAGE && ext_msg.msg_req == EXTENDED_WDTR && ext_msg.msg_len == MS_WDTR_LEN) { ext_msg.wdtr_width = 0; AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, (uchar *)&ext_msg, sizeof(EXT_MSG) >> 1); q_cntl |= QC_MSG_OUT; AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else { ext_msg.msg_type = MESSAGE_REJECT; AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, (uchar *)&ext_msg, sizeof(EXT_MSG) >> 1); q_cntl |= QC_MSG_OUT; AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { q_cntl |= QC_REQ_SENSE; if ((asc_dvc->init_sdtr & target_id) != 0) { asc_dvc->sdtr_done &= ~target_id; sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); q_cntl |= QC_MSG_OUT; AscMsgOutSDTR(asc_dvc, asc_dvc-> sdtr_period_tbl[(sdtr_data >> 4) & (uchar)(asc_dvc-> max_sdtr_index - 1)], (uchar)(sdtr_data & (uchar) ASC_SYN_MAX_OFFSET)); } AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL), q_cntl); tag_code = AscReadLramByte(iop_base, (ushort)(halt_q_addr + (ushort) ASC_SCSIQ_B_TAG_CODE)); tag_code &= 0xDC; if ((asc_dvc->pci_fix_asyn_xfer & target_id) && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) ) { tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); } AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_TAG_CODE), tag_code); q_status = AscReadLramByte(iop_base, (ushort)(halt_q_addr + (ushort) ASC_SCSIQ_B_STATUS)); q_status |= (QS_READY | QS_BUSY); AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_STATUS), q_status); scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); scsi_busy &= ~target_id; AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { AscMemWordCopyPtrFromLram(iop_base, ASCV_MSGOUT_BEG, (uchar *)&out_msg, sizeof(EXT_MSG) >> 1); if ((out_msg.msg_type == EXTENDED_MESSAGE) && (out_msg.msg_len == MS_SDTR_LEN) && (out_msg.msg_req == EXTENDED_SDTR)) { asc_dvc->init_sdtr &= ~target_id; asc_dvc->sdtr_done &= ~target_id; AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); boardp->sdtr_data[tid_no] = asyn_sdtr; } q_cntl &= ~QC_MSG_OUT; AscWriteLramByte(iop_base, (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL), q_cntl); AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { scsi_status = AscReadLramByte(iop_base, (ushort)((ushort)halt_q_addr + (ushort) ASC_SCSIQ_SCSI_STATUS)); cur_dvc_qng = AscReadLramByte(iop_base, (ushort)((ushort)ASC_QADR_BEG + (ushort)target_ix)); if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); scsi_busy |= target_id; AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); asc_dvc->queue_full_or_busy |= target_id; if (scsi_status == SAM_STAT_TASK_SET_FULL) { if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { cur_dvc_qng -= 1; asc_dvc->max_dvc_qng[tid_no] = cur_dvc_qng; AscWriteLramByte(iop_base, (ushort)((ushort) ASCV_MAX_DVC_QNG_BEG + (ushort) tid_no), cur_dvc_qng); /* * Set the device queue depth to the * number of active requests when the * QUEUE FULL condition was encountered. */ boardp->queue_full |= target_id; boardp->queue_full_cnt[tid_no] = cur_dvc_qng; } } } AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } #if CC_VERY_LONG_SG_LIST else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) { uchar q_no; ushort q_addr; uchar sg_wk_q_no; uchar first_sg_wk_q_no; ASC_SCSI_Q *scsiq; /* Ptr to driver request. */ ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */ ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */ ushort sg_list_dwords; ushort sg_entry_cnt; uchar next_qp; int i; q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP); if (q_no == ASC_QLINK_END) return 0; q_addr = ASC_QNO_TO_QADDR(q_no); /* * Convert the request's SRB pointer to a host ASC_SCSI_REQ * structure pointer using a macro provided by the driver. * The ASC_SCSI_REQ pointer provides a pointer to the * host ASC_SG_HEAD structure. */ /* Read request's SRB pointer. */ scsiq = (ASC_SCSI_Q *) ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base, (ushort) (q_addr + ASC_SCSIQ_D_SRBPTR)))); /* * Get request's first and working SG queue. */ sg_wk_q_no = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_SG_WK_QP)); first_sg_wk_q_no = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FIRST_SG_WK_QP)); /* * Reset request's working SG queue back to the * first SG queue. */ AscWriteLramByte(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_SG_WK_QP), first_sg_wk_q_no); sg_head = scsiq->sg_head; /* * Set sg_entry_cnt to the number of SG elements * that will be completed on this interrupt. * * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1 * SG elements. The data_cnt and data_addr fields which * add 1 to the SG element capacity are not used when * restarting SG handling after a halt. */ if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) { sg_entry_cnt = ASC_MAX_SG_LIST - 1; /* * Keep track of remaining number of SG elements that * will need to be handled on the next interrupt. */ scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1); } else { sg_entry_cnt = scsiq->remain_sg_entry_cnt; scsiq->remain_sg_entry_cnt = 0; } /* * Copy SG elements into the list of allocated SG queues. * * Last index completed is saved in scsiq->next_sg_index. */ next_qp = first_sg_wk_q_no; q_addr = ASC_QNO_TO_QADDR(next_qp); scsi_sg_q.sg_head_qp = q_no; scsi_sg_q.cntl = QCSG_SG_XFER_LIST; for (i = 0; i < sg_head->queue_cnt; i++) { scsi_sg_q.seq_no = i + 1; if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); sg_entry_cnt -= ASC_SG_LIST_PER_Q; /* * After very first SG queue RISC FW uses next * SG queue first element then checks sg_list_cnt * against zero and then decrements, so set * sg_list_cnt 1 less than number of SG elements * in each SG queue. */ scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q - 1; } else { /* * This is the last SG queue in the list of * allocated SG queues. If there are more * SG elements than will fit in the allocated * queues, then set the QCSG_SG_XFER_MORE flag. */ if (scsiq->remain_sg_entry_cnt != 0) { scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; } else { scsi_sg_q.cntl |= QCSG_SG_XFER_END; } /* equals sg_entry_cnt * 2 */ sg_list_dwords = sg_entry_cnt << 1; scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; sg_entry_cnt = 0; } scsi_sg_q.q_no = next_qp; AscMemWordCopyPtrToLram(iop_base, q_addr + ASC_SCSIQ_SGHD_CPY_BEG, (uchar *)&scsi_sg_q, sizeof(ASC_SG_LIST_Q) >> 1); AscMemDWordCopyPtrToLram(iop_base, q_addr + ASC_SGQ_LIST_BEG, (uchar *)&sg_head-> sg_list[scsiq->next_sg_index], sg_list_dwords); scsiq->next_sg_index += ASC_SG_LIST_PER_Q; /* * If the just completed SG queue contained the * last SG element, then no more SG queues need * to be written. */ if (scsi_sg_q.cntl & QCSG_SG_XFER_END) { break; } next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); q_addr = ASC_QNO_TO_QADDR(next_qp); } /* * Clear the halt condition so the RISC will be restarted * after the return. */ AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); return (0); } #endif /* CC_VERY_LONG_SG_LIST */ return (0); } /* * void * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) * * Calling/Exit State: * none * * Description: * Input an ASC_QDONE_INFO structure from the chip */ static void DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) { int i; ushort word; AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < 2 * words; i += 2) { if (i == 10) { continue; } word = inpw(iop_base + IOP_RAM_DATA); inbuf[i] = word & 0xff; inbuf[i + 1] = (word >> 8) & 0xff; } ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); } static uchar _AscCopyLramScsiDoneQ(PortAddr iop_base, ushort q_addr, ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count) { ushort _val; uchar sg_queue_cnt; DvcGetQinfo(iop_base, q_addr + ASC_SCSIQ_DONE_INFO_BEG, (uchar *)scsiq, (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); _val = AscReadLramWord(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); scsiq->q_status = (uchar)_val; scsiq->q_no = (uchar)(_val >> 8); _val = AscReadLramWord(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); scsiq->cntl = (uchar)_val; sg_queue_cnt = (uchar)(_val >> 8); _val = AscReadLramWord(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_SENSE_LEN)); scsiq->sense_len = (uchar)_val; scsiq->extra_bytes = (uchar)(_val >> 8); /* * Read high word of remain bytes from alternate location. */ scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base, (ushort)(q_addr + (ushort) ASC_SCSIQ_W_ALT_DC1))) << 16); /* * Read low word of remain bytes from original location. */ scsiq->remain_bytes += AscReadLramWord(iop_base, (ushort)(q_addr + (ushort) ASC_SCSIQ_DW_REMAIN_XFER_CNT)); scsiq->remain_bytes &= max_dma_count; return sg_queue_cnt; } /* * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). * * Interrupt callback function for the Narrow SCSI Asc Library. */ static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) { struct asc_board *boardp; struct scsi_cmnd *scp; struct Scsi_Host *shost; ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr); if (!scp) return; ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); shost = scp->device->host; ASC_STATS(shost, callback); ASC_DBG(1, "shost 0x%p\n", shost); boardp = shost_priv(shost); BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var); dma_unmap_single(boardp->dev, scp->SCp.dma_handle, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); /* * 'qdonep' contains the command's ending status. */ switch (qdonep->d3.done_stat) { case QD_NO_ERROR: ASC_DBG(2, "QD_NO_ERROR\n"); scp->result = 0; /* * Check for an underrun condition. * * If there was no error and an underrun condition, then * return the number of underrun bytes. */ if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && qdonep->remain_bytes <= scsi_bufflen(scp)) { ASC_DBG(1, "underrun condition %u bytes\n", (unsigned)qdonep->remain_bytes); scsi_set_resid(scp, qdonep->remain_bytes); } break; case QD_WITH_ERROR: ASC_DBG(2, "QD_WITH_ERROR\n"); switch (qdonep->d3.host_stat) { case QHSTA_NO_ERROR: if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); ASC_DBG_PRT_SENSE(2, scp->sense_buffer, SCSI_SENSE_BUFFERSIZE); /* * Note: The 'status_byte()' macro used by * target drivers defined in scsi.h shifts the * status byte returned by host drivers right * by 1 bit. This is why target drivers also * use right shifted status byte definitions. * For instance target drivers use * CHECK_CONDITION, defined to 0x1, instead of * the SCSI defined check condition value of * 0x2. Host drivers are supposed to return * the status byte as it is defined by SCSI. */ scp->result = DRIVER_BYTE(DRIVER_SENSE) | STATUS_BYTE(qdonep->d3.scsi_stat); } else { scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); } break; default: /* QHSTA error occurred */ ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); scp->result = HOST_BYTE(DID_BAD_TARGET); break; } break; case QD_ABORTED_BY_HOST: ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); scp->result = HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. scsi_msg) | STATUS_BYTE(qdonep->d3.scsi_stat); break; default: ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); scp->result = HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. scsi_msg) | STATUS_BYTE(qdonep->d3.scsi_stat); break; } /* * If the 'init_tidmask' bit isn't already set for the target and the * current request finished normally, then set the bit for the target * to indicate that a device is present. */ if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && qdonep->d3.done_stat == QD_NO_ERROR && qdonep->d3.host_stat == QHSTA_NO_ERROR) { boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); } asc_scsi_done(scp); } static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) { uchar next_qp; uchar n_q_used; uchar sg_list_qp; uchar sg_queue_cnt; uchar q_cnt; uchar done_q_tail; uchar tid_no; ASC_SCSI_BIT_ID_TYPE scsi_busy; ASC_SCSI_BIT_ID_TYPE target_id; PortAddr iop_base; ushort q_addr; ushort sg_q_addr; uchar cur_target_qng; ASC_QDONE_INFO scsiq_buf; ASC_QDONE_INFO *scsiq; int false_overrun; iop_base = asc_dvc->iop_base; n_q_used = 1; scsiq = (ASC_QDONE_INFO *)&scsiq_buf; done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); q_addr = ASC_QNO_TO_QADDR(done_q_tail); next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); if (next_qp != ASC_QLINK_END) { AscPutVarDoneQTail(iop_base, next_qp); q_addr = ASC_QNO_TO_QADDR(next_qp); sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, asc_dvc->max_dma_count); AscWriteLramByte(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), (uchar)(scsiq-> q_status & (uchar)~(QS_READY | QS_ABORTED))); tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); if ((scsiq->cntl & QC_SG_HEAD) != 0) { sg_q_addr = q_addr; sg_list_qp = next_qp; for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { sg_list_qp = AscReadLramByte(iop_base, (ushort)(sg_q_addr + (ushort) ASC_SCSIQ_B_FWD)); sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); if (sg_list_qp == ASC_QLINK_END) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_SG_Q_LINKS); scsiq->d3.done_stat = QD_WITH_ERROR; scsiq->d3.host_stat = QHSTA_D_QDONE_SG_LIST_CORRUPTED; goto FATAL_ERR_QDONE; } AscWriteLramByte(iop_base, (ushort)(sg_q_addr + (ushort) ASC_SCSIQ_B_STATUS), QS_FREE); } n_q_used = sg_queue_cnt + 1; AscPutVarDoneQTail(iop_base, sg_list_qp); } if (asc_dvc->queue_full_or_busy & target_id) { cur_target_qng = AscReadLramByte(iop_base, (ushort)((ushort) ASC_QADR_BEG + (ushort) scsiq->d2. target_ix)); if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { scsi_busy = AscReadLramByte(iop_base, (ushort) ASCV_SCSIBUSY_B); scsi_busy &= ~target_id; AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); asc_dvc->queue_full_or_busy &= ~target_id; } } if (asc_dvc->cur_total_qng >= n_q_used) { asc_dvc->cur_total_qng -= n_q_used; if (asc_dvc->cur_dvc_qng[tid_no] != 0) { asc_dvc->cur_dvc_qng[tid_no]--; } } else { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); scsiq->d3.done_stat = QD_WITH_ERROR; goto FATAL_ERR_QDONE; } if ((scsiq->d2.srb_ptr == 0UL) || ((scsiq->q_status & QS_ABORTED) != 0)) { return (0x11); } else if (scsiq->q_status == QS_DONE) { false_overrun = FALSE; if (scsiq->extra_bytes != 0) { scsiq->remain_bytes += (ADV_DCNT)scsiq->extra_bytes; } if (scsiq->d3.done_stat == QD_WITH_ERROR) { if (scsiq->d3.host_stat == QHSTA_M_DATA_OVER_RUN) { if ((scsiq-> cntl & (QC_DATA_IN | QC_DATA_OUT)) == 0) { scsiq->d3.done_stat = QD_NO_ERROR; scsiq->d3.host_stat = QHSTA_NO_ERROR; } else if (false_overrun) { scsiq->d3.done_stat = QD_NO_ERROR; scsiq->d3.host_stat = QHSTA_NO_ERROR; } } else if (scsiq->d3.host_stat == QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { AscStopChip(iop_base); AscSetChipControl(iop_base, (uchar)(CC_SCSI_RESET | CC_HALT)); udelay(60); AscSetChipControl(iop_base, CC_HALT); AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); AscSetChipStatus(iop_base, 0); AscSetChipControl(iop_base, 0); } } if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { asc_isr_callback(asc_dvc, scsiq); } else { if ((AscReadLramByte(iop_base, (ushort)(q_addr + (ushort) ASC_SCSIQ_CDB_BEG)) == START_STOP)) { asc_dvc->unit_not_ready &= ~target_id; if (scsiq->d3.done_stat != QD_NO_ERROR) { asc_dvc->start_motor &= ~target_id; } } } return (1); } else { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); FATAL_ERR_QDONE: if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { asc_isr_callback(asc_dvc, scsiq); } return (0x80); } } return (0); } static int AscISR(ASC_DVC_VAR *asc_dvc) { ASC_CS_TYPE chipstat; PortAddr iop_base; ushort saved_ram_addr; uchar ctrl_reg; uchar saved_ctrl_reg; int int_pending; int status; uchar host_flag; iop_base = asc_dvc->iop_base; int_pending = FALSE; if (AscIsIntPending(iop_base) == 0) return int_pending; if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { return ERR; } if (asc_dvc->in_critical_cnt != 0) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); return ERR; } if (asc_dvc->is_in_int) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); return ERR; } asc_dvc->is_in_int = TRUE; ctrl_reg = AscGetChipControl(iop_base); saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | CC_SINGLE_STEP | CC_DIAG | CC_TEST)); chipstat = AscGetChipStatus(iop_base); if (chipstat & CSW_SCSI_RESET_LATCH) { if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { int i = 10; int_pending = TRUE; asc_dvc->sdtr_done = 0; saved_ctrl_reg &= (uchar)(~CC_HALT); while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { mdelay(100); } AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); AscSetChipControl(iop_base, CC_HALT); AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); AscSetChipStatus(iop_base, 0); chipstat = AscGetChipStatus(iop_base); } } saved_ram_addr = AscGetChipLramAddr(iop_base); host_flag = AscReadLramByte(iop_base, ASCV_HOST_FLAG_B) & (uchar)(~ASC_HOST_FLAG_IN_ISR); AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); if ((chipstat & CSW_INT_PENDING) || (int_pending)) { AscAckInterrupt(iop_base); int_pending = TRUE; if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { if (AscIsrChipHalted(asc_dvc) == ERR) { goto ISR_REPORT_QDONE_FATAL_ERROR; } else { saved_ctrl_reg &= (uchar)(~CC_HALT); } } else { ISR_REPORT_QDONE_FATAL_ERROR: if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { while (((status = AscIsrQDone(asc_dvc)) & 0x01) != 0) { } } else { do { if ((status = AscIsrQDone(asc_dvc)) == 1) { break; } } while (status == 0x11); } if ((status & 0x80) != 0) int_pending = ERR; } } AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); AscSetChipLramAddr(iop_base, saved_ram_addr); AscSetChipControl(iop_base, saved_ctrl_reg); asc_dvc->is_in_int = FALSE; return int_pending; } /* * advansys_reset() * * Reset the bus associated with the command 'scp'. * * This function runs its own thread. Interrupts must be blocked but * sleeping is allowed and no locking other than for host structures is * required. Returns SUCCESS or FAILED. */ static int advansys_reset(struct scsi_cmnd *scp) { struct Scsi_Host *shost = scp->device->host; struct asc_board *boardp = shost_priv(shost); unsigned long flags; int status; int ret = SUCCESS; ASC_DBG(1, "0x%p\n", scp); ASC_STATS(shost, reset); scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n"); if (ASC_NARROW_BOARD(boardp)) { ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; /* Reset the chip and SCSI bus. */ ASC_DBG(1, "before AscInitAsc1000Driver()\n"); status = AscInitAsc1000Driver(asc_dvc); /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ if (asc_dvc->err_code || !asc_dvc->overrun_dma) { scmd_printk(KERN_INFO, scp, "SCSI bus reset error: " "0x%x, status: 0x%x\n", asc_dvc->err_code, status); ret = FAILED; } else if (status) { scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: " "0x%x\n", status); } else { scmd_printk(KERN_INFO, scp, "SCSI bus reset " "successful\n"); } ASC_DBG(1, "after AscInitAsc1000Driver()\n"); spin_lock_irqsave(shost->host_lock, flags); } else { /* * If the suggest reset bus flags are set, then reset the bus. * Otherwise only reset the device. */ ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; /* * Reset the target's SCSI bus. */ ASC_DBG(1, "before AdvResetChipAndSB()\n"); switch (AdvResetChipAndSB(adv_dvc)) { case ASC_TRUE: scmd_printk(KERN_INFO, scp, "SCSI bus reset " "successful\n"); break; case ASC_FALSE: default: scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n"); ret = FAILED; break; } spin_lock_irqsave(shost->host_lock, flags); AdvISR(adv_dvc); } /* Save the time of the most recently completed reset. */ boardp->last_reset = jiffies; spin_unlock_irqrestore(shost->host_lock, flags); ASC_DBG(1, "ret %d\n", ret); return ret; } /* * advansys_biosparam() * * Translate disk drive geometry if the "BIOS greater than 1 GB" * support is enabled for a drive. * * ip (information pointer) is an int array with the following definition: * ip[0]: heads * ip[1]: sectors * ip[2]: cylinders */ static int advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int ip[]) { struct asc_board *boardp = shost_priv(sdev->host); ASC_DBG(1, "begin\n"); ASC_STATS(sdev->host, biosparam); if (ASC_NARROW_BOARD(boardp)) { if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { ip[0] = 255; ip[1] = 63; } else { ip[0] = 64; ip[1] = 32; } } else { if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { ip[0] = 255; ip[1] = 63; } else { ip[0] = 64; ip[1] = 32; } } ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); ASC_DBG(1, "end\n"); return 0; } /* * First-level interrupt handler. * * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. */ static irqreturn_t advansys_interrupt(int irq, void *dev_id) { struct Scsi_Host *shost = dev_id; struct asc_board *boardp = shost_priv(shost); irqreturn_t result = IRQ_NONE; ASC_DBG(2, "boardp 0x%p\n", boardp); spin_lock(shost->host_lock); if (ASC_NARROW_BOARD(boardp)) { if (AscIsIntPending(shost->io_port)) { result = IRQ_HANDLED; ASC_STATS(shost, interrupt); ASC_DBG(1, "before AscISR()\n"); AscISR(&boardp->dvc_var.asc_dvc_var); } } else { ASC_DBG(1, "before AdvISR()\n"); if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { result = IRQ_HANDLED; ASC_STATS(shost, interrupt); } } spin_unlock(shost->host_lock); ASC_DBG(1, "end\n"); return result; } static int AscHostReqRiscHalt(PortAddr iop_base) { int count = 0; int sta = 0; uchar saved_stop_code; if (AscIsChipHalted(iop_base)) return (1); saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); do { if (AscIsChipHalted(iop_base)) { sta = 1; break; } mdelay(100); } while (count++ < 20); AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); return (sta); } static int AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) { int sta = FALSE; if (AscHostReqRiscHalt(iop_base)) { sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); AscStartChip(iop_base); } return sta; } static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) { char type = sdev->type; ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) return; if (asc_dvc->init_sdtr & tid_bits) return; if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; asc_dvc->pci_fix_asyn_xfer |= tid_bits; if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || (type == TYPE_ROM) || (type == TYPE_TAPE)) asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; if (asc_dvc->pci_fix_asyn_xfer & tid_bits) AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, ASYN_SDTR_DATA_FIX_PCI_REV_AB); } static void advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) { ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; if (sdev->lun == 0) { ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { asc_dvc->init_sdtr |= tid_bit; } else { asc_dvc->init_sdtr &= ~tid_bit; } if (orig_init_sdtr != asc_dvc->init_sdtr) AscAsyncFix(asc_dvc, sdev); } if (sdev->tagged_supported) { if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { if (sdev->lun == 0) { asc_dvc->cfg->can_tagged_qng |= tid_bit; asc_dvc->use_tagged_qng |= tid_bit; } scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, asc_dvc->max_dvc_qng[sdev->id]); } } else { if (sdev->lun == 0) { asc_dvc->cfg->can_tagged_qng &= ~tid_bit; asc_dvc->use_tagged_qng &= ~tid_bit; } scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); } if ((sdev->lun == 0) && (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, asc_dvc->cfg->disc_enable); AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, asc_dvc->use_tagged_qng); AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, asc_dvc->cfg->can_tagged_qng); asc_dvc->max_dvc_qng[sdev->id] = asc_dvc->cfg->max_tag_qng[sdev->id]; AscWriteLramByte(asc_dvc->iop_base, (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), asc_dvc->max_dvc_qng[sdev->id]); } } /* * Wide Transfers * * If the EEPROM enabled WDTR for the device and the device supports wide * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and * write the new value to the microcode. */ static void advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) { unsigned short cfg_word; AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); if ((cfg_word & tidmask) != 0) return; cfg_word |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); /* * Clear the microcode SDTR and WDTR negotiation done indicators for * the target to cause it to negotiate with the new setting set above. * WDTR when accepted causes the target to enter asynchronous mode, so * SDTR must be negotiated. */ AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); cfg_word &= ~tidmask; AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); cfg_word &= ~tidmask; AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); } /* * Synchronous Transfers * * If the EEPROM enabled SDTR for the device and the device * supports synchronous transfers, then turn on the device's * 'sdtr_able' bit. Write the new value to the microcode. */ static void advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) { unsigned short cfg_word; AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); if ((cfg_word & tidmask) != 0) return; cfg_word |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); /* * Clear the microcode "SDTR negotiation" done indicator for the * target to cause it to negotiate with the new setting set above. */ AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); cfg_word &= ~tidmask; AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); } /* * PPR (Parallel Protocol Request) Capable * * If the device supports DT mode, then it must be PPR capable. * The PPR message will be used in place of the SDTR and WDTR * messages to negotiate synchronous speed and offset, transfer * width, and protocol options. */ static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, AdvPortAddr iop_base, unsigned short tidmask) { AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); adv_dvc->ppr_able |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); } static void advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) { AdvPortAddr iop_base = adv_dvc->iop_base; unsigned short tidmask = 1 << sdev->id; if (sdev->lun == 0) { /* * Handle WDTR, SDTR, and Tag Queuing. If the feature * is enabled in the EEPROM and the device supports the * feature, then enable it in the microcode. */ if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) advansys_wide_enable_wdtr(iop_base, tidmask); if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) advansys_wide_enable_sdtr(iop_base, tidmask); if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); /* * Tag Queuing is disabled for the BIOS which runs in polled * mode and would see no benefit from Tag Queuing. Also by * disabling Tag Queuing in the BIOS devices with Tag Queuing * bugs will at least work with the BIOS. */ if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) { unsigned short cfg_word; AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); cfg_word |= tidmask; AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, adv_dvc->max_dvc_qng); } } if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) { scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, adv_dvc->max_dvc_qng); } else { scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); } } /* * Set the number of commands to queue per device for the * specified host adapter. */ static int advansys_slave_configure(struct scsi_device *sdev) { struct asc_board *boardp = shost_priv(sdev->host); if (ASC_NARROW_BOARD(boardp)) advansys_narrow_slave_configure(sdev, &boardp->dvc_var.asc_dvc_var); else advansys_wide_slave_configure(sdev, &boardp->dvc_var.adv_dvc_var); return 0; } static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp) { struct asc_board *board = shost_priv(scp->device->host); scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); dma_cache_sync(board->dev, scp->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); return cpu_to_le32(scp->SCp.dma_handle); } static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, struct asc_scsi_q *asc_scsi_q) { struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; int use_sg; memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); /* * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'. */ asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp); if (asc_scsi_q->q2.srb_ptr == BAD_SRB) { scp->result = HOST_BYTE(DID_SOFT_ERROR); return ASC_ERROR; } /* * Build the ASC_SCSI_Q request. */ asc_scsi_q->cdbptr = &scp->cmnd[0]; asc_scsi_q->q2.cdb_len = scp->cmd_len; asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); asc_scsi_q->q1.target_lun = scp->device->lun; asc_scsi_q->q2.target_ix = ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp); asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; /* * If there are any outstanding requests for the current target, * then every 255th request send an ORDERED request. This heuristic * tries to retain the benefit of request sorting while preventing * request starvation. 255 is the max number of tags or pending commands * a device may have outstanding. * * The request count is incremented below for every successfully * started request. * */ if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && (boardp->reqcnt[scp->device->id] % 255) == 0) { asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG; } else { asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG; } /* Build ASC_SCSI_Q */ use_sg = scsi_dma_map(scp); if (use_sg != 0) { int sgcnt; struct scatterlist *slp; struct asc_sg_head *asc_sg_head; if (use_sg > scp->device->host->sg_tablesize) { scmd_printk(KERN_ERR, scp, "use_sg %d > " "sg_tablesize %d\n", use_sg, scp->device->host->sg_tablesize); scsi_dma_unmap(scp); scp->result = HOST_BYTE(DID_ERROR); return ASC_ERROR; } asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); if (!asc_sg_head) { scsi_dma_unmap(scp); scp->result = HOST_BYTE(DID_SOFT_ERROR); return ASC_ERROR; } asc_scsi_q->q1.cntl |= QC_SG_HEAD; asc_scsi_q->sg_head = asc_sg_head; asc_scsi_q->q1.data_cnt = 0; asc_scsi_q->q1.data_addr = 0; /* This is a byte value, otherwise it would need to be swapped. */ asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; ASC_STATS_ADD(scp->device->host, xfer_elem, asc_sg_head->entry_cnt); /* * Convert scatter-gather list into ASC_SG_HEAD list. */ scsi_for_each_sg(scp, slp, use_sg, sgcnt) { asc_sg_head->sg_list[sgcnt].addr = cpu_to_le32(sg_dma_address(slp)); asc_sg_head->sg_list[sgcnt].bytes = cpu_to_le32(sg_dma_len(slp)); ASC_STATS_ADD(scp->device->host, xfer_sect, DIV_ROUND_UP(sg_dma_len(slp), 512)); } } ASC_STATS(scp->device->host, xfer_cnt); ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); return ASC_NOERROR; } /* * Build scatter-gather list for Adv Library (Wide Board). * * Additional ADV_SG_BLOCK structures will need to be allocated * if the total number of scatter-gather elements exceeds * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are * assumed to be physically contiguous. * * Return: * ADV_SUCCESS(1) - SG List successfully created * ADV_ERROR(-1) - SG List creation failed */ static int adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp, int use_sg) { adv_sgblk_t *sgblkp; ADV_SCSI_REQ_Q *scsiqp; struct scatterlist *slp; int sg_elem_cnt; ADV_SG_BLOCK *sg_block, *prev_sg_block; ADV_PADDR sg_block_paddr; int i; scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); slp = scsi_sglist(scp); sg_elem_cnt = use_sg; prev_sg_block = NULL; reqp->sgblkp = NULL; for (;;) { /* * Allocate a 'adv_sgblk_t' structure from the board free * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK * (15) scatter-gather elements. */ if ((sgblkp = boardp->adv_sgblkp) == NULL) { ASC_DBG(1, "no free adv_sgblk_t\n"); ASC_STATS(scp->device->host, adv_build_nosg); /* * Allocation failed. Free 'adv_sgblk_t' structures * already allocated for the request. */ while ((sgblkp = reqp->sgblkp) != NULL) { /* Remove 'sgblkp' from the request list. */ reqp->sgblkp = sgblkp->next_sgblkp; /* Add 'sgblkp' to the board free list. */ sgblkp->next_sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = sgblkp; } return ASC_BUSY; } /* Complete 'adv_sgblk_t' board allocation. */ boardp->adv_sgblkp = sgblkp->next_sgblkp; sgblkp->next_sgblkp = NULL; /* * Get 8 byte aligned virtual and physical addresses * for the allocated ADV_SG_BLOCK structure. */ sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block); sg_block_paddr = virt_to_bus(sg_block); /* * Check if this is the first 'adv_sgblk_t' for the * request. */ if (reqp->sgblkp == NULL) { /* Request's first scatter-gather block. */ reqp->sgblkp = sgblkp; /* * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical * address pointers. */ scsiqp->sg_list_ptr = sg_block; scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr); } else { /* Request's second or later scatter-gather block. */ sgblkp->next_sgblkp = reqp->sgblkp; reqp->sgblkp = sgblkp; /* * Point the previous ADV_SG_BLOCK structure to * the newly allocated ADV_SG_BLOCK structure. */ prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr); } for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { sg_block->sg_list[i].sg_addr = cpu_to_le32(sg_dma_address(slp)); sg_block->sg_list[i].sg_count = cpu_to_le32(sg_dma_len(slp)); ASC_STATS_ADD(scp->device->host, xfer_sect, DIV_ROUND_UP(sg_dma_len(slp), 512)); if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */ sg_block->sg_cnt = i + 1; sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ return ADV_SUCCESS; } slp++; } sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; prev_sg_block = sg_block; } } /* * Build a request structure for the Adv Library (Wide Board). * * If an adv_req_t can not be allocated to issue the request, * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. * * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the * microcode for DMA addresses or math operations are byte swapped * to little-endian order. */ static int adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, ADV_SCSI_REQ_Q **adv_scsiqpp) { adv_req_t *reqp; ADV_SCSI_REQ_Q *scsiqp; int i; int ret; int use_sg; /* * Allocate an adv_req_t structure from the board to execute * the command. */ if (boardp->adv_reqp == NULL) { ASC_DBG(1, "no free adv_req_t\n"); ASC_STATS(scp->device->host, adv_build_noreq); return ASC_BUSY; } else { reqp = boardp->adv_reqp; boardp->adv_reqp = reqp->next_reqp; reqp->next_reqp = NULL; } /* * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers. */ scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); /* * Initialize the structure. */ scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; /* * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure. */ scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp); /* * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure. */ reqp->cmndp = scp; /* * Build the ADV_SCSI_REQ_Q request. */ /* Set CDB length and copy it to the request structure. */ scsiqp->cdb_len = scp->cmd_len; /* Copy first 12 CDB bytes to cdb[]. */ for (i = 0; i < scp->cmd_len && i < 12; i++) { scsiqp->cdb[i] = scp->cmnd[i]; } /* Copy last 4 CDB bytes, if present, to cdb16[]. */ for (; i < scp->cmd_len; i++) { scsiqp->cdb16[i - 12] = scp->cmnd[i]; } scsiqp->target_id = scp->device->id; scsiqp->target_lun = scp->device->lun; scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0])); scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; /* Build ADV_SCSI_REQ_Q */ use_sg = scsi_dma_map(scp); if (use_sg == 0) { /* Zero-length transfer */ reqp->sgblkp = NULL; scsiqp->data_cnt = 0; scsiqp->vdata_addr = NULL; scsiqp->data_addr = 0; scsiqp->sg_list_ptr = NULL; scsiqp->sg_real_addr = 0; } else { if (use_sg > ADV_MAX_SG_LIST) { scmd_printk(KERN_ERR, scp, "use_sg %d > " "ADV_MAX_SG_LIST %d\n", use_sg, scp->device->host->sg_tablesize); scsi_dma_unmap(scp); scp->result = HOST_BYTE(DID_ERROR); /* * Free the 'adv_req_t' structure by adding it back * to the board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return ASC_ERROR; } scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); ret = adv_get_sglist(boardp, reqp, scp, use_sg); if (ret != ADV_SUCCESS) { /* * Free the adv_req_t structure by adding it back to * the board free list. */ reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return ret; } ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); } ASC_STATS(scp->device->host, xfer_cnt); ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); *adv_scsiqpp = scsiqp; return ASC_NOERROR; } static int AscSgListToQueue(int sg_list) { int n_sg_list_qs; n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) n_sg_list_qs++; return n_sg_list_qs + 1; } static uint AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) { uint cur_used_qs; uint cur_free_qs; ASC_SCSI_BIT_ID_TYPE target_id; uchar tid_no; target_id = ASC_TIX_TO_TARGET_ID(target_ix); tid_no = ASC_TIX_TO_TID(target_ix); if ((asc_dvc->unit_not_ready & target_id) || (asc_dvc->queue_full_or_busy & target_id)) { return 0; } if (n_qs == 1) { cur_used_qs = (uint) asc_dvc->cur_total_qng + (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; } else { cur_used_qs = (uint) asc_dvc->cur_total_qng + (uint) ASC_MIN_FREE_Q; } if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; if (asc_dvc->cur_dvc_qng[tid_no] >= asc_dvc->max_dvc_qng[tid_no]) { return 0; } return cur_free_qs; } if (n_qs > 1) { if ((n_qs > asc_dvc->last_q_shortage) && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { asc_dvc->last_q_shortage = n_qs; } } return 0; } static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) { ushort q_addr; uchar next_qp; uchar q_status; q_addr = ASC_QNO_TO_QADDR(free_q_head); q_status = (uchar)AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_STATUS)); next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) return next_qp; return ASC_QLINK_END; } static uchar AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) { uchar i; for (i = 0; i < n_free_q; i++) { free_q_head = AscAllocFreeQueue(iop_base, free_q_head); if (free_q_head == ASC_QLINK_END) break; } return free_q_head; } /* * void * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) * * Calling/Exit State: * none * * Description: * Output an ASC_SCSI_Q structure to the chip */ static void DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) { int i; ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); AscSetChipLramAddr(iop_base, s_addr); for (i = 0; i < 2 * words; i += 2) { if (i == 4 || i == 20) { continue; } outpw(iop_base + IOP_RAM_DATA, ((ushort)outbuf[i + 1] << 8) | outbuf[i]); } } static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) { ushort q_addr; uchar tid_no; uchar sdtr_data; uchar syn_period_ix; uchar syn_offset; PortAddr iop_base; iop_base = asc_dvc->iop_base; if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); syn_period_ix = (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; AscMsgOutSDTR(asc_dvc, asc_dvc->sdtr_period_tbl[syn_period_ix], syn_offset); scsiq->q1.cntl |= QC_MSG_OUT; } q_addr = ASC_QNO_TO_QADDR(q_no); if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; } scsiq->q1.status = QS_FREE; AscMemWordCopyPtrToLram(iop_base, q_addr + ASC_SCSIQ_CDB_BEG, (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); DvcPutScsiQ(iop_base, q_addr + ASC_SCSIQ_CPY_BEG, (uchar *)&scsiq->q1.cntl, ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); AscWriteLramWord(iop_base, (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), (ushort)(((ushort)scsiq->q1. q_no << 8) | (ushort)QS_READY)); return 1; } static int AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) { int sta; int i; ASC_SG_HEAD *sg_head; ASC_SG_LIST_Q scsi_sg_q; ASC_DCNT saved_data_addr; ASC_DCNT saved_data_cnt; PortAddr iop_base; ushort sg_list_dwords; ushort sg_index; ushort sg_entry_cnt; ushort q_addr; uchar next_qp; iop_base = asc_dvc->iop_base; sg_head = scsiq->sg_head; saved_data_addr = scsiq->q1.data_addr; saved_data_cnt = scsiq->q1.data_cnt; scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr; scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes; #if CC_VERY_LONG_SG_LIST /* * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST * then not all SG elements will fit in the allocated queues. * The rest of the SG elements will be copied when the RISC * completes the SG elements that fit and halts. */ if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { /* * Set sg_entry_cnt to be the number of SG elements that * will fit in the allocated SG queues. It is minus 1, because * the first SG element is handled above. ASC_MAX_SG_LIST is * already inflated by 1 to account for this. For example it * may be 50 which is 1 + 7 queues * 7 SG elements. */ sg_entry_cnt = ASC_MAX_SG_LIST - 1; /* * Keep track of remaining number of SG elements that will * need to be handled from a_isr.c. */ scsiq->remain_sg_entry_cnt = sg_head->entry_cnt - ASC_MAX_SG_LIST; } else { #endif /* CC_VERY_LONG_SG_LIST */ /* * Set sg_entry_cnt to be the number of SG elements that * will fit in the allocated SG queues. It is minus 1, because * the first SG element is handled above. */ sg_entry_cnt = sg_head->entry_cnt - 1; #if CC_VERY_LONG_SG_LIST } #endif /* CC_VERY_LONG_SG_LIST */ if (sg_entry_cnt != 0) { scsiq->q1.cntl |= QC_SG_HEAD; q_addr = ASC_QNO_TO_QADDR(q_no); sg_index = 1; scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; scsi_sg_q.sg_head_qp = q_no; scsi_sg_q.cntl = QCSG_SG_XFER_LIST; for (i = 0; i < sg_head->queue_cnt; i++) { scsi_sg_q.seq_no = i + 1; if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); sg_entry_cnt -= ASC_SG_LIST_PER_Q; if (i == 0) { scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q; } else { scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q - 1; } } else { #if CC_VERY_LONG_SG_LIST /* * This is the last SG queue in the list of * allocated SG queues. If there are more * SG elements than will fit in the allocated * queues, then set the QCSG_SG_XFER_MORE flag. */ if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; } else { #endif /* CC_VERY_LONG_SG_LIST */ scsi_sg_q.cntl |= QCSG_SG_XFER_END; #if CC_VERY_LONG_SG_LIST } #endif /* CC_VERY_LONG_SG_LIST */ sg_list_dwords = sg_entry_cnt << 1; if (i == 0) { scsi_sg_q.sg_list_cnt = sg_entry_cnt; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt; } else { scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; } sg_entry_cnt = 0; } next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); scsi_sg_q.q_no = next_qp; q_addr = ASC_QNO_TO_QADDR(next_qp); AscMemWordCopyPtrToLram(iop_base, q_addr + ASC_SCSIQ_SGHD_CPY_BEG, (uchar *)&scsi_sg_q, sizeof(ASC_SG_LIST_Q) >> 1); AscMemDWordCopyPtrToLram(iop_base, q_addr + ASC_SGQ_LIST_BEG, (uchar *)&sg_head-> sg_list[sg_index], sg_list_dwords); sg_index += ASC_SG_LIST_PER_Q; scsiq->next_sg_index = sg_index; } } else { scsiq->q1.cntl &= ~QC_SG_HEAD; } sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); scsiq->q1.data_addr = saved_data_addr; scsiq->q1.data_cnt = saved_data_cnt; return (sta); } static int AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) { PortAddr iop_base; uchar free_q_head; uchar next_qp; uchar tid_no; uchar target_ix; int sta; iop_base = asc_dvc->iop_base; target_ix = scsiq->q2.target_ix; tid_no = ASC_TIX_TO_TID(target_ix); sta = 0; free_q_head = (uchar)AscGetVarFreeQHead(iop_base); if (n_q_required > 1) { next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, (uchar)n_q_required); if (next_qp != ASC_QLINK_END) { asc_dvc->last_q_shortage = 0; scsiq->sg_head->queue_cnt = n_q_required - 1; scsiq->q1.q_no = free_q_head; sta = AscPutReadySgListQueue(asc_dvc, scsiq, free_q_head); } } else if (n_q_required == 1) { next_qp = AscAllocFreeQueue(iop_base, free_q_head); if (next_qp != ASC_QLINK_END) { scsiq->q1.q_no = free_q_head; sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); } } if (sta == 1) { AscPutVarFreeQHead(iop_base, next_qp); asc_dvc->cur_total_qng += n_q_required; asc_dvc->cur_dvc_qng[tid_no]++; } return sta; } #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { INQUIRY, REQUEST_SENSE, READ_CAPACITY, READ_TOC, MODE_SELECT, MODE_SENSE, MODE_SELECT_10, MODE_SENSE_10, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) { PortAddr iop_base; int sta; int n_q_required; int disable_syn_offset_one_fix; int i; ASC_PADDR addr; ushort sg_entry_cnt = 0; ushort sg_entry_cnt_minus_one = 0; uchar target_ix; uchar tid_no; uchar sdtr_data; uchar extra_bytes; uchar scsi_cmd; uchar disable_cmd; ASC_SG_HEAD *sg_head; ASC_DCNT data_cnt; iop_base = asc_dvc->iop_base; sg_head = scsiq->sg_head; if (asc_dvc->err_code != 0) return (ERR); scsiq->q1.q_no = 0; if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { scsiq->q1.extra_bytes = 0; } sta = 0; target_ix = scsiq->q2.target_ix; tid_no = ASC_TIX_TO_TID(target_ix); n_q_required = 1; if (scsiq->cdbptr[0] == REQUEST_SENSE) { if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { asc_dvc->sdtr_done &= ~scsiq->q1.target_id; sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); AscMsgOutSDTR(asc_dvc, asc_dvc-> sdtr_period_tbl[(sdtr_data >> 4) & (uchar)(asc_dvc-> max_sdtr_index - 1)], (uchar)(sdtr_data & (uchar) ASC_SYN_MAX_OFFSET)); scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); } } if (asc_dvc->in_critical_cnt != 0) { AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); return (ERR); } asc_dvc->in_critical_cnt++; if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { asc_dvc->in_critical_cnt--; return (ERR); } #if !CC_VERY_LONG_SG_LIST if (sg_entry_cnt > ASC_MAX_SG_LIST) { asc_dvc->in_critical_cnt--; return (ERR); } #endif /* !CC_VERY_LONG_SG_LIST */ if (sg_entry_cnt == 1) { scsiq->q1.data_addr = (ADV_PADDR)sg_head->sg_list[0].addr; scsiq->q1.data_cnt = (ADV_DCNT)sg_head->sg_list[0].bytes; scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); } sg_entry_cnt_minus_one = sg_entry_cnt - 1; } scsi_cmd = scsiq->cdbptr[0]; disable_syn_offset_one_fix = FALSE; if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { if (scsiq->q1.cntl & QC_SG_HEAD) { data_cnt = 0; for (i = 0; i < sg_entry_cnt; i++) { data_cnt += (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i]. bytes); } } else { data_cnt = le32_to_cpu(scsiq->q1.data_cnt); } if (data_cnt != 0UL) { if (data_cnt < 512UL) { disable_syn_offset_one_fix = TRUE; } else { for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; i++) { disable_cmd = _syn_offset_one_disable_cmd[i]; if (disable_cmd == 0xFF) { break; } if (scsi_cmd == disable_cmd) { disable_syn_offset_one_fix = TRUE; break; } } } } } if (disable_syn_offset_one_fix) { scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | ASC_TAG_FLAG_DISABLE_DISCONNECT); } else { scsiq->q2.tag_code &= 0x27; } if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { if (asc_dvc->bug_fix_cntl) { if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { if ((scsi_cmd == READ_6) || (scsi_cmd == READ_10)) { addr = (ADV_PADDR)le32_to_cpu(sg_head-> sg_list [sg_entry_cnt_minus_one]. addr) + (ADV_DCNT)le32_to_cpu(sg_head-> sg_list [sg_entry_cnt_minus_one]. bytes); extra_bytes = (uchar)((ushort)addr & 0x0003); if ((extra_bytes != 0) && ((scsiq->q2. tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) { scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES; scsiq->q1.extra_bytes = extra_bytes; data_cnt = le32_to_cpu(sg_head-> sg_list [sg_entry_cnt_minus_one]. bytes); data_cnt -= (ASC_DCNT) extra_bytes; sg_head-> sg_list [sg_entry_cnt_minus_one]. bytes = cpu_to_le32(data_cnt); } } } } sg_head->entry_to_copy = sg_head->entry_cnt; #if CC_VERY_LONG_SG_LIST /* * Set the sg_entry_cnt to the maximum possible. The rest of * the SG elements will be copied when the RISC completes the * SG elements that fit and halts. */ if (sg_entry_cnt > ASC_MAX_SG_LIST) { sg_entry_cnt = ASC_MAX_SG_LIST; } #endif /* CC_VERY_LONG_SG_LIST */ n_q_required = AscSgListToQueue(sg_entry_cnt); if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= (uint) n_q_required) || ((scsiq->q1.cntl & QC_URGENT) != 0)) { if ((sta = AscSendScsiQueue(asc_dvc, scsiq, n_q_required)) == 1) { asc_dvc->in_critical_cnt--; return (sta); } } } else { if (asc_dvc->bug_fix_cntl) { if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { if ((scsi_cmd == READ_6) || (scsi_cmd == READ_10)) { addr = le32_to_cpu(scsiq->q1.data_addr) + le32_to_cpu(scsiq->q1.data_cnt); extra_bytes = (uchar)((ushort)addr & 0x0003); if ((extra_bytes != 0) && ((scsiq->q2. tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) { data_cnt = le32_to_cpu(scsiq->q1. data_cnt); if (((ushort)data_cnt & 0x01FF) == 0) { scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES; data_cnt -= (ASC_DCNT) extra_bytes; scsiq->q1.data_cnt = cpu_to_le32 (data_cnt); scsiq->q1.extra_bytes = extra_bytes; } } } } } n_q_required = 1; if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || ((scsiq->q1.cntl & QC_URGENT) != 0)) { if ((sta = AscSendScsiQueue(asc_dvc, scsiq, n_q_required)) == 1) { asc_dvc->in_critical_cnt--; return (sta); } } } asc_dvc->in_critical_cnt--; return (sta); } /* * AdvExeScsiQueue() - Send a request to the RISC microcode program. * * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, * add the carrier to the ICQ (Initiator Command Queue), and tickle the * RISC to notify it a new command is ready to be executed. * * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be * set to SCSI_MAX_RETRY. * * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode * for DMA addresses or math operations are byte swapped to little-endian * order. * * Return: * ADV_SUCCESS(1) - The request was successfully queued. * ADV_BUSY(0) - Resource unavailable; Retry again after pending * request completes. * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure * host IC error. */ static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) { AdvPortAddr iop_base; ADV_PADDR req_paddr; ADV_CARR_T *new_carrp; /* * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. */ if (scsiq->target_id > ADV_MAX_TID) { scsiq->host_status = QHSTA_M_INVALID_DEVICE; scsiq->done_status = QD_WITH_ERROR; return ADV_ERROR; } iop_base = asc_dvc->iop_base; /* * Allocate a carrier ensuring at least one carrier always * remains on the freelist and initialize fields. */ if ((new_carrp = asc_dvc->carr_freelist) == NULL) { return ADV_BUSY; } asc_dvc->carr_freelist = (ADV_CARR_T *) ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa)); asc_dvc->carr_pending_cnt++; /* * Set the carrier to be a stopper by setting 'next_vpa' * to the stopper value. The current stopper will be changed * below to point to the new stopper. */ new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); /* * Clear the ADV_SCSI_REQ_Q done flag. */ scsiq->a_flag &= ~ADV_SCSIQ_DONE; req_paddr = virt_to_bus(scsiq); BUG_ON(req_paddr & 31); /* Wait for assertion before making little-endian */ req_paddr = cpu_to_le32(req_paddr); /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq)); scsiq->scsiq_rptr = req_paddr; scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp)); /* * Every ADV_CARR_T.carr_pa is byte swapped to little-endian * order during initialization. */ scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; /* * Use the current stopper to send the ADV_SCSI_REQ_Q command to * the microcode. The newly allocated stopper will become the new * stopper. */ asc_dvc->icq_sp->areq_vpa = req_paddr; /* * Set the 'next_vpa' pointer for the old stopper to be the * physical address of the new stopper. The RISC can only * follow physical addresses. */ asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; /* * Set the host adapter stopper pointer to point to the new carrier. */ asc_dvc->icq_sp = new_carrp; if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { /* * Tickle the RISC to tell it to read its Command Queue Head pointer. */ AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { /* * Clear the tickle value. In the ASC-3550 the RISC flag * command 'clr_tickle_a' does not work unless the host * value is cleared. */ AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); } } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { /* * Notify the RISC a carrier is ready by writing the physical * address of the new carrier stopper to the COMMA register. */ AdvWriteDWordRegister(iop_base, IOPDW_COMMA, le32_to_cpu(new_carrp->carr_pa)); } return ADV_SUCCESS; } /* * Execute a single 'Scsi_Cmnd'. */ static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) { int ret, err_code; struct asc_board *boardp = shost_priv(scp->device->host); ASC_DBG(1, "scp 0x%p\n", scp); if (ASC_NARROW_BOARD(boardp)) { ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; struct asc_scsi_q asc_scsi_q; /* asc_build_req() can not return ASC_BUSY. */ ret = asc_build_req(boardp, scp, &asc_scsi_q); if (ret == ASC_ERROR) { ASC_STATS(scp->device->host, build_error); return ASC_ERROR; } ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); kfree(asc_scsi_q.sg_head); err_code = asc_dvc->err_code; } else { ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; ADV_SCSI_REQ_Q *adv_scsiqp; switch (adv_build_req(boardp, scp, &adv_scsiqp)) { case ASC_NOERROR: ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); break; case ASC_BUSY: ASC_DBG(1, "adv_build_req ASC_BUSY\n"); /* * The asc_stats fields 'adv_build_noreq' and * 'adv_build_nosg' count wide board busy conditions. * They are updated in adv_build_req and * adv_get_sglist, respectively. */ return ASC_BUSY; case ASC_ERROR: default: ASC_DBG(1, "adv_build_req ASC_ERROR\n"); ASC_STATS(scp->device->host, build_error); return ASC_ERROR; } ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp); err_code = adv_dvc->err_code; } switch (ret) { case ASC_NOERROR: ASC_STATS(scp->device->host, exe_noerror); /* * Increment monotonically increasing per device * successful request counter. Wrapping doesn't matter. */ boardp->reqcnt[scp->device->id]++; ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); break; case ASC_BUSY: ASC_STATS(scp->device->host, exe_busy); break; case ASC_ERROR: scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " "err_code 0x%x\n", err_code); ASC_STATS(scp->device->host, exe_error); scp->result = HOST_BYTE(DID_ERROR); break; default: scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " "err_code 0x%x\n", err_code); ASC_STATS(scp->device->host, exe_unknown); scp->result = HOST_BYTE(DID_ERROR); break; } ASC_DBG(1, "end\n"); return ret; } /* * advansys_queuecommand() - interrupt-driven I/O entrypoint. * * This function always returns 0. Command return status is saved * in the 'scp' result field. */ static int advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) { struct Scsi_Host *shost = scp->device->host; int asc_res, result = 0; ASC_STATS(shost, queuecommand); scp->scsi_done = done; asc_res = asc_execute_scsi_cmnd(scp); switch (asc_res) { case ASC_NOERROR: break; case ASC_BUSY: result = SCSI_MLQUEUE_HOST_BUSY; break; case ASC_ERROR: default: asc_scsi_done(scp); break; } return result; } static DEF_SCSI_QCMD(advansys_queuecommand) static ushort AscGetEisaChipCfg(PortAddr iop_base) { PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | (PortAddr) (ASC_EISA_CFG_IOP_MASK); return inpw(eisa_cfg_iop); } /* * Return the BIOS address of the adapter at the specified * I/O port and with the specified bus type. */ static unsigned short AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type) { unsigned short cfg_lsw; unsigned short bios_addr; /* * The PCI BIOS is re-located by the motherboard BIOS. Because * of this the driver can not determine where a PCI BIOS is * loaded and executes. */ if (bus_type & ASC_IS_PCI) return 0; if ((bus_type & ASC_IS_EISA) != 0) { cfg_lsw = AscGetEisaChipCfg(iop_base); cfg_lsw &= 0x000F; bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; return bios_addr; } cfg_lsw = AscGetChipCfgLsw(iop_base); /* * ISA PnP uses the top bit as the 32K BIOS flag */ if (bus_type == ASC_IS_ISAPNP) cfg_lsw &= 0x7FFF; bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; return bios_addr; } static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) { ushort cfg_lsw; if (AscGetChipScsiID(iop_base) == new_host_id) { return (new_host_id); } cfg_lsw = AscGetChipCfgLsw(iop_base); cfg_lsw &= 0xF8FF; cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); AscSetChipCfgLsw(iop_base, cfg_lsw); return (AscGetChipScsiID(iop_base)); } static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) { unsigned char sc; AscSetBank(iop_base, 1); sc = inp(iop_base + IOP_REG_SC); AscSetBank(iop_base, 0); return sc; } static unsigned char AscGetChipVersion(PortAddr iop_base, unsigned short bus_type) { if (bus_type & ASC_IS_EISA) { PortAddr eisa_iop; unsigned char revision; eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | (PortAddr) ASC_EISA_REV_IOP_MASK; revision = inp(eisa_iop); return ASC_CHIP_MIN_VER_EISA - 1 + revision; } return AscGetChipVerNo(iop_base); } #ifdef CONFIG_ISA static void AscEnableIsaDma(uchar dma_channel) { if (dma_channel < 4) { outp(0x000B, (ushort)(0xC0 | dma_channel)); outp(0x000A, dma_channel); } else if (dma_channel < 8) { outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); outp(0x00D4, (ushort)(dma_channel - 4)); } } #endif /* CONFIG_ISA */ static int AscStopQueueExe(PortAddr iop_base) { int count = 0; if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, ASC_STOP_REQ_RISC_STOP); do { if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & ASC_STOP_ACK_RISC_STOP) { return (1); } mdelay(100); } while (count++ < 20); } return (0); } static ASC_DCNT AscGetMaxDmaCount(ushort bus_type) { if (bus_type & ASC_IS_ISA) return ASC_MAX_ISA_DMA_COUNT; else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) return ASC_MAX_VL_DMA_COUNT; return ASC_MAX_PCI_DMA_COUNT; } #ifdef CONFIG_ISA static ushort AscGetIsaDmaChannel(PortAddr iop_base) { ushort channel; channel = AscGetChipCfgLsw(iop_base) & 0x0003; if (channel == 0x03) return (0); else if (channel == 0x00) return (7); return (channel + 4); } static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) { ushort cfg_lsw; uchar value; if ((dma_channel >= 5) && (dma_channel <= 7)) { if (dma_channel == 7) value = 0x00; else value = dma_channel - 4; cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; cfg_lsw |= value; AscSetChipCfgLsw(iop_base, cfg_lsw); return (AscGetIsaDmaChannel(iop_base)); } return 0; } static uchar AscGetIsaDmaSpeed(PortAddr iop_base) { uchar speed_value; AscSetBank(iop_base, 1); speed_value = AscReadChipDmaSpeed(iop_base); speed_value &= 0x07; AscSetBank(iop_base, 0); return speed_value; } static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) { speed_value &= 0x07; AscSetBank(iop_base, 1); AscWriteChipDmaSpeed(iop_base, speed_value); AscSetBank(iop_base, 0); return AscGetIsaDmaSpeed(iop_base); } #endif /* CONFIG_ISA */ static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) { int i; PortAddr iop_base; ushort warn_code; uchar chip_version; iop_base = asc_dvc->iop_base; warn_code = 0; asc_dvc->err_code = 0; if ((asc_dvc->bus_type & (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; } AscSetChipControl(iop_base, CC_HALT); AscSetChipStatus(iop_base, 0); asc_dvc->bug_fix_cntl = 0; asc_dvc->pci_fix_asyn_xfer = 0; asc_dvc->pci_fix_asyn_xfer_always = 0; /* asc_dvc->init_state initialized in AscInitGetConfig(). */ asc_dvc->sdtr_done = 0; asc_dvc->cur_total_qng = 0; asc_dvc->is_in_int = 0; asc_dvc->in_critical_cnt = 0; asc_dvc->last_q_shortage = 0; asc_dvc->use_tagged_qng = 0; asc_dvc->no_scam = 0; asc_dvc->unit_not_ready = 0; asc_dvc->queue_full_or_busy = 0; asc_dvc->redo_scam = 0; asc_dvc->res2 = 0; asc_dvc->min_sdtr_index = 0; asc_dvc->cfg->can_tagged_qng = 0; asc_dvc->cfg->cmd_qng_enabled = 0; asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; asc_dvc->init_sdtr = 0; asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; asc_dvc->scsi_reset_wait = 3; asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); asc_dvc->cfg->chip_version = chip_version; asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; asc_dvc->max_sdtr_index = 7; if ((asc_dvc->bus_type & ASC_IS_PCI) && (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { asc_dvc->bus_type = ASC_IS_PCI_ULTRA; asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; asc_dvc->max_sdtr_index = 15; if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { AscSetExtraControl(iop_base, (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { AscSetExtraControl(iop_base, (SEC_ACTIVE_NEGATE | SEC_ENABLE_FILTER)); } } if (asc_dvc->bus_type == ASC_IS_PCI) { AscSetExtraControl(iop_base, (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); } asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; #ifdef CONFIG_ISA if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); asc_dvc->bus_type = ASC_IS_ISAPNP; } asc_dvc->cfg->isa_dma_channel = (uchar)AscGetIsaDmaChannel(iop_base); } #endif /* CONFIG_ISA */ for (i = 0; i <= ASC_MAX_TID; i++) { asc_dvc->cur_dvc_qng[i] = 0; asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; } return warn_code; } static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) { int retry; for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { unsigned char read_back; AscSetChipEEPCmd(iop_base, cmd_reg); mdelay(1); read_back = AscGetChipEEPCmd(iop_base); if (read_back == cmd_reg) return 1; } return 0; } static void AscWaitEEPRead(void) { mdelay(1); } static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) { ushort read_wval; uchar cmd_reg; AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); AscWaitEEPRead(); cmd_reg = addr | ASC_EEP_CMD_READ; AscWriteEEPCmdReg(iop_base, cmd_reg); AscWaitEEPRead(); read_wval = AscGetChipEEPData(iop_base); AscWaitEEPRead(); return read_wval; } static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) { ushort wval; ushort sum; ushort *wbuf; int cfg_beg; int cfg_end; int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; int s_addr; wbuf = (ushort *)cfg_buf; sum = 0; /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); sum += *wbuf; } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { wval = AscReadEEPWord(iop_base, (uchar)s_addr); if (s_addr <= uchar_end_in_config) { /* * Swap all char fields - must unswap bytes already swapped * by AscReadEEPWord(). */ *wbuf = le16_to_cpu(wval); } else { /* Don't swap word field at the end - cntl field. */ *wbuf = wval; } sum += wval; /* Checksum treats all EEPROM data as words. */ } /* * Read the checksum word which will be compared against 'sum' * by the caller. Word field already swapped. */ *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); return sum; } static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) { PortAddr iop_base; ushort q_addr; ushort saved_word; int sta; iop_base = asc_dvc->iop_base; sta = 0; q_addr = ASC_QNO_TO_QADDR(241); saved_word = AscReadLramWord(iop_base, q_addr); AscSetChipLramAddr(iop_base, q_addr); AscSetChipLramData(iop_base, 0x55AA); mdelay(10); AscSetChipLramAddr(iop_base, q_addr); if (AscGetChipLramData(iop_base) == 0x55AA) { sta = 1; AscWriteLramWord(iop_base, q_addr, saved_word); } return (sta); } static void AscWaitEEPWrite(void) { mdelay(20); } static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) { ushort read_back; int retry; retry = 0; while (TRUE) { AscSetChipEEPData(iop_base, data_reg); mdelay(1); read_back = AscGetChipEEPData(iop_base); if (read_back == data_reg) { return (1); } if (retry++ > ASC_EEP_MAX_RETRY) { return (0); } } } static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) { ushort read_wval; read_wval = AscReadEEPWord(iop_base, addr); if (read_wval != word_val) { AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); AscWaitEEPRead(); AscWriteEEPDataReg(iop_base, word_val); AscWaitEEPRead(); AscWriteEEPCmdReg(iop_base, (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); AscWaitEEPWrite(); AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); AscWaitEEPRead(); return (AscReadEEPWord(iop_base, addr)); } return (read_wval); } static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) { int n_error; ushort *wbuf; ushort word; ushort sum; int s_addr; int cfg_beg; int cfg_end; int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; wbuf = (ushort *)cfg_buf; n_error = 0; sum = 0; /* Write two config words; AscWriteEEPWord() will swap bytes. */ for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { sum += *wbuf; if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { n_error++; } } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { if (s_addr <= uchar_end_in_config) { /* * This is a char field. Swap char fields before they are * swapped again by AscWriteEEPWord(). */ word = cpu_to_le16(*wbuf); if (word != AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { n_error++; } } else { /* Don't swap word field at the end - cntl field. */ if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { n_error++; } } sum += *wbuf; /* Checksum calculated from word values. */ } /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ *wbuf = sum; if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { n_error++; } /* Read EEPROM back again. */ wbuf = (ushort *)cfg_buf; /* * Read two config words; Byte-swapping done by AscReadEEPWord(). */ for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { n_error++; } } if (bus_type & ASC_IS_VL) { cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; } else { cfg_beg = ASC_EEP_DVC_CFG_BEG; cfg_end = ASC_EEP_MAX_DVC_ADDR; } for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { if (s_addr <= uchar_end_in_config) { /* * Swap all char fields. Must unswap bytes already swapped * by AscReadEEPWord(). */ word = le16_to_cpu(AscReadEEPWord (iop_base, (uchar)s_addr)); } else { /* Don't swap word field at the end - cntl field. */ word = AscReadEEPWord(iop_base, (uchar)s_addr); } if (*wbuf != word) { n_error++; } } /* Read checksum; Byte swapping not needed. */ if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { n_error++; } return n_error; } static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) { int retry; int n_error; retry = 0; while (TRUE) { if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, bus_type)) == 0) { break; } if (++retry > ASC_EEP_MAX_RETRY) { break; } } return n_error; } static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc) { ASCEEP_CONFIG eep_config_buf; ASCEEP_CONFIG *eep_config; PortAddr iop_base; ushort chksum; ushort warn_code; ushort cfg_msw, cfg_lsw; int i; int write_eep = 0; iop_base = asc_dvc->iop_base; warn_code = 0; AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); AscStopQueueExe(iop_base); if ((AscStopChip(iop_base) == FALSE) || (AscGetChipScsiCtrl(iop_base) != 0)) { asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; AscResetChipAndScsiBus(asc_dvc); mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ } if (AscIsChipHalted(iop_base) == FALSE) { asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; return (warn_code); } AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; return (warn_code); } eep_config = (ASCEEP_CONFIG *)&eep_config_buf; cfg_msw = AscGetChipCfgMsw(iop_base); cfg_lsw = AscGetChipCfgLsw(iop_base); if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; warn_code |= ASC_WARN_CFG_MSW_RECOVER; AscSetChipCfgMsw(iop_base, cfg_msw); } chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); ASC_DBG(1, "chksum 0x%x\n", chksum); if (chksum == 0) { chksum = 0xaa55; } if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { warn_code |= ASC_WARN_AUTO_CONFIG; if (asc_dvc->cfg->chip_version == 3) { if (eep_config->cfg_lsw != cfg_lsw) { warn_code |= ASC_WARN_EEPROM_RECOVER; eep_config->cfg_lsw = AscGetChipCfgLsw(iop_base); } if (eep_config->cfg_msw != cfg_msw) { warn_code |= ASC_WARN_EEPROM_RECOVER; eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); } } } eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); if (chksum != eep_config->chksum) { if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == ASC_CHIP_VER_PCI_ULTRA_3050) { ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); eep_config->init_sdtr = 0xFF; eep_config->disc_enable = 0xFF; eep_config->start_motor = 0xFF; eep_config->use_cmd_qng = 0; eep_config->max_total_qng = 0xF0; eep_config->max_tag_qng = 0x20; eep_config->cntl = 0xBFFF; ASC_EEP_SET_CHIP_ID(eep_config, 7); eep_config->no_scam = 0; eep_config->adapter_info[0] = 0; eep_config->adapter_info[1] = 0; eep_config->adapter_info[2] = 0; eep_config->adapter_info[3] = 0; eep_config->adapter_info[4] = 0; /* Indicate EEPROM-less board. */ eep_config->adapter_info[5] = 0xBB; } else { ASC_PRINT ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); write_eep = 1; warn_code |= ASC_WARN_EEPROM_CHKSUM; } } asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; asc_dvc->cfg->disc_enable = eep_config->disc_enable; asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); asc_dvc->start_motor = eep_config->start_motor; asc_dvc->dvc_cntl = eep_config->cntl; asc_dvc->no_scam = eep_config->no_scam; asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; if (!AscTestExternalLram(asc_dvc)) { if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA)) { eep_config->max_total_qng = ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; eep_config->max_tag_qng = ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; } else { eep_config->cfg_msw |= 0x0800; cfg_msw |= 0x0800; AscSetChipCfgMsw(iop_base, cfg_msw); eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; } } else { } if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; } if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; } if (eep_config->max_tag_qng > eep_config->max_total_qng) { eep_config->max_tag_qng = eep_config->max_total_qng; } if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; } asc_dvc->max_total_qng = eep_config->max_total_qng; if ((eep_config->use_cmd_qng & eep_config->disc_enable) != eep_config->use_cmd_qng) { eep_config->disc_enable = eep_config->use_cmd_qng; warn_code |= ASC_WARN_CMD_QNG_CONFLICT; } ASC_EEP_SET_CHIP_ID(eep_config, ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; } for (i = 0; i <= ASC_MAX_TID; i++) { asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; asc_dvc->cfg->sdtr_period_offset[i] = (uchar)(ASC_DEF_SDTR_OFFSET | (asc_dvc->min_sdtr_index << 4)); } eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); if (write_eep) { if ((i = AscSetEEPConfig(iop_base, eep_config, asc_dvc->bus_type)) != 0) { ASC_PRINT1 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", i); } else { ASC_PRINT ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); } } return (warn_code); } static int AscInitGetConfig(struct Scsi_Host *shost) { struct asc_board *board = shost_priv(shost); ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; unsigned short warn_code = 0; asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; if (asc_dvc->err_code != 0) return asc_dvc->err_code; if (AscFindSignature(asc_dvc->iop_base)) { warn_code |= AscInitAscDvcVar(asc_dvc); warn_code |= AscInitFromEEP(asc_dvc); asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; } else { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; } switch (warn_code) { case 0: /* No error */ break; case ASC_WARN_IO_PORT_ROTATE: shost_printk(KERN_WARNING, shost, "I/O port address " "modified\n"); break; case ASC_WARN_AUTO_CONFIG: shost_printk(KERN_WARNING, shost, "I/O port increment switch " "enabled\n"); break; case ASC_WARN_EEPROM_CHKSUM: shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); break; case ASC_WARN_IRQ_MODIFIED: shost_printk(KERN_WARNING, shost, "IRQ modified\n"); break; case ASC_WARN_CMD_QNG_CONFLICT: shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " "disconnects\n"); break; default: shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", warn_code); break; } if (asc_dvc->err_code != 0) shost_printk(KERN_ERR, shost, "error 0x%x at init_state " "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); return asc_dvc->err_code; } static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) { struct asc_board *board = shost_priv(shost); ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; PortAddr iop_base = asc_dvc->iop_base; unsigned short cfg_msw; unsigned short warn_code = 0; asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; if (asc_dvc->err_code != 0) return asc_dvc->err_code; if (!AscFindSignature(asc_dvc->iop_base)) { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; return asc_dvc->err_code; } cfg_msw = AscGetChipCfgMsw(iop_base); if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; warn_code |= ASC_WARN_CFG_MSW_RECOVER; AscSetChipCfgMsw(iop_base, cfg_msw); } if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != asc_dvc->cfg->cmd_qng_enabled) { asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; warn_code |= ASC_WARN_CMD_QNG_CONFLICT; } if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { warn_code |= ASC_WARN_AUTO_CONFIG; } #ifdef CONFIG_PCI if (asc_dvc->bus_type & ASC_IS_PCI) { cfg_msw &= 0xFFC0; AscSetChipCfgMsw(iop_base, cfg_msw); if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { } else { if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; } } } else #endif /* CONFIG_PCI */ if (asc_dvc->bus_type == ASC_IS_ISAPNP) { if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == ASC_CHIP_VER_ASYN_BUG) { asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; } } if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != asc_dvc->cfg->chip_scsi_id) { asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; } #ifdef CONFIG_ISA if (asc_dvc->bus_type & ASC_IS_ISA) { AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); } #endif /* CONFIG_ISA */ asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; switch (warn_code) { case 0: /* No error. */ break; case ASC_WARN_IO_PORT_ROTATE: shost_printk(KERN_WARNING, shost, "I/O port address " "modified\n"); break; case ASC_WARN_AUTO_CONFIG: shost_printk(KERN_WARNING, shost, "I/O port increment switch " "enabled\n"); break; case ASC_WARN_EEPROM_CHKSUM: shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); break; case ASC_WARN_IRQ_MODIFIED: shost_printk(KERN_WARNING, shost, "IRQ modified\n"); break; case ASC_WARN_CMD_QNG_CONFLICT: shost_printk(KERN_WARNING, shost, "tag queuing w/o " "disconnects\n"); break; default: shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", warn_code); break; } if (asc_dvc->err_code != 0) shost_printk(KERN_ERR, shost, "error 0x%x at init_state " "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); return asc_dvc->err_code; } /* * EEPROM Configuration. * * All drivers should use this structure to set the default EEPROM * configuration. The BIOS now uses this structure when it is built. * Additional structure information can be found in a_condor.h where * the structure is defined. * * The *_Field_IsChar structs are needed to correct for endianness. * These values are read from the board 16 bits at a time directly * into the structs. Because some fields are char, the values will be * in the wrong order. The *_Field_IsChar tells when to flip the * bytes. Data read and written to PCI memory is automatically swapped * on big-endian platforms so char fields read as words are actually being * unswapped on big-endian platforms. */ static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 0x0000, /* cfg_msw */ 0xFFFF, /* disc_enable */ 0xFFFF, /* wdtr_able */ 0xFFFF, /* sdtr_able */ 0xFFFF, /* start_motor */ 0xFFFF, /* tagqng_able */ 0xFFFF, /* bios_scan */ 0, /* scam_tolerant */ 7, /* adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* termination */ 0, /* reserved1 */ 0xFFE7, /* bios_ctrl */ 0xFFFF, /* ultra_able */ 0, /* reserved2 */ ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* dvc_cntl */ 0, /* bug_fix */ 0, /* serial_number_word1 */ 0, /* serial_number_word2 */ 0, /* serial_number_word3 */ 0, /* check_sum */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} , /* oem_name[16] */ 0, /* dvc_err_code */ 0, /* adv_err_code */ 0, /* adv_err_addr */ 0, /* saved_dvc_err_code */ 0, /* saved_adv_err_code */ 0, /* saved_adv_err_addr */ 0 /* num_of_err */ }; static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 0, /* cfg_lsw */ 0, /* cfg_msw */ 0, /* -disc_enable */ 0, /* wdtr_able */ 0, /* sdtr_able */ 0, /* start_motor */ 0, /* tagqng_able */ 0, /* bios_scan */ 0, /* scam_tolerant */ 1, /* adapter_scsi_id */ 1, /* bios_boot_delay */ 1, /* scsi_reset_delay */ 1, /* bios_id_lun */ 1, /* termination */ 1, /* reserved1 */ 0, /* bios_ctrl */ 0, /* ultra_able */ 0, /* reserved2 */ 1, /* max_host_qng */ 1, /* max_dvc_qng */ 0, /* dvc_cntl */ 0, /* bug_fix */ 0, /* serial_number_word1 */ 0, /* serial_number_word2 */ 0, /* serial_number_word3 */ 0, /* check_sum */ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} , /* oem_name[16] */ 0, /* dvc_err_code */ 0, /* adv_err_code */ 0, /* adv_err_addr */ 0, /* saved_dvc_err_code */ 0, /* saved_adv_err_code */ 0, /* saved_adv_err_addr */ 0 /* num_of_err */ }; static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 0x0000, /* 01 cfg_msw */ 0xFFFF, /* 02 disc_enable */ 0xFFFF, /* 03 wdtr_able */ 0x4444, /* 04 sdtr_speed1 */ 0xFFFF, /* 05 start_motor */ 0xFFFF, /* 06 tagqng_able */ 0xFFFF, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 7, /* 09 adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* 10 scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* 11 termination_se */ 0, /* termination_lvd */ 0xFFE7, /* 12 bios_ctrl */ 0x4444, /* 13 sdtr_speed2 */ 0x4444, /* 14 sdtr_speed3 */ ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ 0x4444, /* 17 sdtr_speed4 */ 0, /* 18 serial_number_word1 */ 0, /* 19 serial_number_word2 */ 0, /* 20 serial_number_word3 */ 0, /* 21 check_sum */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} , /* 22-29 oem_name[16] */ 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ 0, /* 36 reserved */ 0, /* 37 reserved */ 0, /* 38 reserved */ 0, /* 39 reserved */ 0, /* 40 reserved */ 0, /* 41 reserved */ 0, /* 42 reserved */ 0, /* 43 reserved */ 0, /* 44 reserved */ 0, /* 45 reserved */ 0, /* 46 reserved */ 0, /* 47 reserved */ 0, /* 48 reserved */ 0, /* 49 reserved */ 0, /* 50 reserved */ 0, /* 51 reserved */ 0, /* 52 reserved */ 0, /* 53 reserved */ 0, /* 54 reserved */ 0, /* 55 reserved */ 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ PCI_VENDOR_ID_ASP, /* 58 subsysvid */ PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 0, /* 60 reserved */ 0, /* 61 reserved */ 0, /* 62 reserved */ 0 /* 63 reserved */ }; static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 0, /* 00 cfg_lsw */ 0, /* 01 cfg_msw */ 0, /* 02 disc_enable */ 0, /* 03 wdtr_able */ 0, /* 04 sdtr_speed1 */ 0, /* 05 start_motor */ 0, /* 06 tagqng_able */ 0, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 1, /* 09 adapter_scsi_id */ 1, /* bios_boot_delay */ 1, /* 10 scsi_reset_delay */ 1, /* bios_id_lun */ 1, /* 11 termination_se */ 1, /* termination_lvd */ 0, /* 12 bios_ctrl */ 0, /* 13 sdtr_speed2 */ 0, /* 14 sdtr_speed3 */ 1, /* 15 max_host_qng */ 1, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ 0, /* 17 sdtr_speed4 */ 0, /* 18 serial_number_word1 */ 0, /* 19 serial_number_word2 */ 0, /* 20 serial_number_word3 */ 0, /* 21 check_sum */ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} , /* 22-29 oem_name[16] */ 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ 0, /* 36 reserved */ 0, /* 37 reserved */ 0, /* 38 reserved */ 0, /* 39 reserved */ 0, /* 40 reserved */ 0, /* 41 reserved */ 0, /* 42 reserved */ 0, /* 43 reserved */ 0, /* 44 reserved */ 0, /* 45 reserved */ 0, /* 46 reserved */ 0, /* 47 reserved */ 0, /* 48 reserved */ 0, /* 49 reserved */ 0, /* 50 reserved */ 0, /* 51 reserved */ 0, /* 52 reserved */ 0, /* 53 reserved */ 0, /* 54 reserved */ 0, /* 55 reserved */ 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ 0, /* 58 subsysvid */ 0, /* 59 subsysid */ 0, /* 60 reserved */ 0, /* 61 reserved */ 0, /* 62 reserved */ 0 /* 63 reserved */ }; static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 0x0000, /* 01 cfg_msw */ 0xFFFF, /* 02 disc_enable */ 0xFFFF, /* 03 wdtr_able */ 0x5555, /* 04 sdtr_speed1 */ 0xFFFF, /* 05 start_motor */ 0xFFFF, /* 06 tagqng_able */ 0xFFFF, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 7, /* 09 adapter_scsi_id */ 0, /* bios_boot_delay */ 3, /* 10 scsi_reset_delay */ 0, /* bios_id_lun */ 0, /* 11 termination_se */ 0, /* termination_lvd */ 0xFFE7, /* 12 bios_ctrl */ 0x5555, /* 13 sdtr_speed2 */ 0x5555, /* 14 sdtr_speed3 */ ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ 0x5555, /* 17 sdtr_speed4 */ 0, /* 18 serial_number_word1 */ 0, /* 19 serial_number_word2 */ 0, /* 20 serial_number_word3 */ 0, /* 21 check_sum */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} , /* 22-29 oem_name[16] */ 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ 0, /* 36 reserved */ 0, /* 37 reserved */ 0, /* 38 reserved */ 0, /* 39 reserved */ 0, /* 40 reserved */ 0, /* 41 reserved */ 0, /* 42 reserved */ 0, /* 43 reserved */ 0, /* 44 reserved */ 0, /* 45 reserved */ 0, /* 46 reserved */ 0, /* 47 reserved */ 0, /* 48 reserved */ 0, /* 49 reserved */ 0, /* 50 reserved */ 0, /* 51 reserved */ 0, /* 52 reserved */ 0, /* 53 reserved */ 0, /* 54 reserved */ 0, /* 55 reserved */ 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ PCI_VENDOR_ID_ASP, /* 58 subsysvid */ PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 0, /* 60 reserved */ 0, /* 61 reserved */ 0, /* 62 reserved */ 0 /* 63 reserved */ }; static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 0, /* 00 cfg_lsw */ 0, /* 01 cfg_msw */ 0, /* 02 disc_enable */ 0, /* 03 wdtr_able */ 0, /* 04 sdtr_speed1 */ 0, /* 05 start_motor */ 0, /* 06 tagqng_able */ 0, /* 07 bios_scan */ 0, /* 08 scam_tolerant */ 1, /* 09 adapter_scsi_id */ 1, /* bios_boot_delay */ 1, /* 10 scsi_reset_delay */ 1, /* bios_id_lun */ 1, /* 11 termination_se */ 1, /* termination_lvd */ 0, /* 12 bios_ctrl */ 0, /* 13 sdtr_speed2 */ 0, /* 14 sdtr_speed3 */ 1, /* 15 max_host_qng */ 1, /* max_dvc_qng */ 0, /* 16 dvc_cntl */ 0, /* 17 sdtr_speed4 */ 0, /* 18 serial_number_word1 */ 0, /* 19 serial_number_word2 */ 0, /* 20 serial_number_word3 */ 0, /* 21 check_sum */ {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} , /* 22-29 oem_name[16] */ 0, /* 30 dvc_err_code */ 0, /* 31 adv_err_code */ 0, /* 32 adv_err_addr */ 0, /* 33 saved_dvc_err_code */ 0, /* 34 saved_adv_err_code */ 0, /* 35 saved_adv_err_addr */ 0, /* 36 reserved */ 0, /* 37 reserved */ 0, /* 38 reserved */ 0, /* 39 reserved */ 0, /* 40 reserved */ 0, /* 41 reserved */ 0, /* 42 reserved */ 0, /* 43 reserved */ 0, /* 44 reserved */ 0, /* 45 reserved */ 0, /* 46 reserved */ 0, /* 47 reserved */ 0, /* 48 reserved */ 0, /* 49 reserved */ 0, /* 50 reserved */ 0, /* 51 reserved */ 0, /* 52 reserved */ 0, /* 53 reserved */ 0, /* 54 reserved */ 0, /* 55 reserved */ 0, /* 56 cisptr_lsw */ 0, /* 57 cisprt_msw */ 0, /* 58 subsysvid */ 0, /* 59 subsysid */ 0, /* 60 reserved */ 0, /* 61 reserved */ 0, /* 62 reserved */ 0 /* 63 reserved */ }; #ifdef CONFIG_PCI /* * Wait for EEPROM command to complete */ static void AdvWaitEEPCmd(AdvPortAddr iop_base) { int eep_delay_ms; for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) { break; } mdelay(1); } if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 0) BUG(); } /* * Read the EEPROM from specified location */ static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) { AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_READ | eep_word_addr); AdvWaitEEPCmd(iop_base); return AdvReadWordRegister(iop_base, IOPW_EE_DATA); } /* * Write the EEPROM from 'cfg_buf'. */ static void AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf) { ushort *wbuf; ushort addr, chksum; ushort *charfields; wbuf = (ushort *)cfg_buf; charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; chksum = 0; AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); AdvWaitEEPCmd(iop_base); /* * Write EEPROM from word 0 to word 20. */ for (addr = ADV_EEP_DVC_CFG_BEGIN; addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { ushort word; if (*charfields++) { word = cpu_to_le16(*wbuf); } else { word = *wbuf; } chksum += *wbuf; /* Checksum is calculated from word values. */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); mdelay(ADV_EEP_DELAY_MS); } /* * Write EEPROM checksum at word 21. */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); wbuf++; charfields++; /* * Write EEPROM OEM name at words 22 to 29. */ for (addr = ADV_EEP_DVC_CTL_BEGIN; addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { ushort word; if (*charfields++) { word = cpu_to_le16(*wbuf); } else { word = *wbuf; } AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); } AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); AdvWaitEEPCmd(iop_base); } /* * Write the EEPROM from 'cfg_buf'. */ static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf) { ushort *wbuf; ushort *charfields; ushort addr, chksum; wbuf = (ushort *)cfg_buf; charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; chksum = 0; AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); AdvWaitEEPCmd(iop_base); /* * Write EEPROM from word 0 to word 20. */ for (addr = ADV_EEP_DVC_CFG_BEGIN; addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { ushort word; if (*charfields++) { word = cpu_to_le16(*wbuf); } else { word = *wbuf; } chksum += *wbuf; /* Checksum is calculated from word values. */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); mdelay(ADV_EEP_DELAY_MS); } /* * Write EEPROM checksum at word 21. */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); wbuf++; charfields++; /* * Write EEPROM OEM name at words 22 to 29. */ for (addr = ADV_EEP_DVC_CTL_BEGIN; addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { ushort word; if (*charfields++) { word = cpu_to_le16(*wbuf); } else { word = *wbuf; } AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); } AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); AdvWaitEEPCmd(iop_base); } /* * Write the EEPROM from 'cfg_buf'. */ static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf) { ushort *wbuf; ushort *charfields; ushort addr, chksum; wbuf = (ushort *)cfg_buf; charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; chksum = 0; AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); AdvWaitEEPCmd(iop_base); /* * Write EEPROM from word 0 to word 20. */ for (addr = ADV_EEP_DVC_CFG_BEGIN; addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { ushort word; if (*charfields++) { word = cpu_to_le16(*wbuf); } else { word = *wbuf; } chksum += *wbuf; /* Checksum is calculated from word values. */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); mdelay(ADV_EEP_DELAY_MS); } /* * Write EEPROM checksum at word 21. */ AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); wbuf++; charfields++; /* * Write EEPROM OEM name at words 22 to 29. */ for (addr = ADV_EEP_DVC_CTL_BEGIN; addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { ushort word; if (*charfields++) { word = cpu_to_le16(*wbuf); } else { word = *wbuf; } AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); AdvWaitEEPCmd(iop_base); } AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); AdvWaitEEPCmd(iop_base); } /* * Read EEPROM configuration into the specified buffer. * * Return a checksum based on the EEPROM configuration read. */ static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf) { ushort wval, chksum; ushort *wbuf; int eep_addr; ushort *charfields; charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; wbuf = (ushort *)cfg_buf; chksum = 0; for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { wval = AdvReadEEPWord(iop_base, eep_addr); chksum += wval; /* Checksum is calculated from word values. */ if (*charfields++) { *wbuf = le16_to_cpu(wval); } else { *wbuf = wval; } } /* Read checksum word. */ *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf++; charfields++; /* Read rest of EEPROM not covered by the checksum. */ for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { *wbuf = AdvReadEEPWord(iop_base, eep_addr); if (*charfields++) { *wbuf = le16_to_cpu(*wbuf); } } return chksum; } /* * Read EEPROM configuration into the specified buffer. * * Return a checksum based on the EEPROM configuration read. */ static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf) { ushort wval, chksum; ushort *wbuf; int eep_addr; ushort *charfields; charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; wbuf = (ushort *)cfg_buf; chksum = 0; for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { wval = AdvReadEEPWord(iop_base, eep_addr); chksum += wval; /* Checksum is calculated from word values. */ if (*charfields++) { *wbuf = le16_to_cpu(wval); } else { *wbuf = wval; } } /* Read checksum word. */ *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf++; charfields++; /* Read rest of EEPROM not covered by the checksum. */ for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { *wbuf = AdvReadEEPWord(iop_base, eep_addr); if (*charfields++) { *wbuf = le16_to_cpu(*wbuf); } } return chksum; } /* * Read EEPROM configuration into the specified buffer. * * Return a checksum based on the EEPROM configuration read. */ static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf) { ushort wval, chksum; ushort *wbuf; int eep_addr; ushort *charfields; charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; wbuf = (ushort *)cfg_buf; chksum = 0; for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { wval = AdvReadEEPWord(iop_base, eep_addr); chksum += wval; /* Checksum is calculated from word values. */ if (*charfields++) { *wbuf = le16_to_cpu(wval); } else { *wbuf = wval; } } /* Read checksum word. */ *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf++; charfields++; /* Read rest of EEPROM not covered by the checksum. */ for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { *wbuf = AdvReadEEPWord(iop_base, eep_addr); if (*charfields++) { *wbuf = le16_to_cpu(*wbuf); } } return chksum; } /* * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while * all of this is done. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Note: Chip is stopped on entry. */ static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) { AdvPortAddr iop_base; ushort warn_code; ADVEEP_3550_CONFIG eep_config; iop_base = asc_dvc->iop_base; warn_code = 0; /* * Read the board's EEPROM configuration. * * Set default values if a bad checksum is found. */ if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { warn_code |= ASC_WARN_EEPROM_CHKSUM; /* * Set EEPROM default values. */ memcpy(&eep_config, &Default_3550_EEPROM_Config, sizeof(ADVEEP_3550_CONFIG)); /* * Assume the 6 byte board serial number that was read from * EEPROM is correct even if the EEPROM checksum failed. */ eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); AdvSet3550EEPConfig(iop_base, &eep_config); } /* * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the * EEPROM configuration that was read. * * This is the mapping of EEPROM fields to Adv Library fields. */ asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_able = eep_config.sdtr_able; asc_dvc->ultra_able = eep_config.ultra_able; asc_dvc->tagqng_able = eep_config.tagqng_able; asc_dvc->cfg->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; asc_dvc->cfg->serial1 = eep_config.serial_number_word1; asc_dvc->cfg->serial2 = eep_config.serial_number_word2; asc_dvc->cfg->serial3 = eep_config.serial_number_word3; /* * Set the host maximum queuing (max. 253, min. 16) and the per device * maximum queuing (max. 63, min. 4). */ if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_host_qng == 0) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else { eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; } } if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_dvc_qng == 0) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else { eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; } } /* * If 'max_dvc_qng' is greater than 'max_host_qng', then * set 'max_dvc_qng' to 'max_host_qng'. */ if (eep_config.max_dvc_qng > eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } /* * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' * values based on possibly adjusted EEPROM values. */ asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; /* * If the EEPROM 'termination' field is set to automatic (0), then set * the ADV_DVC_CFG 'termination' field to automatic also. * * If the termination is specified with a non-zero 'termination' * value check that a legal value is set and set the ADV_DVC_CFG * 'termination' field appropriately. */ if (eep_config.termination == 0) { asc_dvc->cfg->termination = 0; /* auto termination */ } else { /* Enable manual control with low off / high off. */ if (eep_config.termination == 1) { asc_dvc->cfg->termination = TERM_CTL_SEL; /* Enable manual control with low off / high on. */ } else if (eep_config.termination == 2) { asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; /* Enable manual control with low on / high on. */ } else if (eep_config.termination == 3) { asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; } else { /* * The EEPROM 'termination' field contains a bad value. Use * automatic termination instead. */ asc_dvc->cfg->termination = 0; warn_code |= ASC_WARN_EEPROM_TERMINATION; } } return warn_code; } /* * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while * all of this is done. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Note: Chip is stopped on entry. */ static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) { AdvPortAddr iop_base; ushort warn_code; ADVEEP_38C0800_CONFIG eep_config; uchar tid, termination; ushort sdtr_speed = 0; iop_base = asc_dvc->iop_base; warn_code = 0; /* * Read the board's EEPROM configuration. * * Set default values if a bad checksum is found. */ if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { warn_code |= ASC_WARN_EEPROM_CHKSUM; /* * Set EEPROM default values. */ memcpy(&eep_config, &Default_38C0800_EEPROM_Config, sizeof(ADVEEP_38C0800_CONFIG)); /* * Assume the 6 byte board serial number that was read from * EEPROM is correct even if the EEPROM checksum failed. */ eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); AdvSet38C0800EEPConfig(iop_base, &eep_config); } /* * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the * EEPROM configuration that was read. * * This is the mapping of EEPROM fields to Adv Library fields. */ asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; asc_dvc->tagqng_able = eep_config.tagqng_able; asc_dvc->cfg->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; asc_dvc->cfg->serial1 = eep_config.serial_number_word1; asc_dvc->cfg->serial2 = eep_config.serial_number_word2; asc_dvc->cfg->serial3 = eep_config.serial_number_word3; /* * For every Target ID if any of its 'sdtr_speed[1234]' bits * are set, then set an 'sdtr_able' bit for it. */ asc_dvc->sdtr_able = 0; for (tid = 0; tid <= ADV_MAX_TID; tid++) { if (tid == 0) { sdtr_speed = asc_dvc->sdtr_speed1; } else if (tid == 4) { sdtr_speed = asc_dvc->sdtr_speed2; } else if (tid == 8) { sdtr_speed = asc_dvc->sdtr_speed3; } else if (tid == 12) { sdtr_speed = asc_dvc->sdtr_speed4; } if (sdtr_speed & ADV_MAX_TID) { asc_dvc->sdtr_able |= (1 << tid); } sdtr_speed >>= 4; } /* * Set the host maximum queuing (max. 253, min. 16) and the per device * maximum queuing (max. 63, min. 4). */ if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_host_qng == 0) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else { eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; } } if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_dvc_qng == 0) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else { eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; } } /* * If 'max_dvc_qng' is greater than 'max_host_qng', then * set 'max_dvc_qng' to 'max_host_qng'. */ if (eep_config.max_dvc_qng > eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } /* * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' * values based on possibly adjusted EEPROM values. */ asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; /* * If the EEPROM 'termination' field is set to automatic (0), then set * the ADV_DVC_CFG 'termination' field to automatic also. * * If the termination is specified with a non-zero 'termination' * value check that a legal value is set and set the ADV_DVC_CFG * 'termination' field appropriately. */ if (eep_config.termination_se == 0) { termination = 0; /* auto termination for SE */ } else { /* Enable manual control with low off / high off. */ if (eep_config.termination_se == 1) { termination = 0; /* Enable manual control with low off / high on. */ } else if (eep_config.termination_se == 2) { termination = TERM_SE_HI; /* Enable manual control with low on / high on. */ } else if (eep_config.termination_se == 3) { termination = TERM_SE; } else { /* * The EEPROM 'termination_se' field contains a bad value. * Use automatic termination instead. */ termination = 0; warn_code |= ASC_WARN_EEPROM_TERMINATION; } } if (eep_config.termination_lvd == 0) { asc_dvc->cfg->termination = termination; /* auto termination for LVD */ } else { /* Enable manual control with low off / high off. */ if (eep_config.termination_lvd == 1) { asc_dvc->cfg->termination = termination; /* Enable manual control with low off / high on. */ } else if (eep_config.termination_lvd == 2) { asc_dvc->cfg->termination = termination | TERM_LVD_HI; /* Enable manual control with low on / high on. */ } else if (eep_config.termination_lvd == 3) { asc_dvc->cfg->termination = termination | TERM_LVD; } else { /* * The EEPROM 'termination_lvd' field contains a bad value. * Use automatic termination instead. */ asc_dvc->cfg->termination = termination; warn_code |= ASC_WARN_EEPROM_TERMINATION; } } return warn_code; } /* * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while * all of this is done. * * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. * * Note: Chip is stopped on entry. */ static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) { AdvPortAddr iop_base; ushort warn_code; ADVEEP_38C1600_CONFIG eep_config; uchar tid, termination; ushort sdtr_speed = 0; iop_base = asc_dvc->iop_base; warn_code = 0; /* * Read the board's EEPROM configuration. * * Set default values if a bad checksum is found. */ if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); warn_code |= ASC_WARN_EEPROM_CHKSUM; /* * Set EEPROM default values. */ memcpy(&eep_config, &Default_38C1600_EEPROM_Config, sizeof(ADVEEP_38C1600_CONFIG)); if (PCI_FUNC(pdev->devfn) != 0) { u8 ints; /* * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 * and old Mac system booting problem. The Expansion * ROM must be disabled in Function 1 for these systems */ eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; /* * Clear the INTAB (bit 11) if the GPIO 0 input * indicates the Function 1 interrupt line is wired * to INTB. * * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: * 1 - Function 1 interrupt line wired to INT A. * 0 - Function 1 interrupt line wired to INT B. * * Note: Function 0 is always wired to INTA. * Put all 5 GPIO bits in input mode and then read * their input values. */ AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); if ((ints & 0x01) == 0) eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; } /* * Assume the 6 byte board serial number that was read from * EEPROM is correct even if the EEPROM checksum failed. */ eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); AdvSet38C1600EEPConfig(iop_base, &eep_config); } /* * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the * EEPROM configuration that was read. * * This is the mapping of EEPROM fields to Adv Library fields. */ asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; asc_dvc->ppr_able = 0; asc_dvc->tagqng_able = eep_config.tagqng_able; asc_dvc->cfg->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; /* * For every Target ID if any of its 'sdtr_speed[1234]' bits * are set, then set an 'sdtr_able' bit for it. */ asc_dvc->sdtr_able = 0; for (tid = 0; tid <= ASC_MAX_TID; tid++) { if (tid == 0) { sdtr_speed = asc_dvc->sdtr_speed1; } else if (tid == 4) { sdtr_speed = asc_dvc->sdtr_speed2; } else if (tid == 8) { sdtr_speed = asc_dvc->sdtr_speed3; } else if (tid == 12) { sdtr_speed = asc_dvc->sdtr_speed4; } if (sdtr_speed & ASC_MAX_TID) { asc_dvc->sdtr_able |= (1 << tid); } sdtr_speed >>= 4; } /* * Set the host maximum queuing (max. 253, min. 16) and the per device * maximum queuing (max. 63, min. 4). */ if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_host_qng == 0) { eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; } else { eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; } } if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { /* If the value is zero, assume it is uninitialized. */ if (eep_config.max_dvc_qng == 0) { eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; } else { eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; } } /* * If 'max_dvc_qng' is greater than 'max_host_qng', then * set 'max_dvc_qng' to 'max_host_qng'. */ if (eep_config.max_dvc_qng > eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } /* * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' * values based on possibly adjusted EEPROM values. */ asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; /* * If the EEPROM 'termination' field is set to automatic (0), then set * the ASC_DVC_CFG 'termination' field to automatic also. * * If the termination is specified with a non-zero 'termination' * value check that a legal value is set and set the ASC_DVC_CFG * 'termination' field appropriately. */ if (eep_config.termination_se == 0) { termination = 0; /* auto termination for SE */ } else { /* Enable manual control with low off / high off. */ if (eep_config.termination_se == 1) { termination = 0; /* Enable manual control with low off / high on. */ } else if (eep_config.termination_se == 2) { termination = TERM_SE_HI; /* Enable manual control with low on / high on. */ } else if (eep_config.termination_se == 3) { termination = TERM_SE; } else { /* * The EEPROM 'termination_se' field contains a bad value. * Use automatic termination instead. */ termination = 0; warn_code |= ASC_WARN_EEPROM_TERMINATION; } } if (eep_config.termination_lvd == 0) { asc_dvc->cfg->termination = termination; /* auto termination for LVD */ } else { /* Enable manual control with low off / high off. */ if (eep_config.termination_lvd == 1) { asc_dvc->cfg->termination = termination; /* Enable manual control with low off / high on. */ } else if (eep_config.termination_lvd == 2) { asc_dvc->cfg->termination = termination | TERM_LVD_HI; /* Enable manual control with low on / high on. */ } else if (eep_config.termination_lvd == 3) { asc_dvc->cfg->termination = termination | TERM_LVD; } else { /* * The EEPROM 'termination_lvd' field contains a bad value. * Use automatic termination instead. */ asc_dvc->cfg->termination = termination; warn_code |= ASC_WARN_EEPROM_TERMINATION; } } return warn_code; } /* * Initialize the ADV_DVC_VAR structure. * * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. * * For a non-fatal error return a warning code. If there are no warnings * then 0 is returned. */ static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) { struct asc_board *board = shost_priv(shost); ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; unsigned short warn_code = 0; AdvPortAddr iop_base = asc_dvc->iop_base; u16 cmd; int status; asc_dvc->err_code = 0; /* * Save the state of the PCI Configuration Command Register * "Parity Error Response Control" Bit. If the bit is clear (0), * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore * DMA parity errors. */ asc_dvc->cfg->control_flag = 0; pci_read_config_word(pdev, PCI_COMMAND, &cmd); if ((cmd & PCI_COMMAND_PARITY) == 0) asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; asc_dvc->cfg->chip_version = AdvGetChipVersion(iop_base, asc_dvc->bus_type); ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), (ushort)ADV_CHIP_ID_BYTE); ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), (ushort)ADV_CHIP_ID_WORD); /* * Reset the chip to start and allow register writes. */ if (AdvFindSignature(iop_base) == 0) { asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; return ADV_ERROR; } else { /* * The caller must set 'chip_type' to a valid setting. */ if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; return ADV_ERROR; } /* * Reset Chip. */ AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); mdelay(100); AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_WR_IO_REG); if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { status = AdvInitFrom38C1600EEP(asc_dvc); } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { status = AdvInitFrom38C0800EEP(asc_dvc); } else { status = AdvInitFrom3550EEP(asc_dvc); } warn_code |= status; } if (warn_code != 0) shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); if (asc_dvc->err_code) shost_printk(KERN_ERR, shost, "error code 0x%x\n", asc_dvc->err_code); return asc_dvc->err_code; } #endif static struct scsi_host_template advansys_template = { .proc_name = DRV_NAME, #ifdef CONFIG_PROC_FS .show_info = advansys_show_info, #endif .name = DRV_NAME, .info = advansys_info, .queuecommand = advansys_queuecommand, .eh_bus_reset_handler = advansys_reset, .bios_param = advansys_biosparam, .slave_configure = advansys_slave_configure, /* * Because the driver may control an ISA adapter 'unchecked_isa_dma' * must be set. The flag will be cleared in advansys_board_found * for non-ISA adapters. */ .unchecked_isa_dma = 1, /* * All adapters controlled by this driver are capable of large * scatter-gather lists. According to the mid-level SCSI documentation * this obviates any performance gain provided by setting * 'use_clustering'. But empirically while CPU utilization is increased * by enabling clustering, I/O throughput increases as well. */ .use_clustering = ENABLE_CLUSTERING, }; static int advansys_wide_init_chip(struct Scsi_Host *shost) { struct asc_board *board = shost_priv(shost); struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; int req_cnt = 0; adv_req_t *reqp = NULL; int sg_cnt = 0; adv_sgblk_t *sgp; int warn_code, err_code; /* * Allocate buffer carrier structures. The total size * is about 4 KB, so allocate all at once. */ adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL); ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf); if (!adv_dvc->carrier_buf) goto kmalloc_failed; /* * Allocate up to 'max_host_qng' request structures for the Wide * board. The total size is about 16 KB, so allocate all at once. * If the allocation fails decrement and try again. */ for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) { reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL); ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt, (ulong)sizeof(adv_req_t) * req_cnt); if (reqp) break; } if (!reqp) goto kmalloc_failed; adv_dvc->orig_reqp = reqp; /* * Allocate up to ADV_TOT_SG_BLOCK request structures for * the Wide board. Each structure is about 136 bytes. */ board->adv_sgblkp = NULL; for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) { sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL); if (!sgp) break; sgp->next_sgblkp = board->adv_sgblkp; board->adv_sgblkp = sgp; } ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t), sizeof(adv_sgblk_t) * sg_cnt); if (!board->adv_sgblkp) goto kmalloc_failed; /* * Point 'adv_reqp' to the request structures and * link them together. */ req_cnt--; reqp[req_cnt].next_reqp = NULL; for (; req_cnt > 0; req_cnt--) { reqp[req_cnt - 1].next_reqp = &reqp[req_cnt]; } board->adv_reqp = &reqp[0]; if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { ASC_DBG(2, "AdvInitAsc3550Driver()\n"); warn_code = AdvInitAsc3550Driver(adv_dvc); } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); warn_code = AdvInitAsc38C0800Driver(adv_dvc); } else { ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); warn_code = AdvInitAsc38C1600Driver(adv_dvc); } err_code = adv_dvc->err_code; if (warn_code || err_code) { shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " "0x%x\n", warn_code, err_code); } goto exit; kmalloc_failed: shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); err_code = ADV_ERROR; exit: return err_code; } static void advansys_wide_free_mem(struct asc_board *board) { struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; kfree(adv_dvc->carrier_buf); adv_dvc->carrier_buf = NULL; kfree(adv_dvc->orig_reqp); adv_dvc->orig_reqp = board->adv_reqp = NULL; while (board->adv_sgblkp) { adv_sgblk_t *sgp = board->adv_sgblkp; board->adv_sgblkp = sgp->next_sgblkp; kfree(sgp); } } static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, int bus_type) { struct pci_dev *pdev; struct asc_board *boardp = shost_priv(shost); ASC_DVC_VAR *asc_dvc_varp = NULL; ADV_DVC_VAR *adv_dvc_varp = NULL; int share_irq, warn_code, ret; pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; if (ASC_NARROW_BOARD(boardp)) { ASC_DBG(1, "narrow board\n"); asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; asc_dvc_varp->bus_type = bus_type; asc_dvc_varp->drv_ptr = boardp; asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; asc_dvc_varp->iop_base = iop; } else { #ifdef CONFIG_PCI adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; adv_dvc_varp->drv_ptr = boardp; adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { ASC_DBG(1, "wide board ASC-3550\n"); adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { ASC_DBG(1, "wide board ASC-38C0800\n"); adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; } else { ASC_DBG(1, "wide board ASC-38C1600\n"); adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; } boardp->asc_n_io_port = pci_resource_len(pdev, 1); boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); if (!boardp->ioremap_addr) { shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " "returned NULL\n", (long)pci_resource_start(pdev, 1), boardp->asc_n_io_port); ret = -ENODEV; goto err_shost; } adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); /* * Even though it isn't used to access wide boards, other * than for the debug line below, save I/O Port address so * that it can be reported. */ boardp->ioport = iop; ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", (ushort)inp(iop + 1), (ushort)inpw(iop)); #endif /* CONFIG_PCI */ } if (ASC_NARROW_BOARD(boardp)) { /* * Set the board bus type and PCI IRQ before * calling AscInitGetConfig(). */ switch (asc_dvc_varp->bus_type) { #ifdef CONFIG_ISA case ASC_IS_ISA: shost->unchecked_isa_dma = TRUE; share_irq = 0; break; case ASC_IS_VL: shost->unchecked_isa_dma = FALSE; share_irq = 0; break; case ASC_IS_EISA: shost->unchecked_isa_dma = FALSE; share_irq = IRQF_SHARED; break; #endif /* CONFIG_ISA */ #ifdef CONFIG_PCI case ASC_IS_PCI: shost->unchecked_isa_dma = FALSE; share_irq = IRQF_SHARED; break; #endif /* CONFIG_PCI */ default: shost_printk(KERN_ERR, shost, "unknown adapter type: " "%d\n", asc_dvc_varp->bus_type); shost->unchecked_isa_dma = TRUE; share_irq = 0; break; } /* * NOTE: AscInitGetConfig() may change the board's * bus_type value. The bus_type value should no * longer be used. If the bus_type field must be * referenced only use the bit-wise AND operator "&". */ ASC_DBG(2, "AscInitGetConfig()\n"); ret = AscInitGetConfig(shost) ? -ENODEV : 0; } else { #ifdef CONFIG_PCI /* * For Wide boards set PCI information before calling * AdvInitGetConfig(). */ shost->unchecked_isa_dma = FALSE; share_irq = IRQF_SHARED; ASC_DBG(2, "AdvInitGetConfig()\n"); ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; #endif /* CONFIG_PCI */ } if (ret) goto err_unmap; /* * Save the EEPROM configuration so that it can be displayed * from /proc/scsi/advansys/[0...]