/* bnx2x_ethtool.c: Broadcom Everest network driver. * * Copyright (c) 2007-2011 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein * Written by: Eliezer Tamir * Based on code from Michael Chan's bnx2 driver * UDP CSUM errata workaround by Arik Gendelman * Slowpath and fastpath rework by Vladislav Zolotarov * Statistics and Link management by Yitchak Gertner * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include "bnx2x.h" #include "bnx2x_cmn.h" #include "bnx2x_dump.h" #include "bnx2x_init.h" #include "bnx2x_sp.h" /* Note: in the format strings below %s is replaced by the queue-name which is * either its index or 'fcoe' for the fcoe queue. Make sure the format string * length does not exceed ETH_GSTRING_LEN - MAX_QUEUE_NAME_LEN + 2 */ #define MAX_QUEUE_NAME_LEN 4 static const struct { long offset; int size; char string[ETH_GSTRING_LEN]; } bnx2x_q_stats_arr[] = { /* 1 */ { Q_STATS_OFFSET32(total_bytes_received_hi), 8, "[%s]: rx_bytes" }, { Q_STATS_OFFSET32(total_unicast_packets_received_hi), 8, "[%s]: rx_ucast_packets" }, { Q_STATS_OFFSET32(total_multicast_packets_received_hi), 8, "[%s]: rx_mcast_packets" }, { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), 8, "[%s]: rx_bcast_packets" }, { Q_STATS_OFFSET32(no_buff_discard_hi), 8, "[%s]: rx_discards" }, { Q_STATS_OFFSET32(rx_err_discard_pkt), 4, "[%s]: rx_phy_ip_err_discards"}, { Q_STATS_OFFSET32(rx_skb_alloc_failed), 4, "[%s]: rx_skb_alloc_discard" }, { Q_STATS_OFFSET32(hw_csum_err), 4, "[%s]: rx_csum_offload_errors" }, { Q_STATS_OFFSET32(total_bytes_transmitted_hi), 8, "[%s]: tx_bytes" }, /* 10 */{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), 8, "[%s]: tx_ucast_packets" }, { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), 8, "[%s]: tx_mcast_packets" }, { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 8, "[%s]: tx_bcast_packets" }, { Q_STATS_OFFSET32(total_tpa_aggregations_hi), 8, "[%s]: tpa_aggregations" }, { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), 8, "[%s]: tpa_aggregated_frames"}, { Q_STATS_OFFSET32(total_tpa_bytes_hi), 8, "[%s]: tpa_bytes"} }; #define BNX2X_NUM_Q_STATS ARRAY_SIZE(bnx2x_q_stats_arr) static const struct { long offset; int size; u32 flags; #define STATS_FLAGS_PORT 1 #define STATS_FLAGS_FUNC 2 #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) char string[ETH_GSTRING_LEN]; } bnx2x_stats_arr[] = { /* 1 */ { STATS_OFFSET32(total_bytes_received_hi), 8, STATS_FLAGS_BOTH, "rx_bytes" }, { STATS_OFFSET32(error_bytes_received_hi), 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, { STATS_OFFSET32(total_unicast_packets_received_hi), 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, { STATS_OFFSET32(total_multicast_packets_received_hi), 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, { STATS_OFFSET32(total_broadcast_packets_received_hi), 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), 8, STATS_FLAGS_PORT, "rx_crc_errors" }, { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), 8, STATS_FLAGS_PORT, "rx_align_errors" }, { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, { STATS_OFFSET32(etherstatsoverrsizepkts_hi), 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, /* 10 */{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi), 8, STATS_FLAGS_PORT, "rx_fragments" }, { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), 8, STATS_FLAGS_PORT, "rx_jabbers" }, { STATS_OFFSET32(no_buff_discard_hi), 8, STATS_FLAGS_BOTH, "rx_discards" }, { STATS_OFFSET32(mac_filter_discard), 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, { STATS_OFFSET32(mf_tag_discard), 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, { STATS_OFFSET32(pfc_frames_received_hi), 8, STATS_FLAGS_PORT, "pfc_frames_received" }, { STATS_OFFSET32(pfc_frames_sent_hi), 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, { STATS_OFFSET32(brb_drop_hi), 8, STATS_FLAGS_PORT, "rx_brb_discard" }, { STATS_OFFSET32(brb_truncate_hi), 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, { STATS_OFFSET32(pause_frames_received_hi), 8, STATS_FLAGS_PORT, "rx_pause_frames" }, { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, { STATS_OFFSET32(nig_timer_max), 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, /* 20 */{ STATS_OFFSET32(rx_err_discard_pkt), 4, STATS_FLAGS_BOTH, "rx_phy_ip_err_discards"}, { STATS_OFFSET32(rx_skb_alloc_failed), 