/* * PCI Express PCI Hot Plug Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to , * */ #include #include #include #include #include #include #include #include #include #include "../pci.h" #include "pciehp.h" static atomic_t pciehp_num_controllers = ATOMIC_INIT(0); struct ctrl_reg { u8 cap_id; u8 nxt_ptr; u16 cap_reg; u32 dev_cap; u16 dev_ctrl; u16 dev_status; u32 lnk_cap; u16 lnk_ctrl; u16 lnk_status; u32 slot_cap; u16 slot_ctrl; u16 slot_status; u16 root_ctrl; u16 rsvp; u32 root_status; } __attribute__ ((packed)); /* offsets to the controller registers based on the above structure layout */ enum ctrl_offsets { PCIECAPID = offsetof(struct ctrl_reg, cap_id), NXTCAPPTR = offsetof(struct ctrl_reg, nxt_ptr), CAPREG = offsetof(struct ctrl_reg, cap_reg), DEVCAP = offsetof(struct ctrl_reg, dev_cap), DEVCTRL = offsetof(struct ctrl_reg, dev_ctrl), DEVSTATUS = offsetof(struct ctrl_reg, dev_status), LNKCAP = offsetof(struct ctrl_reg, lnk_cap), LNKCTRL = offsetof(struct ctrl_reg, lnk_ctrl), LNKSTATUS = offsetof(struct ctrl_reg, lnk_status), SLOTCAP = offsetof(struct ctrl_reg, slot_cap), SLOTCTRL = offsetof(struct ctrl_reg, slot_ctrl), SLOTSTATUS = offsetof(struct ctrl_reg, slot_status), ROOTCTRL = offsetof(struct ctrl_reg, root_ctrl), ROOTSTATUS = offsetof(struct ctrl_reg, root_status), }; static inline int pciehp_readw(struct controller *ctrl, int reg, u16 *value) { struct pci_dev *dev = ctrl->pci_dev; return pci_read_config_word(dev, ctrl->cap_base + reg, value); } static inline int pciehp_readl(struct controller *ctrl, int reg, u32 *value) { struct pci_dev *dev = ctrl->pci_dev; return pci_read_config_dword(dev, ctrl->cap_base + reg, value); } static inline int pciehp_writew(struct controller *ctrl, int reg, u16 value) { struct pci_dev *dev = ctrl->pci_dev; return pci_write_config_word(dev, ctrl->cap_base + reg, value); } static inline int pciehp_writel(struct controller *ctrl, int reg, u32 value) { struct pci_dev *dev = ctrl->pci_dev; return pci_write_config_dword(dev, ctrl->cap_base + reg, value); } /* Field definitions in PCI Express Capabilities Register */ #define CAP_VER 0x000F #define DEV_PORT_TYPE 0x00F0 #define SLOT_IMPL 0x0100 #define MSG_NUM 0x3E00 /* Device or Port Type */ #define NAT_ENDPT 0x00 #define LEG_ENDPT 0x01 #define ROOT_PORT 0x04 #define UP_STREAM 0x05 #define DN_STREAM 0x06 #define PCIE_PCI_BRDG 0x07 #define PCI_PCIE_BRDG 0x10 /* Field definitions in Device Capabilities Register */ #define DATTN_BUTTN_PRSN 0x1000 #define DATTN_LED_PRSN 0x2000 #define DPWR_LED_PRSN 0x4000 /* Field definitions in Link Capabilities Register */ #define MAX_LNK_SPEED 0x000F #define MAX_LNK_WIDTH 0x03F0 /* Link Width Encoding */ #define LNK_X1 0x01 #define LNK_X2 0x02 #define LNK_X4 0x04 #define LNK_X8 0x08 #define LNK_X12 0x0C #define LNK_X16 0x10 #define LNK_X32 0x20 /*Field definitions of Link Status Register */ #define LNK_SPEED 0x000F #define NEG_LINK_WD 0x03F0 #define LNK_TRN_ERR 0x0400 #define LNK_TRN 0x0800 #define SLOT_CLK_CONF 0x1000 /* Field definitions in Slot Capabilities Register */ #define ATTN_BUTTN_PRSN 0x00000001 #define PWR_CTRL_PRSN 0x00000002 #define MRL_SENS_PRSN 0x00000004 #define ATTN_LED_PRSN 0x00000008 #define PWR_LED_PRSN 0x00000010 #define HP_SUPR_RM_SUP 0x00000020 #define HP_CAP 0x00000040 #define SLOT_PWR_VALUE 0x000003F8 #define SLOT_PWR_LIMIT 0x00000C00 #define PSN 0xFFF80000 /* PSN: Physical Slot Number */ /* Field definitions in Slot Control