/* * Intel Wireless Multicomm 3200 WiFi driver * * Copyright (C) 2009 Intel Corporation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * Intel Corporation * Samuel Ortiz * Zhu Yi * */ #include #include #include #include #include #include #include #include "iwm.h" #include "bus.h" #include "hal.h" #include "umac.h" #include "commands.h" #include "debug.h" static int iwm_send_lmac_ptrough_cmd(struct iwm_priv *iwm, u8 lmac_cmd_id, const void *lmac_payload, u16 lmac_payload_size, u8 resp) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_LMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_lmac_cmd lmac_cmd; lmac_cmd.id = lmac_cmd_id; umac_cmd.id = UMAC_CMD_OPCODE_WIFI_PASS_THROUGH; umac_cmd.resp = resp; return iwm_hal_send_host_cmd(iwm, &udma_cmd, &umac_cmd, &lmac_cmd, lmac_payload, lmac_payload_size); } int iwm_send_wifi_if_cmd(struct iwm_priv *iwm, void *payload, u16 payload_size, bool resp) { struct iwm_umac_wifi_if *hdr = (struct iwm_umac_wifi_if *)payload; struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; int ret; u8 oid = hdr->oid; if (!test_bit(IWM_STATUS_READY, &iwm->status)) { IWM_ERR(iwm, "Interface is not ready yet"); return -EAGAIN; } umac_cmd.id = UMAC_CMD_OPCODE_WIFI_IF_WRAPPER; umac_cmd.resp = resp; ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, payload, payload_size); if (resp) { ret = wait_event_interruptible_timeout(iwm->wifi_ntfy_queue, test_and_clear_bit(oid, &iwm->wifi_ntfy[0]), 3 * HZ); return ret ? 0 : -EBUSY; } return ret; } static int modparam_wiwi = COEX_MODE_CM; module_param_named(wiwi, modparam_wiwi, int, 0644); MODULE_PARM_DESC(wiwi, "Wifi-WiMAX coexistence: 1=SA, 2=XOR, 3=CM (default)"); static struct coex_event iwm_sta_xor_prio_tbl[COEX_EVENTS_NUM] = { {4, 3, 0, COEX_UNASSOC_IDLE_FLAGS}, {4, 3, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS}, {4, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS}, {4, 3, 0, COEX_CALIBRATION_FLAGS}, {4, 3, 0, COEX_PERIODIC_CALIBRATION_FLAGS}, {4, 3, 0, COEX_CONNECTION_ESTAB_FLAGS}, {4, 3, 0, COEX_ASSOCIATED_IDLE_FLAGS}, {4, 3, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS}, {4, 3, 0, COEX_ASSOC_AUTO_SCAN_FLAGS}, {4, 3, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS}, {6, 3, 0, COEX_XOR_RF_ON_FLAGS}, {4, 3, 0, COEX_RF_OFF_FLAGS}, {6, 6, 0, COEX_STAND_ALONE_DEBUG_FLAGS}, {4, 3, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS}, {4, 3, 0, COEX_RSRVD1_FLAGS}, {4, 3, 0, COEX_RSRVD2_FLAGS} }; static struct coex_event iwm_sta_cm_prio_tbl[COEX_EVENTS_NUM] = { {1, 1, 0, COEX_UNASSOC_IDLE_FLAGS}, {4, 4, 0, COEX_UNASSOC_MANUAL_SCAN_FLAGS}, {3, 3, 0, COEX_UNASSOC_AUTO_SCAN_FLAGS}, {6, 6, 0, COEX_CALIBRATION_FLAGS}, {3, 3, 0, COEX_PERIODIC_CALIBRATION_FLAGS}, {6, 5, 0, COEX_CONNECTION_ESTAB_FLAGS}, {4, 4, 0, COEX_ASSOCIATED_IDLE_FLAGS}, {4, 4, 0, COEX_ASSOC_MANUAL_SCAN_FLAGS}, {4, 4, 0, COEX_ASSOC_AUTO_SCAN_FLAGS}, {4, 4, 0, COEX_ASSOC_ACTIVE_LEVEL_FLAGS}, {1, 1, 0, COEX_RF_ON_FLAGS}, {1, 1, 0, COEX_RF_OFF_FLAGS}, {7, 7, 0, COEX_STAND_ALONE_DEBUG_FLAGS}, {5, 4, 0, COEX_IPAN_ASSOC_LEVEL_FLAGS}, {1, 