4, STATS_FLAGS_BOTH, "rx_skb_alloc_discard" }, { STATS_OFFSET32(hw_csum_err), 4, STATS_FLAGS_BOTH, "rx_csum_offload_errors" }, { STATS_OFFSET32(total_bytes_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_bytes" }, { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), 8, STATS_FLAGS_PORT, "tx_error_bytes" }, { STATS_OFFSET32(total_unicast_packets_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, { STATS_OFFSET32(total_multicast_packets_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), 8, STATS_FLAGS_PORT, "tx_mac_errors" }, { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, /* 30 */{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), 8, STATS_FLAGS_PORT, "tx_single_collisions" }, { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), 8, STATS_FLAGS_PORT, "tx_deferred" }, { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), 8, STATS_FLAGS_PORT, "tx_late_collisions" }, { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), 8, STATS_FLAGS_PORT, "tx_total_collisions" }, { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, /* 40 */{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, { STATS_OFFSET32(etherstatspktsover1522octets_hi), 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, { STATS_OFFSET32(pause_frames_sent_hi), 8, STATS_FLAGS_PORT, "tx_pause_frames" }, { STATS_OFFSET32(total_tpa_aggregations_hi), 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, { STATS_OFFSET32(total_tpa_aggregated_frames_hi), 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, { STATS_OFFSET32(total_tpa_bytes_hi), 8, STATS_FLAGS_FUNC, "tpa_bytes"} }; #define BNX2X_NUM_STATS ARRAY_SIZE(bnx2x_stats_arr) static int bnx2x_get_port_type(struct bnx2x *bp) { int port_type; u32 phy_idx = bnx2x_get_cur_phy_idx(bp); switch (bp->link_params.phy[phy_idx].media_type) { case ETH_PHY_SFP_FIBER: case ETH_PHY_XFP_FIBER: case ETH_PHY_KR: case ETH_PHY_CX4: port_type = PORT_FIBRE; break; case ETH_PHY_DA_TWINAX: port_type = PORT_DA; break; case ETH_PHY_BASE_T: port_type = PORT_TP; break; case ETH_PHY_NOT_PRESENT: port_type = PORT_NONE; break; case ETH_PHY_UNSPECIFIED: default: port_type = PORT_OTHER; break; } return port_type; } static int bnx2x_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bnx2x *bp = netdev_priv(dev); int cfg_idx = bnx2x_get_link_cfg_idx(bp); /* Dual Media boards present all available port types */ cmd->supported = bp->port.supported[cfg_idx] | (bp->port.supported[cfg_idx ^ 1] & (SUPPORTED_TP | SUPPORTED_FIBRE)); cmd->advertising = bp->port.advertising[cfg_idx]; if ((bp->state == BNX2X_STATE_OPEN) && !(bp->flags & MF_FUNC_DIS) && (bp->link_vars.link_up)) { ethtool_cmd_speed_set(cmd, bp->link_vars.line_speed); cmd->duplex = bp->link_vars.duplex; } else { ethtool_cmd_speed_set( cmd, bp->link_params.req_line_speed[cfg_idx]); cmd->duplex = bp->link_params.req_duplex[cfg_idx]; } if (IS_MF(bp)) ethtool_cmd_speed_set(cmd, bnx2x_get_mf_speed(bp)); cmd->port = bnx2x_get_port_type(bp); cmd->phy_address = bp->mdio.prtad; cmd->transceiver = XCVR_INTERNAL; if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) cmd->autoneg = AUTONEG_ENABLE; else cmd->autoneg = AUTONEG_DISABLE; cmd->maxtxpkt = 0; cmd->maxrxpkt = 0; DP(NETIF_MSG_LINK, "ethtool_cmd: cmd %d\n" " supported 0x%x advertising 0x%x speed %u\n" " duplex %d port %d phy_address %d transceiver %d\n" " autoneg %d maxtxpkt %d maxrxpkt %d\n", cmd->cmd, cmd->supported, cmd->advertising, ethtool_cmd_speed(cmd), cmd->duplex, cmd->port, cmd->phy_address, cmd->transceiver, cmd->autoneg, cmd->maxtxpkt, cmd->maxrxpkt); return 0; } static int bnx2x_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bnx2x *bp = netdev_priv(dev); u32 advertising, cfg_idx, old_multi_phy_config, new_multi_phy_config; u32 speed; if (IS_MF_SD(bp)) return 0; DP(NETIF_MSG_LINK, "ethtool_cmd: cmd %d\n" " supported 0x%x advertising 0x%x speed %u\n" " duplex %d port %d phy_address %d transceiver %d\n" " autoneg %d maxtxpkt %d maxrxpkt %d\n", cmd->cmd, cmd->supported, cmd->advertising, ethtool_cmd_speed(cmd), cmd->duplex, cmd->port, cmd->phy_address, cmd->transceiver, cmd->autoneg, cmd->maxtxpkt, cmd->maxrxpkt); speed = ethtool_cmd_speed(cmd); if (IS_MF_SI(bp)) { u32 part; u32 line_speed = bp->link_vars.line_speed; /* use 10G if no link detected */ if (!line_speed) line_speed = 10000; if (bp->common.bc_ver < REQ_BC_VER_4_SET_MF_BW) { BNX2X_DEV_INFO("To set speed BC %X or higher " "is required, please upgrade BC\n", REQ_BC_VER_4_SET_MF_BW); return -EINVAL; } part = (speed * 100) / line_speed; if (line_speed < speed || !part) { BNX2X_DEV_INFO("Speed setting should be in a range " "from 1%% to 100%% " "of actual line speed\n"); return -EINVAL; } if (bp->state != BNX2X_STATE_OPEN) /* store value for following "load" */ bp->pending_max = part; else bnx2x_update_max_mf_config(bp, part); return 0; } cfg_idx = bnx2x_get_link_cfg_idx(bp); old_multi_phy_config = bp->link_params.multi_phy_config; switch (cmd->port) { case PORT_TP: if (bp->port.supported[cfg_idx] & SUPPORTED_TP) break; /* no port change */ if (!(bp->port.supported[0] & SUPPORTED_TP || bp->port.supported[1] & SUPPORTED_TP)) { DP(NETIF_MSG_LINK, "Unsupported port type\n"); return -EINVAL; } bp->link_params.multi_phy_config &= ~PORT_HW_CFG_PHY_SELECTION_MASK; if (bp->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_SECOND_PHY; else bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_FIRST_PHY; break; case PORT_FIBRE: case PORT_DA: if (bp->port.supported[cfg_idx] & SUPPORTED_FIBRE) break; /* no port change */ if (!(bp->port.supported[0] & SUPPORTED_FIBRE || bp->port.supported[1] & SUPPORTED_FIBRE)) { DP(NETIF_MSG_LINK, "Unsupported port type\n"); return -EINVAL; } bp->link_params.multi_phy_config &= ~PORT_HW_CFG_PHY_SELECTION_MASK; if (bp->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_FIRST_PHY; else bp->link_params.multi_phy_config |= PORT_HW_CFG_PHY_SELECTION_SECOND_PHY; break; default: DP(NETIF_MSG_LINK, "Unsupported port type\n"); return -EINVAL; } /* Save new config in case command complete successully */ new_multi_phy_config = bp->link_params.multi_phy_config; /* Get the new cfg_idx */ cfg_idx = bnx2x_get_link_cfg_idx(bp); /* Restore old config in case command failed */ bp->link_params.multi_phy_config = old_multi_phy_config; DP(NETIF_MSG_LINK, "cfg_idx = %x\n", cfg_idx); if (cmd->autoneg == AUTONEG_ENABLE) { u32 an_supported_speed = bp->port.supported[cfg_idx]; if (bp->link_params.phy[EXT_PHY1].type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) an_supported_speed |= (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full); if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) { DP(NETIF_MSG_LINK, "Autoneg not supported\n"); return -EINVAL; } /* advertise the requested speed and duplex if supported */ if (cmd->advertising & ~an_supported_speed) { DP(NETIF_MSG_LINK, "Advertisement parameters " "are not supported\n"); return -EINVAL; } bp->link_params.req_line_speed[cfg_idx] = SPEED_AUTO_NEG; bp->link_params.req_duplex[cfg_idx] = cmd->duplex; bp->port.advertising[cfg_idx] = (ADVERTISED_Autoneg | cmd->advertising); if (cmd->advertising) { bp->link_params.speed_cap_mask[cfg_idx] = 0; if (cmd->advertising & ADVERTISED_10baseT_Half) { bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF; } if (cmd->advertising & ADVERTISED_10baseT_Full) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL; if (cmd->advertising & ADVERTISED_100baseT_Full) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL; if (cmd->advertising & ADVERTISED_100baseT_Half) { bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF; } if (cmd->advertising & ADVERTISED_1000baseT_Half) { bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_1G; } if (cmd->advertising & (ADVERTISED_1000baseT_Full | ADVERTISED_1000baseKX_Full)) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_1G; if (cmd->advertising & (ADVERTISED_10000baseT_Full | ADVERTISED_10000baseKX4_Full | ADVERTISED_10000baseKR_Full)) bp->link_params.speed_cap_mask[cfg_idx] |= PORT_HW_CFG_SPEED_CAPABILITY_D0_10G; } } else { /* forced speed */ /* advertise the requested speed and duplex if supported */ switch (speed) { case SPEED_10: if (cmd->duplex == DUPLEX_FULL) { if (!(bp->port.supported[cfg_idx] & SUPPORTED_10baseT_Full)) { DP(NETIF_MSG_LINK, "10M full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_10baseT_Full | ADVERTISED_TP); } else { if (!(bp->port.supported[cfg_idx] & SUPPORTED_10baseT_Half)) { DP(NETIF_MSG_LINK, "10M half not supported\n"); return -EINVAL; } advertising = (ADVERTISED_10baseT_Half | ADVERTISED_TP); } break; case SPEED_100: if (cmd->duplex == DUPLEX_FULL) { if (!