Register */ #define ATTN_BUTTN_ENABLE 0x0001 #define PWR_FAULT_DETECT_ENABLE 0x0002 #define MRL_DETECT_ENABLE 0x0004 #define PRSN_DETECT_ENABLE 0x0008 #define CMD_CMPL_INTR_ENABLE 0x0010 #define HP_INTR_ENABLE 0x0020 #define ATTN_LED_CTRL 0x00C0 #define PWR_LED_CTRL 0x0300 #define PWR_CTRL 0x0400 #define EMI_CTRL 0x0800 /* Attention indicator and Power indicator states */ #define LED_ON 0x01 #define LED_BLINK 0x10 #define LED_OFF 0x11 /* Power Control Command */ #define POWER_ON 0 #define POWER_OFF 0x0400 /* EMI Status defines */ #define EMI_DISENGAGED 0 #define EMI_ENGAGED 1 /* Field definitions in Slot Status Register */ #define ATTN_BUTTN_PRESSED 0x0001 #define PWR_FAULT_DETECTED 0x0002 #define MRL_SENS_CHANGED 0x0004 #define PRSN_DETECT_CHANGED 0x0008 #define CMD_COMPLETED 0x0010 #define MRL_STATE 0x0020 #define PRSN_STATE 0x0040 #define EMI_STATE 0x0080 #define EMI_STATUS_BIT 7 static irqreturn_t pcie_isr(int irq, void *dev_id); static void start_int_poll_timer(struct controller *ctrl, int sec); /* This is the interrupt polling timeout function. */ static void int_poll_timeout(unsigned long data) { struct controller *ctrl = (struct controller *)data; /* Poll for interrupt events. regs == NULL => polling */ pcie_isr(0, ctrl); init_timer(&ctrl->poll_timer); if (!pciehp_poll_time) pciehp_poll_time = 2; /* default polling interval is 2 sec */ start_int_poll_timer(ctrl, pciehp_poll_time); } /* This function starts the interrupt polling timer. */ static void start_int_poll_timer(struct controller *ctrl, int sec) { /* Clamp to sane value */ if ((sec <= 0) || (sec > 60)) sec = 2; ctrl->poll_timer.function = &int_poll_timeout; ctrl->poll_timer.data = (unsigned long)ctrl; ctrl->poll_timer.expires = jiffies + sec * HZ; add_timer(&ctrl->poll_timer); } static inline int pciehp_request_irq(struct controller *ctrl) { int retval, irq = ctrl->pcie->irq; /* Install interrupt polling timer. Start with 10 sec delay */ if (pciehp_poll_mode) { init_timer(&ctrl->poll_timer); start_int_poll_timer(ctrl, 10); return 0; } /* Installs the interrupt handler */ retval = request_irq(irq, pcie_isr, IRQF_SHARED, MY_NAME, ctrl); if (retval) ctrl_err(ctrl, "Cannot get irq %d for the hotplug controller\n", irq); return retval; } static inline void pciehp_free_irq(struct controller *ctrl) { if (pciehp_poll_mode) del_timer_sync(&ctrl->poll_timer); else free_irq(ctrl->pcie->irq, ctrl); } static int pcie_poll_cmd(struct controller *ctrl) { u16 slot_status; int timeout = 1000; if (!pciehp_readw(ctrl, SLOTSTATUS, &slot_status)) { if (slot_status & CMD_COMPLETED) { pciehp_writew(ctrl, SLOTSTATUS, CMD_COMPLETED); return 1; } } while (timeout > 0) { msleep(10); timeout -= 10; if (!pciehp_readw(ctrl, SLOTSTATUS, &slot_status)) { if (slot_status & CMD_COMPLETED) { pciehp_writew(ctrl, SLOTSTATUS, CMD_COMPLETED); return 1; } } } return 0; /* timeout */ } static void pcie_wait_cmd(struct controller *ctrl, int poll) { unsigned int msecs = pciehp_poll_mode ? 