1, 0, COEX_RSRVD1_FLAGS}, {1, 1, 0, COEX_RSRVD2_FLAGS} }; int iwm_send_prio_table(struct iwm_priv *iwm) { struct iwm_coex_prio_table_cmd coex_table_cmd; u32 coex_enabled, mode_enabled; memset(&coex_table_cmd, 0, sizeof(struct iwm_coex_prio_table_cmd)); coex_table_cmd.flags = COEX_FLAGS_STA_TABLE_VALID_MSK; switch (modparam_wiwi) { case COEX_MODE_XOR: case COEX_MODE_CM: coex_enabled = 1; break; default: coex_enabled = 0; break; } switch (iwm->conf.mode) { case UMAC_MODE_BSS: case UMAC_MODE_IBSS: mode_enabled = 1; break; default: mode_enabled = 0; break; } if (coex_enabled && mode_enabled) { coex_table_cmd.flags |= COEX_FLAGS_COEX_ENABLE_MSK | COEX_FLAGS_ASSOC_WAKEUP_UMASK_MSK | COEX_FLAGS_UNASSOC_WAKEUP_UMASK_MSK; switch (modparam_wiwi) { case COEX_MODE_XOR: memcpy(coex_table_cmd.sta_prio, iwm_sta_xor_prio_tbl, sizeof(iwm_sta_xor_prio_tbl)); break; case COEX_MODE_CM: memcpy(coex_table_cmd.sta_prio, iwm_sta_cm_prio_tbl, sizeof(iwm_sta_cm_prio_tbl)); break; default: IWM_ERR(iwm, "Invalid coex_mode 0x%x\n", modparam_wiwi); break; } } else IWM_WARN(iwm, "coexistense disabled\n"); return iwm_send_lmac_ptrough_cmd(iwm, COEX_PRIORITY_TABLE_CMD, &coex_table_cmd, sizeof(struct iwm_coex_prio_table_cmd), 0); } int iwm_send_init_calib_cfg(struct iwm_priv *iwm, u8 calib_requested) { struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd; memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd)); cal_cfg_cmd.ucode_cfg.init.enable = cpu_to_le32(calib_requested); cal_cfg_cmd.ucode_cfg.init.start = cpu_to_le32(calib_requested); cal_cfg_cmd.ucode_cfg.init.send_res = cpu_to_le32(calib_requested); cal_cfg_cmd.ucode_cfg.flags = cpu_to_le32(CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_AFTER_MSK); return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd, sizeof(struct iwm_lmac_cal_cfg_cmd), 1); } int iwm_send_periodic_calib_cfg(struct iwm_priv *iwm, u8 calib_requested) { struct iwm_lmac_cal_cfg_cmd cal_cfg_cmd; memset(&cal_cfg_cmd, 0, sizeof(struct iwm_lmac_cal_cfg_cmd)); cal_cfg_cmd.ucode_cfg.periodic.enable = cpu_to_le32(calib_requested); cal_cfg_cmd.ucode_cfg.periodic.start = cpu_to_le32(calib_requested); return iwm_send_lmac_ptrough_cmd(iwm, CALIBRATION_CFG_CMD, &cal_cfg_cmd, sizeof(struct iwm_lmac_cal_cfg_cmd), 0); } int iwm_store_rxiq_calib_result(struct iwm_priv *iwm) { struct iwm_calib_rxiq *rxiq; u8 *eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ); int grplen = sizeof(struct iwm_calib_rxiq_group); rxiq = kzalloc(sizeof(struct iwm_calib_rxiq), GFP_KERNEL); if (!rxiq) { IWM_ERR(iwm, "Couldn't alloc memory for RX IQ\n"); return -ENOMEM; } eeprom_rxiq = iwm_eeprom_access(iwm, IWM_EEPROM_CALIB_RXIQ); if (IS_ERR(eeprom_rxiq)) { IWM_ERR(iwm, "Couldn't access EEPROM RX IQ entry\n"); kfree(rxiq); return PTR_ERR(eeprom_rxiq); } iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].buf = (u8 *)rxiq; iwm->calib_res[SHILOH_PHY_CALIBRATE_RX_IQ_CMD].size = sizeof(*rxiq); rxiq->hdr.opcode = SHILOH_PHY_CALIBRATE_RX_IQ_CMD; rxiq->hdr.first_grp = 0; rxiq->hdr.grp_num = 1; rxiq->hdr.all_data_valid = 1; memcpy(&rxiq->group[0], eeprom_rxiq, 4 * grplen); memcpy(&rxiq->group[4], eeprom_rxiq + 6 * grplen, grplen); return 0; } int iwm_send_calib_results(struct iwm_priv *iwm) { int i, ret = 0; for (i = PHY_CALIBRATE_OPCODES_NUM; i < CALIBRATION_CMD_NUM; i++) { if (test_bit(i - PHY_CALIBRATE_OPCODES_NUM, &iwm->calib_done_map)) { IWM_DBG_CMD(iwm, DBG, "Send calibration %d result\n", i); ret |= iwm_send_lmac_ptrough_cmd(iwm, REPLY_PHY_CALIBRATION_CMD, iwm->calib_res[i].buf, iwm->calib_res[i].size, 0); kfree(iwm->calib_res[i].buf); iwm->calib_res[i].buf = NULL; iwm->calib_res[i].size = 0; } } return ret; } int iwm_send_ct_kill_cfg(struct iwm_priv *iwm, u8 entry, u8 exit) { struct iwm_ct_kill_cfg_cmd cmd; cmd.entry_threshold = entry; cmd.exit_threshold = exit; return iwm_send_lmac_ptrough_cmd(iwm, REPLY_CT_KILL_CONFIG_CMD, &cmd, sizeof(struct iwm_ct_kill_cfg_cmd), 0); } int iwm_send_umac_reset(struct iwm_priv *iwm, __le32 reset_flags, bool resp) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_umac_cmd_reset reset; reset.flags = reset_flags; umac_cmd.id = UMAC_CMD_OPCODE_RESET; umac_cmd.resp = resp; return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &reset, sizeof(struct iwm_umac_cmd_reset)); } int iwm_umac_set_config_fix(struct iwm_priv *iwm, u16 tbl, u16 key, u32 value) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_umac_cmd_set_param_fix param; if ((tbl != UMAC_PARAM_TBL_CFG_FIX) && (tbl != UMAC_PARAM_TBL_FA_CFG_FIX)) return -EINVAL; umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_FIX; umac_cmd.resp = 0; param.tbl = cpu_to_le16(tbl); param.key = cpu_to_le16(key); param.value = cpu_to_le32(value); return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ¶m, sizeof(struct iwm_umac_cmd_set_param_fix)); } int iwm_umac_set_config_var(struct iwm_priv *iwm, u16 key, void *payload, u16 payload_size) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_umac_cmd_set_param_var *param_hdr; u8 *param; int ret; param = kzalloc(payload_size + sizeof(struct iwm_umac_cmd_set_param_var), GFP_KERNEL); if (!param) { IWM_ERR(iwm, "Couldn't allocate param\n"); return -ENOMEM; } param_hdr = (struct iwm_umac_cmd_set_param_var *)param; umac_cmd.id = UMAC_CMD_OPCODE_SET_PARAM_VAR; umac_cmd.resp = 0; param_hdr->tbl = cpu_to_le16(UMAC_PARAM_TBL_CFG_VAR); param_hdr->key = cpu_to_le16(key); param_hdr->len = cpu_to_le16(payload_size); memcpy(param + sizeof(struct iwm_umac_cmd_set_param_var), payload, payload_size); ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, param, sizeof(struct iwm_umac_cmd_set_param_var) + payload_size); kfree(param); return ret; } int iwm_send_umac_config(struct iwm_priv *iwm, __le32 reset_flags) { int ret; /* Use UMAC default values */ ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_POWER_INDEX, iwm->conf.power_index); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_FA_CFG_FIX, CFG_FRAG_THRESHOLD, iwm->conf.frag_threshold); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_RTS_THRESHOLD, iwm->conf.rts_threshold); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_CTS_TO_SELF, iwm->conf.cts_to_self); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_WIRELESS_MODE, iwm->conf.wireless_mode); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_COEX_MODE, modparam_wiwi); if (ret < 0) return ret; /* ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_ASSOCIATION_TIMEOUT, iwm->conf.assoc_timeout); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_ROAM_TIMEOUT, iwm->conf.roam_timeout); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_WIRELESS_MODE, WIRELESS_MODE_11A | WIRELESS_MODE_11G); if (ret < 0) return ret; */ ret = iwm_umac_set_config_var(iwm, CFG_NET_ADDR, iwm_to_ndev(iwm)->dev_addr, ETH_ALEN); if (ret < 0) return ret; /* UMAC PM static configurations */ ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_PM_LEGACY_RX_TIMEOUT, 0x12C); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_PM_LEGACY_TX_TIMEOUT, 0x15E); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_PM_CTRL_FLAGS, 0x1); if (ret < 0) return ret; ret = iwm_umac_set_config_fix(iwm, UMAC_PARAM_TBL_CFG_FIX, CFG_PM_KEEP_ALIVE_IN_BEACONS, 0x80); if (ret < 0) return ret; /* reset UMAC */ ret = iwm_send_umac_reset(iwm, reset_flags, 1); if (ret < 0) return ret; ret = iwm_notif_handle(iwm, UMAC_CMD_OPCODE_RESET, IWM_SRC_UMAC, WAIT_NOTIF_TIMEOUT); if (ret) { IWM_ERR(iwm, "Wait for UMAC RESET timeout\n"); return ret; } return ret; } int iwm_send_packet(struct iwm_priv *iwm, struct sk_buff *skb, int pool_id) { struct iwm_udma_wifi_cmd udma_cmd; struct iwm_umac_cmd umac_cmd; struct iwm_tx_info *tx_info = skb_to_tx_info(skb); udma_cmd.eop = 1; /* always set eop for non-concatenated Tx */ udma_cmd.credit_group = pool_id; udma_cmd.ra_tid = tx_info->sta << 4 | tx_info->tid; udma_cmd.lmac_offset = 0; umac_cmd.id = REPLY_TX; umac_cmd.color = tx_info->color; umac_cmd.resp = 0; return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, skb->data, skb->len); } static int iwm_target_read(struct iwm_priv *iwm, __le32 address, u8 *response, u32 resp_size) { struct iwm_udma_nonwifi_cmd target_cmd; struct iwm_nonwifi_cmd *cmd; u16 seq_num; int ret = 0; target_cmd.opcode = UMAC_HDI_OUT_OPCODE_READ; target_cmd.addr = address; target_cmd.op1_sz = cpu_to_le32(resp_size); target_cmd.op2 = 0; target_cmd.handle_by_hw = 0; target_cmd.resp = 1; target_cmd.eop = 1; ret = iwm_hal_send_target_cmd(iwm, &target_cmd, NULL); if (ret < 0) { IWM_ERR(iwm, "Couldn't send READ command\n"); return ret; } /* When succeeding, the send_target routine returns the seq number */ seq_num = ret; ret = wait_event_interruptible_timeout(iwm->nonwifi_queue, (cmd = iwm_get_pending_nonwifi_cmd(iwm, seq_num, UMAC_HDI_OUT_OPCODE_READ)) != NULL, 2 * HZ); if (!ret) { IWM_ERR(iwm, "Didn't receive a target READ answer\n"); return ret; } memcpy(response, cmd->buf.hdr + sizeof(struct iwm_udma_in_hdr), resp_size); kfree(cmd); return 0; } int iwm_read_mac(struct iwm_priv *iwm, u8 *mac) { int ret; u8 mac_align[ALIGN(ETH_ALEN, 8)]; ret = iwm_target_read(iwm, cpu_to_le32(WICO_MAC_ADDRESS_ADDR), mac_align, sizeof(mac_align)); if (ret) return ret; if (is_valid_ether_addr(mac_align)) memcpy(mac, mac_align, ETH_ALEN); else { IWM_ERR(iwm, "Invalid EEPROM MAC\n"); memcpy(mac, iwm->conf.mac_addr, ETH_ALEN); get_random_bytes(&mac[3], 3); } return 0; } static int iwm_check_profile(struct iwm_priv *iwm) { if (!iwm->umac_profile_active) return -EAGAIN; if (iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_40 && iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_104 && iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_TKIP && iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_CCMP) { IWM_ERR(iwm, "Wrong unicast cipher: 0x%x\n", iwm->umac_profile->sec.ucast_cipher); return -EAGAIN; } if (iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_40 && iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_WEP_104 && iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_TKIP && iwm->umac_profile->sec.mcast_cipher != UMAC_CIPHER_TYPE_CCMP) { IWM_ERR(iwm, "Wrong multicast cipher: 0x%x\n", iwm->umac_profile->sec.mcast_cipher); return -EAGAIN; } if ((iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_40 || iwm->umac_profile->sec.ucast_cipher == UMAC_CIPHER_TYPE_WEP_104) && (iwm->umac_profile->sec.ucast_cipher != iwm->umac_profile->sec.mcast_cipher)) { IWM_ERR(iwm, "Unicast and multicast ciphers differ for WEP\n"); } return 0; } int iwm_set_tx_key(struct iwm_priv *iwm, u8 key_idx) { struct iwm_umac_tx_key_id tx_key_id; int ret; ret = iwm_check_profile(iwm); if (ret < 0) return ret; /* UMAC only allows to set default key for WEP and auth type is * NOT 802.1X or RSNA. */ if ((iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_40 && iwm->umac_profile->sec.ucast_cipher != UMAC_CIPHER_TYPE_WEP_104) || iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_8021X || iwm->umac_profile->sec.auth_type == UMAC_AUTH_TYPE_RSNA_PSK) return 0; tx_key_id.hdr.oid = UMAC_WIFI_IF_CMD_GLOBAL_TX_KEY_ID; tx_key_id.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_tx_key_id) - sizeof(struct iwm_umac_wifi_if)); tx_key_id.key_idx = key_idx; return iwm_send_wifi_if_cmd(iwm, &tx_key_id, sizeof(tx_key_id), 1); } int iwm_set_key(struct iwm_priv *iwm, bool remove, struct iwm_key *key) { int ret = 0; u8 cmd[64], *sta_addr, *key_data, key_len; s8 key_idx; u16 cmd_size = 0; struct iwm_umac_key_hdr *key_hdr = &key->hdr; struct iwm_umac_key_wep40 *wep40 = (struct iwm_umac_key_wep40 *)cmd; struct iwm_umac_key_wep104 *wep104 = (struct iwm_umac_key_wep104 *)cmd; struct iwm_umac_key_tkip *tkip = (struct iwm_umac_key_tkip *)cmd; struct iwm_umac_key_ccmp *ccmp = (struct iwm_umac_key_ccmp *)cmd; if (!remove) { ret = iwm_check_profile(iwm); if (ret < 0) return ret; } sta_addr = key->hdr.mac; key_data = key->key; key_len = key->key_len; key_idx = key->hdr.key_idx; if (!remove) { u8 auth_type = iwm->umac_profile->sec.auth_type; IWM_DBG_WEXT(iwm, DBG, "key_idx:%d\n", key_idx); IWM_DBG_WEXT(iwm, DBG, "key_len:%d\n", key_len); IWM_DBG_WEXT(iwm, DBG, "MAC:%pM, idx:%d, multicast:%d\n", key_hdr->mac, key_hdr->key_idx, key_hdr->multicast); IWM_DBG_WEXT(iwm, DBG, "profile: mcast:0x%x, ucast:0x%x\n", iwm->umac_profile->sec.mcast_cipher, iwm->umac_profile->sec.ucast_cipher); IWM_DBG_WEXT(iwm, DBG, "profile: auth_type:0x%x, flags:0x%x\n", iwm->umac_profile->sec.auth_type, iwm->umac_profile->sec.flags); switch (key->cipher) { case WLAN_CIPHER_SUITE_WEP40: wep40->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP40_KEY; wep40->hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_key_wep40) - sizeof(struct iwm_umac_wifi_if)); memcpy(&wep40->key_hdr, key_hdr, sizeof(struct iwm_umac_key_hdr)); memcpy(wep40->key, key_data, key_len); wep40->static_key = !!((auth_type != UMAC_AUTH_TYPE_8021X) && (auth_type != UMAC_AUTH_TYPE_RSNA_PSK)); cmd_size = sizeof(struct iwm_umac_key_wep40); break; case WLAN_CIPHER_SUITE_WEP104: wep104->hdr.oid = UMAC_WIFI_IF_CMD_ADD_WEP104_KEY; wep104->hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_key_wep104) - sizeof(struct iwm_umac_wifi_if)); memcpy(&wep104->key_hdr, key_hdr, sizeof(struct iwm_umac_key_hdr)); memcpy(wep104->key, key_data, key_len); wep104->static_key = !!((auth_type != UMAC_AUTH_TYPE_8021X) && (auth_type != UMAC_AUTH_TYPE_RSNA_PSK)); cmd_size = sizeof(struct iwm_umac_key_wep104); break; case WLAN_CIPHER_SUITE_CCMP: key_hdr->key_idx++; ccmp->hdr.oid = UMAC_WIFI_IF_CMD_ADD_CCMP_KEY; ccmp->hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_key_ccmp) - sizeof(struct iwm_umac_wifi_if)); memcpy(&ccmp->key_hdr, key_hdr, sizeof(struct iwm_umac_key_hdr)); memcpy(ccmp->key, key_data, key_len); if (key->seq_len) memcpy(ccmp->iv_count, key->seq, key->seq_len); cmd_size = sizeof(struct iwm_umac_key_ccmp); break; case WLAN_CIPHER_SUITE_TKIP: key_hdr->key_idx++; tkip->hdr.oid = UMAC_WIFI_IF_CMD_ADD_TKIP_KEY; tkip->hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_key_tkip) - sizeof(struct iwm_umac_wifi_if)); memcpy(&tkip->key_hdr, key_hdr, sizeof(struct iwm_umac_key_hdr)); memcpy(tkip->tkip_key, key_data, IWM_TKIP_KEY_SIZE); memcpy(tkip->mic_tx_key, key_data + IWM_TKIP_KEY_SIZE, IWM_TKIP_MIC_SIZE); memcpy(tkip->mic_rx_key, key_data + IWM_TKIP_KEY_SIZE + IWM_TKIP_MIC_SIZE, IWM_TKIP_MIC_SIZE); if (key->seq_len) memcpy(ccmp->iv_count, key->seq, key->seq_len); cmd_size = sizeof(struct iwm_umac_key_tkip); break; default: return -ENOTSUPP; } if ((key->cipher == WLAN_CIPHER_SUITE_TKIP) || (key->cipher == WLAN_CIPHER_SUITE_CCMP)) /* * UGLY_UGLY_UGLY * Copied HACK from the MWG driver. * Without it, the key is set before the second * EAPOL frame is sent, and the latter is thus * encrypted. */ schedule_timeout_interruptible(usecs_to_jiffies(300)); ret = iwm_send_wifi_if_cmd(iwm, cmd, cmd_size, 1); } else { struct iwm_umac_key_remove key_remove; IWM_DBG_WEXT(iwm, ERR, "Removing key_idx:%d\n", key_idx); key_remove.hdr.oid = UMAC_WIFI_IF_CMD_REMOVE_KEY; key_remove.