(bp->port.supported[cfg_idx] & SUPPORTED_100baseT_Full)) { DP(NETIF_MSG_LINK, "100M full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_100baseT_Full | ADVERTISED_TP); } else { if (!(bp->port.supported[cfg_idx] & SUPPORTED_100baseT_Half)) { DP(NETIF_MSG_LINK, "100M half not supported\n"); return -EINVAL; } advertising = (ADVERTISED_100baseT_Half | ADVERTISED_TP); } break; case SPEED_1000: if (cmd->duplex != DUPLEX_FULL) { DP(NETIF_MSG_LINK, "1G half not supported\n"); return -EINVAL; } if (!(bp->port.supported[cfg_idx] & SUPPORTED_1000baseT_Full)) { DP(NETIF_MSG_LINK, "1G full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_TP); break; case SPEED_2500: if (cmd->duplex != DUPLEX_FULL) { DP(NETIF_MSG_LINK, "2.5G half not supported\n"); return -EINVAL; } if (!(bp->port.supported[cfg_idx] & SUPPORTED_2500baseX_Full)) { DP(NETIF_MSG_LINK, "2.5G full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_2500baseX_Full | ADVERTISED_TP); break; case SPEED_10000: if (cmd->duplex != DUPLEX_FULL) { DP(NETIF_MSG_LINK, "10G half not supported\n"); return -EINVAL; } if (!(bp->port.supported[cfg_idx] & SUPPORTED_10000baseT_Full)) { DP(NETIF_MSG_LINK, "10G full not supported\n"); return -EINVAL; } advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); break; default: DP(NETIF_MSG_LINK, "Unsupported speed %u\n", speed); return -EINVAL; } bp->link_params.req_line_speed[cfg_idx] = speed; bp->link_params.req_duplex[cfg_idx] = cmd->duplex; bp->port.advertising[cfg_idx] = advertising; } DP(NETIF_MSG_LINK, "req_line_speed %d\n" " req_duplex %d advertising 0x%x\n", bp->link_params.req_line_speed[cfg_idx], bp->link_params.req_duplex[cfg_idx], bp->port.advertising[cfg_idx]); /* Set new config */ bp->link_params.multi_phy_config = new_multi_phy_config; if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_link_set(bp); } return 0; } #define IS_E1_ONLINE(info) (((info) & RI_E1_ONLINE) == RI_E1_ONLINE) #define IS_E1H_ONLINE(info) (((info) & RI_E1H_ONLINE) == RI_E1H_ONLINE) #define IS_E2_ONLINE(info) (((info) & RI_E2_ONLINE) == RI_E2_ONLINE) #define IS_E3_ONLINE(info) (((info) & RI_E3_ONLINE) == RI_E3_ONLINE) #define IS_E3B0_ONLINE(info) (((info) & RI_E3B0_ONLINE) == RI_E3B0_ONLINE) static inline bool bnx2x_is_reg_online(struct bnx2x *bp, const struct reg_addr *reg_info) { if (CHIP_IS_E1(bp)) return IS_E1_ONLINE(reg_info->info); else if (CHIP_IS_E1H(bp)) return IS_E1H_ONLINE(reg_info->info); else if (CHIP_IS_E2(bp)) return IS_E2_ONLINE(reg_info->info); else if (CHIP_IS_E3A0(bp)) return IS_E3_ONLINE(reg_info->info); else if (CHIP_IS_E3B0(bp)) return IS_E3B0_ONLINE(reg_info->info); else return false; } /******* Paged registers info selectors ********/ static inline const u32 *__bnx2x_get_page_addr_ar(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return page_vals_e2; else if (CHIP_IS_E3(bp)) return page_vals_e3; else return NULL; } static inline u32 __bnx2x_get_page_reg_num(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return PAGE_MODE_VALUES_E2; else if (CHIP_IS_E3(bp)) return PAGE_MODE_VALUES_E3; else return 0; } static inline const u32 *__bnx2x_get_page_write_ar(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return page_write_regs_e2; else if (CHIP_IS_E3(bp)) return page_write_regs_e3; else return NULL; } static inline u32 __bnx2x_get_page_write_num(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return PAGE_WRITE_REGS_E2; else if (CHIP_IS_E3(bp)) return PAGE_WRITE_REGS_E3; else return 0; } static inline const struct reg_addr *__bnx2x_get_page_read_ar(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return page_read_regs_e2; else if (CHIP_IS_E3(bp)) return page_read_regs_e3; else return NULL; } static inline u32 __bnx2x_get_page_read_num(struct bnx2x *bp) { if (CHIP_IS_E2(bp)) return PAGE_READ_REGS_E2; else if (CHIP_IS_E3(bp)) return PAGE_READ_REGS_E3; else return 0; } static inline int __bnx2x_get_regs_len(struct bnx2x *bp) { int num_pages = __bnx2x_get_page_reg_num(bp); int page_write_num = __bnx2x_get_page_write_num(bp); const struct reg_addr *page_read_addr = __bnx2x_get_page_read_ar(bp); int page_read_num = __bnx2x_get_page_read_num(bp); int regdump_len = 0; int i, j, k; for (i = 0; i < REGS_COUNT; i++) if (bnx2x_is_reg_online(bp, ®_addrs[i])) regdump_len += reg_addrs[i].size; for (i = 0; i < num_pages; i++) for (j = 0; j < page_write_num; j++) for (k = 0; k < page_read_num; k++) if (bnx2x_is_reg_online(bp, &page_read_addr[k])) regdump_len += page_read_addr[k].size; return regdump_len; } static int bnx2x_get_regs_len(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); int regdump_len = 0; regdump_len = __bnx2x_get_regs_len(bp); regdump_len *= 4; regdump_len += sizeof(struct dump_hdr); return regdump_len; } /** * bnx2x_read_pages_regs - read "paged" registers * * @bp device handle * @p output buffer * * Reads "paged" memories: memories that may only be read by first writing to a * specific address ("write address") and then reading from a specific address * ("read address"). There may be more than one write address per "page" and * more than one read address per write address. */ static inline void bnx2x_read_pages_regs(struct bnx2x *bp, u32 *p) { u32 i, j, k, n; /* addresses of the paged registers */ const u32 *page_addr = __bnx2x_get_page_addr_ar(bp); /* number of paged registers */ int num_pages = __bnx2x_get_page_reg_num(bp); /* write addresses */ const u32 *write_addr = __bnx2x_get_page_write_ar(bp); /* number of write addresses */ int write_num = __bnx2x_get_page_write_num(bp); /* read addresses info */ const struct reg_addr *read_addr = __bnx2x_get_page_read_ar(bp); /* number of read addresses */ int read_num = __bnx2x_get_page_read_num(bp); for (i = 0; i < num_pages; i++) { for (j = 0; j < write_num; j++) { REG_WR(bp, write_addr[j], page_addr[i]); for (k = 0; k < read_num; k++) if (bnx2x_is_reg_online(bp, &read_addr[k])) for (n = 0; n < read_addr[k].size; n++) *p++ = REG_RD(bp, read_addr[k].addr + n*4); } } } static inline void __bnx2x_get_regs(struct bnx2x *bp, u32 *p) { u32 i, j; /* Read the regular registers */ for (i = 0; i < REGS_COUNT; i++) if (bnx2x_is_reg_online(bp, ®_addrs[i])) for (j = 0; j < reg_addrs[i].size; j++) *p++ = REG_RD(bp, reg_addrs[i].addr + j*4); /* Read "paged" registes */ bnx2x_read_pages_regs(bp, p); } static void bnx2x_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p) { u32 *p = _p; struct bnx2x *bp = netdev_priv(dev); struct dump_hdr dump_hdr = {0}; regs->version = 0; memset(p, 0, regs->len); if (!netif_running(bp->dev)) return; /* Disable parity attentions as long as following dump may * cause false alarms by reading never written registers. We * will re-enable parity attentions right after the dump. */ bnx2x_disable_blocks_parity(bp); dump_hdr.hdr_size = (sizeof(struct dump_hdr) / 4) - 1; dump_hdr.dump_sign = dump_sign_all; dump_hdr.xstorm_waitp = REG_RD(bp, XSTORM_WAITP_ADDR); dump_hdr.tstorm_waitp = REG_RD(bp, TSTORM_WAITP_ADDR); dump_hdr.ustorm_waitp = REG_RD(bp, USTORM_WAITP_ADDR); dump_hdr.cstorm_waitp = REG_RD(bp, CSTORM_WAITP_ADDR); if (CHIP_IS_E1(bp)) dump_hdr.info = RI_E1_ONLINE; else if (CHIP_IS_E1H(bp)) dump_hdr.info = RI_E1H_ONLINE; else if (!CHIP_IS_E1x(bp)) dump_hdr.info = RI_E2_ONLINE | (BP_PATH(bp) ? RI_PATH1_DUMP : RI_PATH0_DUMP); memcpy(p, &dump_hdr, sizeof(struct dump_hdr)); p += dump_hdr.hdr_size + 1; /* Actually read the registers */ __bnx2x_get_regs(bp, p); /* Re-enable parity attentions */ bnx2x_clear_blocks_parity(bp); bnx2x_enable_blocks_parity(bp); } static void bnx2x_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct bnx2x *bp = netdev_priv(dev); u8 phy_fw_ver[PHY_FW_VER_LEN]; strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); phy_fw_ver[0] = '\0'; if (bp->port.pmf) { bnx2x_acquire_phy_lock(bp); bnx2x_get_ext_phy_fw_version(&bp->link_params, (bp->state != BNX2X_STATE_CLOSED), phy_fw_ver, PHY_FW_VER_LEN); bnx2x_release_phy_lock(bp); } strlcpy(info->fw_version, bp->fw_ver, sizeof(info->fw_version)); snprintf(info->fw_version + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), "bc %d.%d.%d%s%s", (bp->common.bc_ver & 0xff0000) >> 16, (bp->common.bc_ver & 0xff00) >> 8, (bp->common.bc_ver & 0xff), ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info)); info->n_stats = BNX2X_NUM_STATS; info->testinfo_len = BNX2X_NUM_TESTS; info->eedump_len = bp->common.flash_size; info->regdump_len = bnx2x_get_regs_len(dev); } static void bnx2x_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bnx2x *bp = netdev_priv(dev); if (bp->flags & NO_WOL_FLAG) { wol->supported = 0; wol->wolopts = 0; } else { wol->supported = WAKE_MAGIC; if (bp->wol) wol->wolopts = WAKE_MAGIC; else wol->wolopts = 0; } memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int