2500 : 1000; unsigned long timeout = msecs_to_jiffies(msecs); int rc; if (poll) rc = pcie_poll_cmd(ctrl); else rc = wait_event_timeout(ctrl->queue, !ctrl->cmd_busy, timeout); if (!rc) ctrl_dbg(ctrl, "Command not completed in 1000 msec\n"); } /** * pcie_write_cmd - Issue controller command * @ctrl: controller to which the command is issued * @cmd: command value written to slot control register * @mask: bitmask of slot control register to be modified */ static int pcie_write_cmd(struct controller *ctrl, u16 cmd, u16 mask) { int retval = 0; u16 slot_status; u16 slot_ctrl; mutex_lock(&ctrl->ctrl_lock); retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTSTATUS register\n", __func__); goto out; } if (slot_status & CMD_COMPLETED) { if (!ctrl->no_cmd_complete) { /* * After 1 sec and CMD_COMPLETED still not set, just * proceed forward to issue the next command according * to spec. Just print out the error message. */ ctrl_dbg(ctrl, "%s: CMD_COMPLETED not clear after 1 sec.\n", __func__); } else if (!NO_CMD_CMPL(ctrl)) { /* * This controller semms to notify of command completed * event even though it supports none of power * controller, attention led, power led and EMI. */ ctrl_dbg(ctrl, "%s: Unexpected CMD_COMPLETED. Need to " "wait for command completed event.\n", __func__); ctrl->no_cmd_complete = 0; } else { ctrl_dbg(ctrl, "%s: Unexpected CMD_COMPLETED. Maybe " "the controller is broken.\n", __func__); } } retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTCTRL register\n", __func__); goto out; } slot_ctrl &= ~mask; slot_ctrl |= (cmd & mask); ctrl->cmd_busy = 1; smp_mb(); retval = pciehp_writew(ctrl, SLOTCTRL, slot_ctrl); if (retval) ctrl_err(ctrl, "%s: Cannot write to SLOTCTRL register\n", __func__); /* * Wait for command completion. */ if (!retval && !ctrl->no_cmd_complete) { int poll = 0; /* * if hotplug interrupt is not enabled or command * completed interrupt is not enabled, we need to poll * command completed event. */ if (!(slot_ctrl & HP_INTR_ENABLE) || !(slot_ctrl & CMD_CMPL_INTR_ENABLE)) poll = 1; pcie_wait_cmd(ctrl, poll); } out: mutex_unlock(&ctrl->ctrl_lock); return retval; } static int hpc_check_lnk_status(struct controller *ctrl) { u16 lnk_status; int retval = 0; retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read LNKSTATUS register\n", __func__); return retval; } ctrl_dbg(ctrl, "%s: lnk_status = %x\n", __func__, lnk_status); if ( (lnk_status & LNK_TRN) || (lnk_status & LNK_TRN_ERR) || !(lnk_status & NEG_LINK_WD)) { ctrl_err(ctrl, "%s : Link Training Error occurs \n", __func__); retval = -1; return retval; } return retval; } static int hpc_get_attention_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_ctrl; u8 atten_led_state; int retval = 0; retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTCTRL register\n", __func__); return retval; } ctrl_dbg(ctrl, "%s: SLOTCTRL %x, value read %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_ctrl); atten_led_state = (slot_ctrl & ATTN_LED_CTRL) >> 6; switch (atten_led_state) { case 0: *status = 0xFF; /* Reserved */ break; case 1: *status = 1; /* On */ break; case 2: *status = 2; /* Blink */ break; case 3: *status = 0; /* Off */ break; default: *status = 0xFF; break; } return 0; } static int hpc_get_power_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_ctrl; u8 pwr_state; int retval = 0; retval = pciehp_readw(ctrl, SLOTCTRL, &slot_ctrl); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTCTRL register\n", __func__); return retval; } ctrl_dbg(ctrl, "%s: SLOTCTRL %x value read %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_ctrl); pwr_state = (slot_ctrl & PWR_CTRL) >> 10; switch (pwr_state) { case 0: *status = 1; break; case 1: *status = 0; break; default: *status = 0xFF; break; } return retval; } static int hpc_get_latch_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_status; int retval = 0; retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTSTATUS register\n", __func__); return retval; } *status = (((slot_status & MRL_STATE) >> 5) == 0) ? 