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_key_remove) - sizeof(struct iwm_umac_wifi_if)); memcpy(&key_remove.key_hdr, key_hdr, sizeof(struct iwm_umac_key_hdr)); ret = iwm_send_wifi_if_cmd(iwm, &key_remove, sizeof(struct iwm_umac_key_remove), 1); if (ret) return ret; iwm->keys[key_idx].key_len = 0; } return ret; } int iwm_send_mlme_profile(struct iwm_priv *iwm) { int ret; struct iwm_umac_profile profile; memcpy(&profile, iwm->umac_profile, sizeof(profile)); profile.hdr.oid = UMAC_WIFI_IF_CMD_SET_PROFILE; profile.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_profile) - sizeof(struct iwm_umac_wifi_if)); ret = iwm_send_wifi_if_cmd(iwm, &profile, sizeof(profile), 1); if (ret) { IWM_ERR(iwm, "Send profile command failed\n"); return ret; } set_bit(IWM_STATUS_SME_CONNECTING, &iwm->status); return 0; } int __iwm_invalidate_mlme_profile(struct iwm_priv *iwm) { struct iwm_umac_invalidate_profile invalid; invalid.hdr.oid = UMAC_WIFI_IF_CMD_INVALIDATE_PROFILE; invalid.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_invalidate_profile) - sizeof(struct iwm_umac_wifi_if)); invalid.reason = WLAN_REASON_UNSPECIFIED; return iwm_send_wifi_if_cmd(iwm, &invalid, sizeof(invalid), 1); } int iwm_invalidate_mlme_profile(struct iwm_priv *iwm) { int ret; ret = __iwm_invalidate_mlme_profile(iwm); if (ret) return ret; ret = wait_event_interruptible_timeout(iwm->mlme_queue, (iwm->umac_profile_active == 0), 5 * HZ); return ret ? 0 : -EBUSY; } int iwm_tx_power_trigger(struct iwm_priv *iwm) { struct iwm_umac_pwr_trigger pwr_trigger; pwr_trigger.hdr.oid = UMAC_WIFI_IF_CMD_TX_PWR_TRIGGER; pwr_trigger.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_pwr_trigger) - sizeof(struct iwm_umac_wifi_if)); return iwm_send_wifi_if_cmd(iwm, &pwr_trigger, sizeof(pwr_trigger), 1); } int iwm_send_umac_stats_req(struct iwm_priv *iwm, u32 flags) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_umac_cmd_stats_req stats_req; stats_req.flags = cpu_to_le32(flags); umac_cmd.id = UMAC_CMD_OPCODE_STATISTIC_REQUEST; umac_cmd.resp = 0; return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &stats_req, sizeof(struct iwm_umac_cmd_stats_req)); } int iwm_send_umac_channel_list(struct iwm_priv *iwm) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_umac_cmd_get_channel_list *ch_list; int size = sizeof(struct iwm_umac_cmd_get_channel_list) + sizeof(struct iwm_umac_channel_info) * 4; int ret; ch_list = kzalloc(size, GFP_KERNEL); if (!ch_list) { IWM_ERR(iwm, "Couldn't allocate channel list cmd\n"); return -ENOMEM; } ch_list->ch[0].band = UMAC_BAND_2GHZ; ch_list->ch[0].type = UMAC_CHANNEL_WIDTH_20MHZ; ch_list->ch[0].flags = UMAC_CHANNEL_FLAG_VALID; ch_list->ch[1].band = UMAC_BAND_5GHZ; ch_list->ch[1].type = UMAC_CHANNEL_WIDTH_20MHZ; ch_list->ch[1].flags = UMAC_CHANNEL_FLAG_VALID; ch_list->ch[2].band = UMAC_BAND_2GHZ; ch_list->ch[2].type = UMAC_CHANNEL_WIDTH_20MHZ; ch_list->ch[2].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS; ch_list->ch[3].band = UMAC_BAND_5GHZ; ch_list->ch[3].type = UMAC_CHANNEL_WIDTH_20MHZ; ch_list->ch[3].flags = UMAC_CHANNEL_FLAG_VALID | UMAC_CHANNEL_FLAG_IBSS; ch_list->count = cpu_to_le16(4); umac_cmd.id = UMAC_CMD_OPCODE_GET_CHAN_INFO_LIST; umac_cmd.resp = 1; ret = iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, ch_list, size); kfree(ch_list); return ret; } int iwm_scan_ssids(struct iwm_priv *iwm, struct cfg80211_ssid *ssids, int ssid_num) { struct iwm_umac_cmd_scan_request req; int i, ret; memset(&req, 0, sizeof(struct iwm_umac_cmd_scan_request)); req.hdr.oid = UMAC_WIFI_IF_CMD_SCAN_REQUEST; req.