bnx2x_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bnx2x *bp = netdev_priv(dev); if (wol->wolopts & ~WAKE_MAGIC) return -EINVAL; if (wol->wolopts & WAKE_MAGIC) { if (bp->flags & NO_WOL_FLAG) return -EINVAL; bp->wol = 1; } else bp->wol = 0; return 0; } static u32 bnx2x_get_msglevel(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); return bp->msg_enable; } static void bnx2x_set_msglevel(struct net_device *dev, u32 level) { struct bnx2x *bp = netdev_priv(dev); if (capable(CAP_NET_ADMIN)) { /* dump MCP trace */ if (level & BNX2X_MSG_MCP) bnx2x_fw_dump_lvl(bp, KERN_INFO); bp->msg_enable = level; } } static int bnx2x_nway_reset(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); if (!bp->port.pmf) return 0; if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_link_set(bp); } return 0; } static u32 bnx2x_get_link(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); if (bp->flags & MF_FUNC_DIS || (bp->state != BNX2X_STATE_OPEN)) return 0; return bp->link_vars.link_up; } static int bnx2x_get_eeprom_len(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); return bp->common.flash_size; } static int bnx2x_acquire_nvram_lock(struct bnx2x *bp) { int port = BP_PORT(bp); int count, i; u32 val = 0; /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* request access to nvram interface */ REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); for (i = 0; i < count*10; i++) { val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB); if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) break; udelay(5); } if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { DP(BNX2X_MSG_NVM, "cannot get access to nvram interface\n"); return -EBUSY; } return 0; } static int bnx2x_release_nvram_lock(struct bnx2x *bp) { int port = BP_PORT(bp); int count, i; u32 val = 0; /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* relinquish nvram interface */ REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); for (i = 0; i < count*10; i++) { val = REG_RD(bp, MCP_REG_MCPR_NVM_SW_ARB); if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) break; udelay(5); } if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { DP(BNX2X_MSG_NVM, "cannot free access to nvram interface\n"); return -EBUSY; } return 0; } static void bnx2x_enable_nvram_access(struct bnx2x *bp) { u32 val; val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE); /* enable both bits, even on read */ REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE, (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); } static void bnx2x_disable_nvram_access(struct bnx2x *bp) { u32 val; val = REG_RD(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE); /* disable both bits, even after read */ REG_WR(bp, MCP_REG_MCPR_NVM_ACCESS_ENABLE, (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN))); } static int bnx2x_nvram_read_dword(struct bnx2x *bp, u32 offset, __be32 *ret_val, u32 cmd_flags) { int count, i, rc; u32 val; /* build the command word */ cmd_flags |= MCPR_NVM_COMMAND_DOIT; /* need to clear DONE bit separately */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); /* address of the NVRAM to read from */ REG_WR(bp, MCP_REG_MCPR_NVM_ADDR, (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); /* issue a read command */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* wait for completion */ *ret_val = 0; rc = -EBUSY; for (i = 0; i < count; i++) { udelay(5); val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND); if (val & MCPR_NVM_COMMAND_DONE) { val = REG_RD(bp, MCP_REG_MCPR_NVM_READ); /* we read nvram data in cpu order * but ethtool sees it as an array of bytes * converting to big-endian will do the work */ *ret_val = cpu_to_be32(val); rc = 0; break; } } return rc; } static int bnx2x_nvram_read(struct bnx2x *bp, u32 offset, u8 *ret_buf, int buf_size) { int rc; u32 cmd_flags; __be32 val; if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { DP(BNX2X_MSG_NVM, "Invalid parameter: offset 0x%x buf_size 0x%x\n", offset, buf_size); return -EINVAL; } if (offset + buf_size > bp->common.flash_size) { DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +" " buf_size (0x%x) > flash_size (0x%x)\n", offset, buf_size, bp->common.flash_size); return -EINVAL; } /* request access to nvram interface */ rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; /* enable access