0 : 1; return 0; } static int hpc_get_adapter_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_status; u8 card_state; int retval = 0; retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTSTATUS register\n", __func__); return retval; } card_state = (u8)((slot_status & PRSN_STATE) >> 6); *status = (card_state == 1) ? 1 : 0; return 0; } static int hpc_query_power_fault(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_status; u8 pwr_fault; int retval = 0; retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { ctrl_err(ctrl, "%s: Cannot check for power fault\n", __func__); return retval; } pwr_fault = (u8)((slot_status & PWR_FAULT_DETECTED) >> 1); return pwr_fault; } static int hpc_get_emi_status(struct slot *slot, u8 *status) { struct controller *ctrl = slot->ctrl; u16 slot_status; int retval = 0; retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { ctrl_err(ctrl, "%s : Cannot check EMI status\n", __func__); return retval; } *status = (slot_status & EMI_STATE) >> EMI_STATUS_BIT; return retval; } static int hpc_toggle_emi(struct slot *slot) { u16 slot_cmd; u16 cmd_mask; int rc; slot_cmd = EMI_CTRL; cmd_mask = EMI_CTRL; rc = pcie_write_cmd(slot->ctrl, slot_cmd, cmd_mask); slot->last_emi_toggle = get_seconds(); return rc; } static int hpc_set_attention_status(struct slot *slot, u8 value) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; int rc; cmd_mask = ATTN_LED_CTRL; switch (value) { case 0 : /* turn off */ slot_cmd = 0x00C0; break; case 1: /* turn on */ slot_cmd = 0x0040; break; case 2: /* turn blink */ slot_cmd = 0x0080; break; default: return -1; } rc = pcie_write_cmd(ctrl, slot_cmd, cmd_mask); ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_cmd); return rc; } static void hpc_set_green_led_on(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; slot_cmd = 0x0100; cmd_mask = PWR_LED_CTRL; pcie_write_cmd(ctrl, slot_cmd, cmd_mask); ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_cmd); } static void hpc_set_green_led_off(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; slot_cmd = 0x0300; cmd_mask = PWR_LED_CTRL; pcie_write_cmd(ctrl, slot_cmd, cmd_mask); ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_cmd); } static void hpc_set_green_led_blink(struct slot *slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; slot_cmd = 0x0200; cmd_mask = PWR_LED_CTRL; pcie_write_cmd(ctrl, slot_cmd, cmd_mask); ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_cmd); } static int hpc_power_on_slot(struct slot * slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; u16 slot_status; int retval = 0; ctrl_dbg(ctrl, "%s: slot->hp_slot %x\n", __func__, slot->hp_slot); /* Clear sticky power-fault bit from previous power failures */ retval = pciehp_readw(ctrl, SLOTSTATUS, &slot_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read SLOTSTATUS register\n", __func__); return retval; } slot_status &= PWR_FAULT_DETECTED; if (slot_status) { retval = pciehp_writew(ctrl, SLOTSTATUS, slot_status); if (retval) { ctrl_err(ctrl, "%s: Cannot write to SLOTSTATUS register\n", __func__); return retval; } } slot_cmd = POWER_ON; cmd_mask = PWR_CTRL; /* Enable detection that we turned off at slot power-off time */ if (!pciehp_poll_mode) { slot_cmd |= (PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE); cmd_mask |= (PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE); } retval = pcie_write_cmd(ctrl, slot_cmd, cmd_mask); if (retval) { ctrl_err(ctrl, "%s: Write %x command failed!