. */ if (ASC_NARROW_BOARD(boardp)) { ASCEEP_CONFIG *ep; /* * Set the adapter's target id bit in the 'init_tidmask' field. */ boardp->init_tidmask |= ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); /* * Save EEPROM settings for the board. */ ep = &boardp->eep_config.asc_eep; ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; ep->disc_enable = asc_dvc_varp->cfg->disc_enable; ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); ep->start_motor = asc_dvc_varp->start_motor; ep->cntl = asc_dvc_varp->dvc_cntl; ep->no_scam = asc_dvc_varp->no_scam; ep->max_total_qng = asc_dvc_varp->max_total_qng; ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); /* 'max_tag_qng' is set to the same value for every device. */ ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; /* * Modify board configuration. */ ASC_DBG(2, "AscInitSetConfig()\n"); ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; if (ret) goto err_unmap; } else { ADVEEP_3550_CONFIG *ep_3550; ADVEEP_38C0800_CONFIG *ep_38C0800; ADVEEP_38C1600_CONFIG *ep_38C1600; /* * Save Wide EEP Configuration Information. */ if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { ep_3550 = &boardp->eep_config.adv_3550_eep; ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep_3550->termination = adv_dvc_varp->cfg->termination; ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; ep_3550->ultra_able = adv_dvc_varp->ultra_able; ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; ep_3550->start_motor = adv_dvc_varp->start_motor; ep_3550->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep_3550->serial_number_word1 = adv_dvc_varp->cfg->serial1; ep_3550->serial_number_word2 = adv_dvc_varp->cfg->serial2; ep_3550->serial_number_word3 = adv_dvc_varp->cfg->serial3; } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; ep_38C0800->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep_38C0800->termination_lvd = adv_dvc_varp->cfg->termination; ep_38C0800->disc_enable = adv_dvc_varp->cfg->disc_enable; ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C0800->start_motor = adv_dvc_varp->start_motor; ep_38C0800->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep_38C0800->serial_number_word1 = adv_dvc_varp->cfg->serial1; ep_38C0800->serial_number_word2 = adv_dvc_varp->cfg->serial2; ep_38C0800->serial_number_word3 = adv_dvc_varp->cfg->serial3; } else { ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; ep_38C1600->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep_38C1600->termination_lvd = adv_dvc_varp->cfg->termination; ep_38C1600->disc_enable = adv_dvc_varp->cfg->disc_enable; ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C1600->start_motor = adv_dvc_varp->start_motor; ep_38C1600->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep_38C1600->serial_number_word1 = adv_dvc_varp->cfg->serial1; ep_38C1600->serial_number_word2 = adv_dvc_varp->cfg->serial2; ep_38C1600->serial_number_word3 = adv_dvc_varp->cfg->serial3; } /* * Set the adapter's target id bit in the 'init_tidmask' field. */ boardp->init_tidmask |= ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); } /* * Channels are numbered beginning with 0. For AdvanSys one host * structure supports one channel. Multi-channel boards have a * separate host structure for each channel. */ shost->max_channel = 0; if (ASC_NARROW_BOARD(boardp)) { shost->max_id = ASC_MAX_TID + 1; shost->max_lun = ASC_MAX_LUN + 1; shost->max_cmd_len = ASC_MAX_CDB_LEN; shost->io_port = asc_dvc_varp->iop_base; boardp->asc_n_io_port = ASC_IOADR_GAP; shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; /* Set maximum number of queues the adapter can handle. */ shost->can_queue = asc_dvc_varp->max_total_qng; } else { shost->max_id = ADV_MAX_TID + 1; shost->max_lun = ADV_MAX_LUN + 1; shost->max_cmd_len = ADV_MAX_CDB_LEN; /* * Save the I/O Port address and length even though * I/O ports are not used to access Wide boards. * Instead the Wide boards are accessed with * PCI Memory Mapped I/O. */ shost->io_port = iop; shost->this_id = adv_dvc_varp->chip_scsi_id; /* Set maximum number of queues the adapter can handle. */ shost->can_queue = adv_dvc_varp->max_host_qng; } /* * Following v1.3.89, 'cmd_per_lun' is no longer needed * and should be set to zero. * * But because of a bug introduced in v1.3.89 if the driver is * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level * SCSI function 'allocate_device' will panic. To allow the driver * to work as a module in these kernels set 'cmd_per_lun' to 1. * * Note: This is wrong. cmd_per_lun should be set to the depth * you want on untagged devices always. #ifdef MODULE */ shost->cmd_per_lun = 1; /* #else shost->cmd_per_lun = 0; #endif */ /* * Set the maximum number of scatter-gather elements the * adapter can handle. */ if (ASC_NARROW_BOARD(boardp)) { /* * Allow two commands with 'sg_tablesize' scatter-gather * elements to be executed simultaneously. This value is * the theoretical hardware limit. It may be decreased * below. */ shost->sg_tablesize = (((asc_dvc_varp->max_total_qng - 2) / 2) * ASC_SG_LIST_PER_Q) + 1; } else { shost->sg_tablesize = ADV_MAX_SG_LIST; } /* * The value of 'sg_tablesize' can not exceed the SCSI * mid-level driver definition of SG_ALL. SG_ALL also * must not be exceeded, because it is used to define the * size of the scatter-gather table in 'struct asc_sg_head'. */ if (shost->sg_tablesize > SG_ALL) { shost->sg_tablesize = SG_ALL; } ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); /* BIOS start address. */ if (ASC_NARROW_BOARD(boardp)) { shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, asc_dvc_varp->bus_type); } else { /* * Fill-in BIOS board variables. The Wide BIOS saves * information in LRAM that is used by the driver. */ AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_SIGNATURE, boardp->bios_signature); AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_VERSION, boardp->bios_version); AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_CODESEG, boardp->bios_codeseg); AdvReadWordLram(adv_dvc_varp->iop_base, BIOS_CODELEN, boardp->bios_codelen); ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", boardp->bios_signature, boardp->bios_version); ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", boardp->bios_codeseg, boardp->bios_codelen); /* * If the BIOS saved a valid signature, then fill in * the BIOS code segment base address. */ if (boardp->bios_signature == 0x55AA) { /* * Convert x86 realmode code segment to a linear * address by shifting left 4. */ shost->base = ((ulong)boardp->bios_codeseg << 4); } else { shost->base = 0; } } /* * Register Board Resources - I/O Port, DMA, IRQ */ /* Register DMA Channel for Narrow boards. */ shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ #ifdef CONFIG_ISA if (ASC_NARROW_BOARD(boardp)) { /* Register DMA channel for ISA bus. */ if (asc_dvc_varp->bus_type & ASC_IS_ISA) { shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; ret = request_dma(shost->dma_channel, DRV_NAME); if (ret) { shost_printk(KERN_ERR, shost, "request_dma() " "%d failed %d\n", shost->dma_channel, ret); goto err_unmap; } AscEnableIsaDma(shost->dma_channel); } } #endif /* CONFIG_ISA */ /* Register IRQ Number. */ ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); ret = request_irq(boardp->irq, advansys_interrupt, share_irq, DRV_NAME, shost); if (ret) { if (ret == -EBUSY) { shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " "already in use\n", boardp->irq); } else if (ret == -EINVAL) { shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " "not valid\n", boardp->irq); } else { shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " "failed with %d\n", boardp->irq, ret); } goto err_free_dma; } /* * Initialize board RISC chip and enable interrupts. */ if (ASC_NARROW_BOARD(boardp)) { ASC_DBG(2, "AscInitAsc1000Driver()\n"); asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); if (!asc_dvc_varp->overrun_buf) { ret = -ENOMEM; goto err_free_irq; } warn_code = AscInitAsc1000Driver(asc_dvc_varp); if (warn_code || asc_dvc_varp->err_code) { shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " "warn 0x%x, error 0x%x\n", asc_dvc_varp->init_state, warn_code, asc_dvc_varp->err_code); if (!asc_dvc_varp->overrun_dma) { ret = -ENODEV; goto err_free_mem; } } } else { if (advansys_wide_init_chip(shost)) { ret = -ENODEV; goto err_free_mem; } } ASC_DBG_PRT_SCSI_HOST(2, shost); ret = scsi_add_host(shost, boardp->dev); if (ret) goto err_free_mem; scsi_scan_host(shost); return 0; err_free_mem: if (ASC_NARROW_BOARD(boardp)) { if (asc_dvc_varp->overrun_dma) dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); kfree(asc_dvc_varp->overrun_buf); } else advansys_wide_free_mem(boardp); err_free_irq: free_irq(boardp->irq, shost); err_free_dma: #ifdef CONFIG_ISA if (shost->dma_channel != NO_ISA_DMA) free_dma(shost->dma_channel); #endif err_unmap: if (boardp->ioremap_addr) iounmap(boardp->ioremap_addr); err_shost: return ret; } /* * advansys_release() * * Release resources allocated for a single AdvanSys adapter. */ static int advansys_release(struct Scsi_Host *shost) { struct asc_board *board = shost_priv(shost); ASC_DBG(1, "begin\n"); scsi_remove_host(shost); free_irq(board->irq, shost); #ifdef CONFIG_ISA if (shost->dma_channel != NO_ISA_DMA) { ASC_DBG(1, "free_dma()\n"); free_dma(shost->dma_channel); } #endif if (ASC_NARROW_BOARD(board)) { dma_unmap_single(board->dev, board->dvc_var.asc_dvc_var.overrun_dma, ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); kfree(board->dvc_var.asc_dvc_var.overrun_buf); } else { iounmap(board->ioremap_addr); advansys_wide_free_mem(board); } scsi_host_put(shost); ASC_DBG(1, "end\n"); return 0; } #define ASC_IOADR_TABLE_MAX_IX 11 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 0x0210, 0x0230, 0x0250, 0x0330 }; /* * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: * 00: 10 * 01: 11 * 10: 12 * 11: 15 */ static unsigned int advansys_isa_irq_no(PortAddr iop_base) { unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; if (chip_irq == 13) chip_irq = 15; return chip_irq; } static int advansys_isa_probe(struct device *dev, unsigned int id) { int err = -ENODEV; PortAddr iop_base = _asc_def_iop_base[id]; struct Scsi_Host *shost; struct asc_board *board; if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); return -ENODEV; } ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); if (!AscFindSignature(iop_base)) goto release_region; if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) goto release_region; err = -ENOMEM; shost = scsi_host_alloc(&advansys_template, sizeof(*board)); if (!shost) goto release_region; board = shost_priv(shost); board->irq = advansys_isa_irq_no(iop_base); board->dev = dev; err = advansys_board_found(shost, iop_base, ASC_IS_ISA); if (err) goto free_host; dev_set_drvdata(dev, shost); return 0; free_host: scsi_host_put(shost); release_region: release_region(iop_base, ASC_IOADR_GAP); return err; } static int advansys_isa_remove(struct device *dev, unsigned int id) { int ioport = _asc_def_iop_base[id]; advansys_release(dev_get_drvdata(dev)); release_region(ioport, ASC_IOADR_GAP); return 0; } static struct isa_driver advansys_isa_driver = { .probe = advansys_isa_probe, .remove = advansys_isa_remove, .driver = { .owner = THIS_MODULE, .name = DRV_NAME, }, }; /* * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: * 000: invalid * 001: 10 * 010: 11 * 011: 12 * 100: invalid * 101: 14 * 110: 15 * 111: invalid */ static unsigned int advansys_vlb_irq_no(PortAddr iop_base) { unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) return 0; return chip_irq; } static int advansys_vlb_probe(struct device *dev, unsigned int id) { int err = -ENODEV; PortAddr iop_base = _asc_def_iop_base[id]; struct Scsi_Host *shost; struct asc_board *board; if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); return -ENODEV; } ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); if (!AscFindSignature(iop_base)) goto release_region; /* * I don't think this condition can actually happen, but the old * driver did it, and the chances of finding a VLB setup in 2007 * to do testing with is slight to none. */ if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) goto release_region; err = -ENOMEM; shost = scsi_host_alloc(&advansys_template, sizeof(*board)); if (!shost) goto release_region; board = shost_priv(shost); board->irq = advansys_vlb_irq_no(iop_base); board->dev = dev; err = advansys_board_found(shost, iop_base, ASC_IS_VL); if (err) goto free_host; dev_set_drvdata(dev, shost); return 0; free_host: scsi_host_put(shost); release_region: release_region(iop_base, ASC_IOADR_GAP); return -ENODEV; } static struct isa_driver advansys_vlb_driver = { .probe = advansys_vlb_probe, .remove = advansys_isa_remove, .driver = { .owner = THIS_MODULE, .name = "advansys_vlb", }, }; static struct eisa_device_id advansys_eisa_table[] = { { "ABP7401" }, { "ABP7501" }, { "" } }; MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); /* * EISA is a little more tricky than PCI; each EISA device may have two * channels, and this driver is written to make each channel its own Scsi_Host */ struct eisa_scsi_data { struct Scsi_Host *host[2]; }; /* * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: * 000: 10 * 001: 11 * 010: 12 * 011: invalid * 100: 14 * 101: 15 * 110: invalid * 111: invalid */ static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) { unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; if ((chip_irq == 13) || (chip_irq > 15)) return 0; return chip_irq; } static int advansys_eisa_probe(struct device *dev) { int i, ioport, irq = 0; int err; struct eisa_device *edev = to_eisa_device(dev); struct eisa_scsi_data *data; err = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto fail; ioport = edev->base_addr + 0xc30; err = -ENODEV; for (i = 0; i < 2; i++, ioport += 0x20) { struct asc_board *board; struct Scsi_Host *shost; if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { printk(KERN_WARNING "Region %x-%x busy\n", ioport, ioport + ASC_IOADR_GAP - 1); continue; } if (!AscFindSignature(ioport)) { release_region(ioport, ASC_IOADR_GAP); continue; } /* * I don't know why we need to do this for EISA chips, but * not for any others. It looks to be equivalent to * AscGetChipCfgMsw, but I may have overlooked something, * so I'm not converting it until I get an EISA board to * test with. */ inw(ioport + 4); if (!irq) irq = advansys_eisa_irq_no(edev); err = -ENOMEM; shost = scsi_host_alloc(&advansys_template, sizeof(*board)); if (!shost) goto release_region; board = shost_priv(shost); board->irq = irq; board->dev = dev; err = advansys_board_found(shost, ioport, ASC_IS_EISA); if (!err) { data->host[i] = shost; continue; } scsi_host_put(shost); release_region: release_region(ioport, ASC_IOADR_GAP); break; } if (err) goto free_data; dev_set_drvdata(dev, data); return 0; free_data: kfree(data->host[0]); kfree(data->host[1]); kfree(data); fail: return err; } static int advansys_eisa_remove(struct device *dev) { int i; struct eisa_scsi_data *data = dev_get_drvdata(dev); for (i = 0; i < 2; i++) { int ioport; struct Scsi_Host *shost = data->host[i]; if (!shost) continue; ioport = shost->io_port; advansys_release(shost); release_region(ioport, ASC_IOADR_GAP); } kfree(data); return 0; } static struct eisa_driver advansys_eisa_driver = { .id_table = advansys_eisa_table, .driver = { .name = DRV_NAME, .probe = advansys_eisa_probe, .remove = advansys_eisa_remove, } }; /* PCI Devices supported by this driver */ static struct pci_device_id advansys_pci_tbl[] = { {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {} }; MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); static void advansys_set_latency(struct pci_dev *pdev) { if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); } else { u8 latency; pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); if (latency < 0x20) pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); } } static int advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err, ioport; struct Scsi_Host *shost; struct asc_board *board; err = pci_enable_device(pdev); if (err) goto fail; err = pci_request_regions(pdev, DRV_NAME); if (err) goto disable_device; pci_set_master(pdev); advansys_set_latency(pdev); err = -ENODEV; if (pci_resource_len(pdev, 0) == 0) goto release_region; ioport = pci_resource_start(pdev, 0); err = -ENOMEM; shost = scsi_host_alloc(&advansys_template, sizeof(*board)); if (!shost) goto release_region; board = shost_priv(shost); board->irq = pdev->irq; board->dev = &pdev->dev; if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || pdev->device == PCI_DEVICE_ID_38C0800_REV1 || pdev->device == PCI_DEVICE_ID_38C1600_REV1) { board->flags |= ASC_IS_WIDE_BOARD; } err = advansys_board_found(shost, ioport, ASC_IS_PCI); if (err) goto free_host; pci_set_drvdata(pdev, shost); return 0; free_host: scsi_host_put(shost); release_region: pci_release_regions(pdev); disable_device: pci_disable_device(pdev); fail: return err; } static void advansys_pci_remove(struct pci_dev *pdev) { advansys_release(pci_get_drvdata(pdev)); pci_release_regions(pdev); pci_disable_device(pdev); } static struct pci_driver advansys_pci_driver = { .name = DRV_NAME, .id_table = advansys_pci_tbl, .probe = advansys_pci_probe, .remove = advansys_pci_remove, }; static int __init advansys_init(void) { int error; error = isa_register_driver(&advansys_isa_driver, ASC_IOADR_TABLE_MAX_IX); if (error) goto fail; error = isa_register_driver(&advansys_vlb_driver, ASC_IOADR_TABLE_MAX_IX); if (error) goto unregister_isa; error = eisa_driver_register(&advansys_eisa_driver); if (error) goto unregister_vlb; error = pci_register_driver(&advansys_pci_driver); if (error) goto unregister_eisa; return 0; unregister_eisa: eisa_driver_unregister(&advansys_eisa_driver); unregister_vlb: isa_unregister_driver(&advansys_vlb_driver); unregister_isa: isa_unregister_driver(&advansys_isa_driver); fail: return error; } static void __exit advansys_exit(void) { pci_unregister_driver(&advansys_pci_driver); eisa_driver_unregister(&advansys_eisa_driver); isa_unregister_driver(&advansys_vlb_driver); isa_unregister_driver(&advansys_isa_driver); } module_init(advansys_init); module_exit(advansys_exit); MODULE_LICENSE("GPL"); MODULE_FIRMWARE("advansys/mcode.bin"); MODULE_FIRMWARE("advansys/3550.bin"); MODULE_FIRMWARE("advansys/38C0800.bin"); MODULE_FIRMWARE("advansys/38C1600.bin");