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_cmd_scan_request) - sizeof(struct iwm_umac_wifi_if)); req.type = UMAC_WIFI_IF_SCAN_TYPE_USER; req.timeout = 2; req.seq_num = iwm->scan_id; req.ssid_num = min(ssid_num, UMAC_WIFI_IF_PROBE_OPTION_MAX); for (i = 0; i < req.ssid_num; i++) { memcpy(req.ssids[i].ssid, ssids[i].ssid, ssids[i].ssid_len); req.ssids[i].ssid_len = ssids[i].ssid_len; } ret = iwm_send_wifi_if_cmd(iwm, &req, sizeof(req), 0); if (ret) { IWM_ERR(iwm, "Couldn't send scan request\n"); return ret; } iwm->scan_id = (iwm->scan_id + 1) % IWM_SCAN_ID_MAX; return 0; } int iwm_scan_one_ssid(struct iwm_priv *iwm, u8 *ssid, int ssid_len) { struct cfg80211_ssid one_ssid; if (test_and_set_bit(IWM_STATUS_SCANNING, &iwm->status)) return 0; one_ssid.ssid_len = min(ssid_len, IEEE80211_MAX_SSID_LEN); memcpy(&one_ssid.ssid, ssid, one_ssid.ssid_len); return iwm_scan_ssids(iwm, &one_ssid, 1); } int iwm_target_reset(struct iwm_priv *iwm) { struct iwm_udma_nonwifi_cmd target_cmd; target_cmd.opcode = UMAC_HDI_OUT_OPCODE_REBOOT; target_cmd.addr = 0; target_cmd.op1_sz = 0; target_cmd.op2 = 0; target_cmd.handle_by_hw = 0; target_cmd.resp = 0; target_cmd.eop = 1; return iwm_hal_send_target_cmd(iwm, &target_cmd, NULL); } int iwm_send_umac_stop_resume_tx(struct iwm_priv *iwm, struct iwm_umac_notif_stop_resume_tx *ntf) { struct iwm_udma_wifi_cmd udma_cmd = UDMA_UMAC_INIT; struct iwm_umac_cmd umac_cmd; struct iwm_umac_cmd_stop_resume_tx stp_res_cmd; struct iwm_sta_info *sta_info; u8 sta_id = STA_ID_N_COLOR_ID(ntf->sta_id); int i; sta_info = &iwm->sta_table[sta_id]; if (!sta_info->valid) { IWM_ERR(iwm, "Invalid STA: %d\n", sta_id); return -EINVAL; } umac_cmd.id = UMAC_CMD_OPCODE_STOP_RESUME_STA_TX; umac_cmd.resp = 0; stp_res_cmd.flags = ntf->flags; stp_res_cmd.sta_id = ntf->sta_id; stp_res_cmd.stop_resume_tid_msk = ntf->stop_resume_tid_msk; for (i = 0; i < IWM_UMAC_TID_NR; i++) stp_res_cmd.last_seq_num[i] = sta_info->tid_info[i].last_seq_num; return iwm_hal_send_umac_cmd(iwm, &udma_cmd, &umac_cmd, &stp_res_cmd, sizeof(struct iwm_umac_cmd_stop_resume_tx)); } int iwm_send_pmkid_update(struct iwm_priv *iwm, struct cfg80211_pmksa *pmksa, u32 command) { struct iwm_umac_pmkid_update update; int ret; memset(&update, 0, sizeof(struct iwm_umac_pmkid_update)); update.hdr.oid = UMAC_WIFI_IF_CMD_PMKID_UPDATE; update.hdr.buf_size = cpu_to_le16(sizeof(struct iwm_umac_pmkid_update) - sizeof(struct iwm_umac_wifi_if)); update.command = cpu_to_le32(command); if (pmksa->bssid) memcpy(&update.bssid, pmksa->bssid, ETH_ALEN); if (pmksa->pmkid) memcpy(&update.pmkid, pmksa->pmkid, WLAN_PMKID_LEN); ret = iwm_send_wifi_if_cmd(iwm, &update, sizeof(struct iwm_umac_pmkid_update), 0); if (ret) { IWM_ERR(iwm, "PMKID update command failed\n"); return ret; } return 0; }