\n", __func__, slot_cmd); return -1; } ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_cmd); return retval; } static inline int pcie_mask_bad_dllp(struct controller *ctrl) { struct pci_dev *dev = ctrl->pci_dev; int pos; u32 reg; pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); if (!pos) return 0; pci_read_config_dword(dev, pos + PCI_ERR_COR_MASK, ®); if (reg & PCI_ERR_COR_BAD_DLLP) return 0; reg |= PCI_ERR_COR_BAD_DLLP; pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, reg); return 1; } static inline void pcie_unmask_bad_dllp(struct controller *ctrl) { struct pci_dev *dev = ctrl->pci_dev; u32 reg; int pos; pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); if (!pos) return; pci_read_config_dword(dev, pos + PCI_ERR_COR_MASK, ®); if (!(reg & PCI_ERR_COR_BAD_DLLP)) return; reg &= ~PCI_ERR_COR_BAD_DLLP; pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, reg); } static int hpc_power_off_slot(struct slot * slot) { struct controller *ctrl = slot->ctrl; u16 slot_cmd; u16 cmd_mask; int retval = 0; int changed; ctrl_dbg(ctrl, "%s: slot->hp_slot %x\n", __func__, slot->hp_slot); /* * Set Bad DLLP Mask bit in Correctable Error Mask * Register. This is the workaround against Bad DLLP error * that sometimes happens during turning power off the slot * which conforms to PCI Express 1.0a spec. */ changed = pcie_mask_bad_dllp(ctrl); slot_cmd = POWER_OFF; cmd_mask = PWR_CTRL; /* * If we get MRL or presence detect interrupts now, the isr * will notice the sticky power-fault bit too and issue power * indicator change commands. This will lead to an endless loop * of command completions, since the power-fault bit remains on * till the slot is powered on again. */ if (!pciehp_poll_mode) { slot_cmd &= ~(PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE); cmd_mask |= (PWR_FAULT_DETECT_ENABLE | MRL_DETECT_ENABLE | PRSN_DETECT_ENABLE); } retval = pcie_write_cmd(ctrl, slot_cmd, cmd_mask); if (retval) { ctrl_err(ctrl, "%s: Write command failed!\n", __func__); retval = -1; goto out; } ctrl_dbg(ctrl, "%s: SLOTCTRL %x write cmd %x\n", __func__, ctrl->cap_base + SLOTCTRL, slot_cmd); out: if (changed) pcie_unmask_bad_dllp(ctrl); return retval; } static irqreturn_t pcie_isr(int irq, void *dev_id) { struct controller *ctrl = (struct controller *)dev_id; u16 detected, intr_loc; struct slot *p_slot; /* * In order to guarantee that all interrupt events are * serviced, we need to re-inspect Slot Status register after * clearing what is presumed to be the last pending interrupt. */ intr_loc = 0; do { if (pciehp_readw(ctrl, SLOTSTATUS, &detected)) { ctrl_err(ctrl, "%s: Cannot read SLOTSTATUS\n", __func__); return IRQ_NONE; } detected &= (ATTN_BUTTN_PRESSED | PWR_FAULT_DETECTED | MRL_SENS_CHANGED | PRSN_DETECT_CHANGED | CMD_COMPLETED); intr_loc |= detected; if (!intr_loc) return IRQ_NONE; if (detected && pciehp_writew(ctrl, SLOTSTATUS, detected)) { ctrl_err(ctrl, "%s: Cannot write to SLOTSTATUS\n", __func__); return IRQ_NONE; } } while (detected); ctrl_dbg(ctrl, "%s: intr_loc %x\n", __func__, intr_loc); /* Check Command Complete Interrupt Pending */ if (intr_loc & CMD_COMPLETED) { ctrl->cmd_busy = 0; smp_mb(); wake_up(&ctrl->queue); } if (!(intr_loc & ~CMD_COMPLETED)) return IRQ_HANDLED; p_slot = pciehp_find_slot(ctrl, ctrl->slot_device_offset); /* Check MRL Sensor Changed */ if (intr_loc & MRL_SENS_CHANGED) pciehp_handle_switch_change(p_slot); /* Check Attention Button Pressed */ if (intr_loc & ATTN_BUTTN_PRESSED) pciehp_handle_attention_button(p_slot); /* Check Presence Detect Changed */ if (intr_loc & PRSN_DETECT_CHANGED) pciehp_handle_presence_change(p_slot); /* Check Power Fault Detected */ if (intr_loc & PWR_FAULT_DETECTED) pciehp_handle_power_fault(p_slot); return IRQ_HANDLED; } static int hpc_get_max_lnk_speed(struct slot *slot, enum pci_bus_speed *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_speed lnk_speed; u32 lnk_cap; int retval = 0; retval = pciehp_readl(ctrl, LNKCAP, &lnk_cap); if (retval) { ctrl_err(ctrl, "%s: Cannot read LNKCAP register\n", __func__); return retval; } switch (lnk_cap & 0x000F) { case 1: lnk_speed = PCIE_2PT5GB; break; default: lnk_speed = PCIE_LNK_SPEED_UNKNOWN; break; } *value = lnk_speed; ctrl_dbg(ctrl, "Max link speed = %d\n", lnk_speed); return retval; } static int hpc_get_max_lnk_width(struct slot *slot, enum pcie_link_width *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_width lnk_wdth; u32 lnk_cap; int retval = 0; retval = pciehp_readl(ctrl, LNKCAP, &lnk_cap); if (retval) { ctrl_err(ctrl, "%s: Cannot read LNKCAP register\n", __func__); return retval; } switch ((lnk_cap & 0x03F0) >> 4){ case 0: lnk_wdth = PCIE_LNK_WIDTH_RESRV; break; case 1: lnk_wdth = PCIE_LNK_X1; break; case 2: lnk_wdth = PCIE_LNK_X2; break; case 4: lnk_wdth = PCIE_LNK_X4; break; case 8: lnk_wdth = PCIE_LNK_X8; break; case 12: lnk_wdth = PCIE_LNK_X12; break; case 16: lnk_wdth = PCIE_LNK_X16; break; case 32: lnk_wdth = PCIE_LNK_X32; break; default: lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN; break; } *value = lnk_wdth; ctrl_dbg(ctrl, "Max link width = %d\n", lnk_wdth); return retval; } static int hpc_get_cur_lnk_speed(struct slot *slot, enum pci_bus_speed *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_speed lnk_speed = PCI_SPEED_UNKNOWN; int retval = 0; u16 lnk_status; retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read LNKSTATUS register\n", __func__); return retval; } switch (lnk_status & 0x0F) { case 1: lnk_speed = PCIE_2PT5GB; break; default: lnk_speed = PCIE_LNK_SPEED_UNKNOWN; break; } *value = lnk_speed; ctrl_dbg(ctrl, "Current link speed = %d\n", lnk_speed); return retval; } static int hpc_get_cur_lnk_width(struct slot *slot, enum pcie_link_width *value) { struct controller *ctrl = slot->ctrl; enum pcie_link_width lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN; int retval = 0; u16 lnk_status; retval = pciehp_readw(ctrl, LNKSTATUS, &lnk_status); if (retval) { ctrl_err(ctrl, "%s: Cannot read LNKSTATUS register\n", __func__); return retval; } switch ((lnk_status & 0x03F0) >> 4){ case 0: lnk_wdth = PCIE_LNK_WIDTH_RESRV; break; case 1: lnk_wdth = PCIE_LNK_X1; break; case 2: lnk_wdth = PCIE_LNK_X2; break; case 4: lnk_wdth = PCIE_LNK_X4; break; case 8: lnk_wdth = PCIE_LNK_X8; break; case 12: lnk_wdth = PCIE_LNK_X12; break; case 16: lnk_wdth = PCIE_LNK_X16; break; case 32: lnk_wdth = PCIE_LNK_X32; break; default: lnk_wdth = PCIE_LNK_WIDTH_UNKNOWN; break; } *value = lnk_wdth; ctrl_dbg(ctrl, "Current link width = %d\n", lnk_wdth); return retval; } static void pcie_release_ctrl(struct controller *ctrl); static struct hpc_ops pciehp_hpc_ops = { .power_on_slot = hpc_power_on_slot, .power_off_slot = hpc_power_off_slot, .set_attention_status = hpc_set_attention_status, .get_power_status = hpc_get_power_status, .get_attention_status = hpc_get_attention_status, .get_latch_status = hpc_get_latch_status, .get_adapter_status = hpc_get_adapter_status, .get_emi_status = hpc_get_emi_status, .toggle_emi = hpc_toggle_emi, .get_max_bus_speed = hpc_get_max_lnk_speed, .get_cur_bus_speed = hpc_get_cur_lnk_speed, .get_max_lnk_width = hpc_get_max_lnk_width, .get_cur_lnk_width = hpc_get_cur_lnk_width, .query_power_fault = hpc_query_power_fault, .green_led_on = hpc_set_green_led_on, .green_led_off = hpc_set_green_led_off, .green_led_blink = hpc_set_green_led_blink, .release_ctlr = pcie_release_ctrl, .check_lnk_status = hpc_check_lnk_status, }; int pcie_enable_notification(struct controller *ctrl) { u16 cmd, mask; cmd = PRSN_DETECT_ENABLE; if (ATTN_BUTTN(ctrl)) cmd |= ATTN_BUTTN_ENABLE; if (POWER_CTRL(ctrl)) cmd |= PWR_FAULT_DETECT_ENABLE; if (MRL_SENS(ctrl)) cmd |= MRL_DETECT_ENABLE; if (!pciehp_poll_mode) cmd |= HP_INTR_ENABLE | CMD_CMPL_INTR_ENABLE; mask = PRSN_DETECT_ENABLE | ATTN_BUTTN_ENABLE | MRL_DETECT_ENABLE | PWR_FAULT_DETECT_ENABLE | HP_INTR_ENABLE | CMD_CMPL_INTR_ENABLE; if (pcie_write_cmd(ctrl, cmd, mask)) { ctrl_err(ctrl, "%s: Cannot enable software notification\n", __func__); return -1; } return 0; } static void pcie_disable_notification(struct controller *ctrl) { u16 mask; mask = PRSN_DETECT_ENABLE | ATTN_BUTTN_ENABLE | MRL_DETECT_ENABLE | PWR_FAULT_DETECT_ENABLE | HP_INTR_ENABLE | CMD_CMPL_INTR_ENABLE; if (pcie_write_cmd(ctrl, 0, mask)) ctrl_warn(ctrl, "%s: Cannot disable software notification\n", __func__); } static int pcie_init_notification(struct controller *ctrl) { if (pciehp_request_irq(ctrl)) return -1; if (pcie_enable_notification(ctrl)) { pciehp_free_irq(ctrl); return -1; } return 0; } static void pcie_shutdown_notification(struct controller *ctrl) { pcie_disable_notification(ctrl); pciehp_free_irq(ctrl); } static int pcie_init_slot(struct controller *ctrl) { struct slot *slot; slot = kzalloc(sizeof(*slot), GFP_KERNEL); if (!slot) return -ENOMEM; slot->hp_slot = 0; slot->ctrl = ctrl; slot->bus = ctrl->pci_dev->subordinate->number; slot->device = ctrl->slot_device_offset + slot->hp_slot; slot->hpc_ops = ctrl->hpc_ops; slot->number = ctrl->first_slot; snprintf(slot->name, SLOT_NAME_SIZE, "%d", slot->number); mutex_init(&slot->lock); INIT_DELAYED_WORK(&slot->work, pciehp_queue_pushbutton_work); list_add(&slot->slot_list, &ctrl->slot_list); return 0; } static void pcie_cleanup_slot(struct controller *ctrl) { struct slot *slot; slot = list_first_entry(&ctrl->slot_list, struct slot, slot_list); list_del(&slot->slot_list); cancel_delayed_work(&slot->work); flush_scheduled_work(); flush_workqueue(pciehp_wq); kfree(slot); } static inline void dbg_ctrl(struct controller *ctrl) { int i; u16 reg16; struct pci_dev *pdev = ctrl->pci_dev; if (!pciehp_debug) return; ctrl_info(ctrl, "Hotplug Controller:\n"); ctrl_info(ctrl, " Seg/Bus/Dev/Func/IRQ : %s IRQ %d\n", pci_name(pdev), pdev->irq); ctrl_info(ctrl, " Vendor ID : 0x%04x\n", pdev->vendor); ctrl_info(ctrl, " Device ID : 0x%04x\n", pdev->device); ctrl_info(ctrl, " Subsystem ID : 0x%04x\n", pdev->subsystem_device); ctrl_info(ctrl, " Subsystem Vendor ID : 0x%04x\n", pdev->subsystem_vendor); ctrl_info(ctrl, " PCIe Cap offset : 0x%02x\n", ctrl->cap_base); for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { if (!pci_resource_len(pdev, i)) continue; ctrl_info(ctrl, " PCI resource [%d] : 0x%llx@0x%llx\n", i, (unsigned long long)pci_resource_len(pdev, i), (unsigned long long)pci_resource_start(pdev, i)); } ctrl_info(ctrl, "Slot Capabilities : 0x%08x\n", ctrl->slot_cap); ctrl_info(ctrl, " Physical Slot Number : %d\n", ctrl->first_slot); ctrl_info(ctrl, " Attention Button : %3s\n", ATTN_BUTTN(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " Power Controller : %3s\n", POWER_CTRL(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " MRL Sensor : %3s\n", MRL_SENS(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " Attention Indicator : %3s\n", ATTN_LED(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " Power Indicator : %3s\n", PWR_LED(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " Hot-Plug Surprise : %3s\n", HP_SUPR_RM(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " EMI Present : %3s\n", EMI(ctrl) ? "yes" : "no"); ctrl_info(ctrl, " Command Completed : %3s\n", NO_CMD_CMPL(ctrl) ? "no" : "yes"); pciehp_readw(ctrl, SLOTSTATUS, ®16); ctrl_info(ctrl, "Slot Status : 0x%04x\n", reg16); pciehp_readw(ctrl, SLOTCTRL, ®16); ctrl_info(ctrl, "Slot Control : 0x%04x\n", reg16); } struct controller *pcie_init(struct pcie_device *dev) { struct controller *ctrl; u32 slot_cap; struct pci_dev *pdev = dev->port; ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); if (!ctrl) { dev_err(&dev->device, "%s : out of memory\n", __func__); goto abort; } INIT_LIST_HEAD(&ctrl->slot_list); ctrl->pcie = dev; ctrl->pci_dev = pdev; ctrl->cap_base = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (!ctrl->cap_base) { ctrl_err(ctrl, "%s: Cannot find PCI Express capability\n", __func__); goto abort; } if (pciehp_readl(ctrl, SLOTCAP, &slot_cap)) { ctrl_err(ctrl, "%s: Cannot read SLOTCAP register\n", __func__); goto abort; } ctrl->slot_cap = slot_cap; ctrl->first_slot = slot_cap >> 19; ctrl->slot_device_offset = 0; ctrl->num_slots = 1; ctrl->hpc_ops = &pciehp_hpc_ops; mutex_init(&ctrl->crit_sect); mutex_init(&ctrl->ctrl_lock); init_waitqueue_head(&ctrl->queue); dbg_ctrl(ctrl); /* * Controller doesn't notify of command completion if the "No * Command Completed Support" bit is set in Slot Capability * register or the controller supports none of power * controller, attention led, power led and EMI. */ if (NO_CMD_CMPL(ctrl) || !(POWER_CTRL(ctrl) | ATTN_LED(ctrl) | PWR_LED(ctrl) | EMI(ctrl))) ctrl->no_cmd_complete = 1; /* Clear all remaining event bits in Slot Status register */ if (pciehp_writew(ctrl, SLOTSTATUS, 0x1f)) goto abort_ctrl; /* Disable sotfware notification */ pcie_disable_notification(ctrl); /* * If this is the first controller to be initialized, * initialize the pciehp work queue */ if (atomic_add_return(1, &pciehp_num_controllers) == 1) { pciehp_wq = create_singlethread_workqueue("pciehpd"); if (!pciehp_wq) goto abort_ctrl; } ctrl_info(ctrl, "HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n", pdev->vendor, pdev->device, pdev->subsystem_vendor, pdev->subsystem_device); if (pcie_init_slot(ctrl)) goto abort_ctrl; if (pcie_init_notification(ctrl)) goto abort_slot; return ctrl; abort_slot: pcie_cleanup_slot(ctrl); abort_ctrl: kfree(ctrl); abort: return NULL; } void pcie_release_ctrl(struct controller *ctrl) { pcie_shutdown_notification(ctrl); pcie_cleanup_slot(ctrl); /* * If this is the last controller to be released, destroy the * pciehp work queue */ if (atomic_dec_and_test(&pciehp_num_controllers)) destroy_workqueue(pciehp_wq); kfree(ctrl); }