to nvram interface */ bnx2x_enable_nvram_access(bp); /* read the first word(s) */ cmd_flags = MCPR_NVM_COMMAND_FIRST; while ((buf_size > sizeof(u32)) && (rc == 0)) { rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags); memcpy(ret_buf, &val, 4); /* advance to the next dword */ offset += sizeof(u32); ret_buf += sizeof(u32); buf_size -= sizeof(u32); cmd_flags = 0; } if (rc == 0) { cmd_flags |= MCPR_NVM_COMMAND_LAST; rc = bnx2x_nvram_read_dword(bp, offset, &val, cmd_flags); memcpy(ret_buf, &val, 4); } /* disable access to nvram interface */ bnx2x_disable_nvram_access(bp); bnx2x_release_nvram_lock(bp); return rc; } static int bnx2x_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *eebuf) { struct bnx2x *bp = netdev_priv(dev); int rc; if (!netif_running(dev)) return -EAGAIN; DP(BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n" " magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n", eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset, eeprom->len, eeprom->len); /* parameters already validated in ethtool_get_eeprom */ rc = bnx2x_nvram_read(bp, eeprom->offset, eebuf, eeprom->len); return rc; } static int bnx2x_nvram_write_dword(struct bnx2x *bp, u32 offset, u32 val, u32 cmd_flags) { int count, i, rc; /* build the command word */ cmd_flags |= MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR; /* need to clear DONE bit separately */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); /* write the data */ REG_WR(bp, MCP_REG_MCPR_NVM_WRITE, val); /* address of the NVRAM to write to */ REG_WR(bp, MCP_REG_MCPR_NVM_ADDR, (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); /* issue the write command */ REG_WR(bp, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); /* adjust timeout for emulation/FPGA */ count = BNX2X_NVRAM_TIMEOUT_COUNT; if (CHIP_REV_IS_SLOW(bp)) count *= 100; /* wait for completion */ rc = -EBUSY; for (i = 0; i < count; i++) { udelay(5); val = REG_RD(bp, MCP_REG_MCPR_NVM_COMMAND); if (val & MCPR_NVM_COMMAND_DONE) { rc = 0; break; } } return rc; } #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) static int bnx2x_nvram_write1(struct bnx2x *bp, u32 offset, u8 *data_buf, int buf_size) { int rc; u32 cmd_flags; u32 align_offset; __be32 val; if (offset + buf_size > bp->common.flash_size) { DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +" " buf_size (0x%x) > flash_size (0x%x)\n", offset, buf_size, bp->common.flash_size); return -EINVAL; } /* request access to nvram interface */ rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; /* enable access to nvram interface */ bnx2x_enable_nvram_access(bp); cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); align_offset = (offset & ~0x03); rc = bnx2x_nvram_read_dword(bp, align_offset, &val, cmd_flags); if (rc == 0) { val &= ~(0xff << BYTE_OFFSET(offset)); val |= (*data_buf << BYTE_OFFSET(offset)); /* nvram data is returned as an array of bytes * convert it back to cpu order */ val = be32_to_cpu(val); rc = bnx2x_nvram_write_dword(bp, align_offset, val, cmd_flags); } /* disable access to nvram interface */ bnx2x_disable_nvram_access(bp); bnx2x_release_nvram_lock(bp); return rc; } static int bnx2x_nvram_write(struct bnx2x *bp, u32 offset, u8 *data_buf, int buf_size) { int rc; u32 cmd_flags; u32 val; u32 written_so_far; if (buf_size == 1) /* ethtool */ return bnx2x_nvram_write1(bp, offset, data_buf, buf_size); if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { DP(BNX2X_MSG_NVM, "Invalid parameter: offset 0x%x buf_size 0x%x\n", offset, buf_size); return -EINVAL; } if (offset + buf_size > bp->common.flash_size) { DP(BNX2X_MSG_NVM, "Invalid parameter: offset (0x%x) +" " buf_size (0x%x) > flash_size (0x%x)\n", offset, buf_size, bp->common.flash_size); return -EINVAL; } /* request access to nvram interface */ rc = bnx2x_acquire_nvram_lock(bp); if (rc) return rc; /* enable access to nvram interface */ bnx2x_enable_nvram_access(bp); written_so_far = 0; cmd_flags = MCPR_NVM_COMMAND_FIRST; while ((written_so_far < buf_size) && (rc == 0)) { if (written_so_far == (buf_size - sizeof(u32))) cmd_flags |= MCPR_NVM_COMMAND_LAST; else if (((offset + 4) % BNX2X_NVRAM_PAGE_SIZE) == 0) cmd_flags |= MCPR_NVM_COMMAND_LAST; else if ((offset % BNX2X_NVRAM_PAGE_SIZE) == 0) cmd_flags |= MCPR_NVM_COMMAND_FIRST; memcpy(&val, data_buf, 4); rc = bnx2x_nvram_write_dword(bp, offset, val, cmd_flags); /* advance to the next dword */ offset += sizeof(u32); data_buf += sizeof(u32); written_so_far += sizeof(u32); cmd_flags = 0; } /* disable access to nvram interface */ bnx2x_disable_nvram_access(bp); bnx2x_release_nvram_lock(bp); return rc; } static int bnx2x_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *eebuf) { struct bnx2x *bp = netdev_priv(dev); int port = BP_PORT(bp); int rc = 0; u32 ext_phy_config; if (!netif_running(dev)) return -EAGAIN; DP(BNX2X_MSG_NVM, "ethtool_eeprom: cmd %d\n" " magic 0x%x offset 0x%x (%d) len 0x%x (%d)\n", eeprom->cmd, eeprom->magic, eeprom->offset, eeprom->offset, eeprom->len, eeprom->len); /* parameters already validated in ethtool_set_eeprom */ /* PHY eeprom can be accessed only by the PMF */ if ((eeprom->magic >= 0x50485900) && (eeprom->magic <= 0x504859FF) && !bp->port.pmf) return -EINVAL; ext_phy_config = SHMEM_RD(bp, dev_info.port_hw_config[port].external_phy_config); if (eeprom->magic == 0x50485950) { /* 'PHYP' (0x50485950): prepare phy for FW upgrade */ bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_acquire_phy_lock(bp); rc |= bnx2x_link_reset(&bp->link_params, &bp->link_vars, 0); if (XGXS_EXT_PHY_TYPE(ext_phy_config) == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0, MISC_REGISTERS_GPIO_HIGH, port); bnx2x_release_phy_lock(bp); bnx2x_link_report(bp); } else if (eeprom->magic == 0x50485952) { /* 'PHYR' (0x50485952): re-init link after FW upgrade */ if (bp->state == BNX2X_STATE_OPEN) { bnx2x_acquire_phy_lock(bp); rc |= bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); rc |= bnx2x_phy_init(&bp->link_params, &bp->link_vars); bnx2x_release_phy_lock(bp); bnx2x_calc_fc_adv(bp); } } else if (eeprom->magic == 0x53985943) { /* 'PHYC' (0x53985943): PHY FW upgrade completed */ if (XGXS_EXT_PHY_TYPE(ext_phy_config) == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_SFX7101) { /* DSP Remove Download Mode */ bnx2x_set_gpio(bp, MISC_REGISTERS_GPIO_0, MISC_REGISTERS_GPIO_LOW, port); bnx2x_acquire_phy_lock(bp); bnx2x_sfx7101_sp_sw_reset(bp, &bp->link_params.phy[EXT_PHY1]); /* wait 0.5 sec to allow it to run */ msleep(500); bnx2x_ext_phy_hw_reset(bp, port); msleep(500); bnx2x_release_phy_lock(bp); } } else rc = bnx2x_nvram_write(bp, eeprom->offset, eebuf, eeprom->len); return rc; } static int bnx2x_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) { struct bnx2x *bp = netdev_priv(dev); memset(coal, 0, sizeof(struct ethtool_coalesce)); coal->rx_coalesce_usecs = bp->rx_ticks; coal->tx_coalesce_usecs = bp->tx_ticks; return 0; } static int bnx2x_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal) { struct bnx2x *bp = netdev_priv(dev); bp->rx_ticks = (u16)coal->rx_coalesce_usecs; if (bp->rx_ticks > BNX2X_MAX_COALESCE_TOUT) bp->rx_ticks = BNX2X_MAX_COALESCE_TOUT; bp->tx_ticks = (u16)coal->tx_coalesce_usecs; if (bp->tx_ticks > BNX2X_MAX_COALESCE_TOUT) bp->tx_ticks = BNX2X_MAX_COALESCE_TOUT; if (netif_running(dev)) bnx2x_update_coalesce(bp); return 0; } static void bnx2x_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bnx2x *bp = netdev_priv(dev); ering->rx_max_pending = MAX_RX_AVAIL; if (bp->rx_ring_size) ering->rx_pending = bp->rx_ring_size; else ering->rx_pending = MAX_RX_AVAIL; ering->tx_max_pending = MAX_TX_AVAIL; ering->tx_pending = bp->tx_ring_size; } static int bnx2x_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bnx2x *bp = netdev_priv(dev); if (bp->recovery_state != BNX2X_RECOVERY_DONE) { pr_err("Handling parity error recovery. Try again later\n"); return -EAGAIN; } if ((ering->rx_pending > MAX_RX_AVAIL) || (ering->rx_pending < (bp->disable_tpa ? MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) || (ering->tx_pending > MAX_TX_AVAIL) || (ering->tx_pending <= MAX_SKB_FRAGS + 4)) return -EINVAL; bp->rx_ring_size = ering->rx_pending; bp->tx_ring_size = ering->tx_pending; return bnx2x_reload_if_running(dev); } static void bnx2x_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct bnx2x *bp = netdev_priv(dev); int cfg_idx = bnx2x_get_link_cfg_idx(bp); epause->autoneg = (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO); epause->rx_pause = ((bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) == BNX2X_FLOW_CTRL_RX); epause->tx_pause = ((bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) == BNX2X_FLOW_CTRL_TX); DP(NETIF_MSG_LINK, "ethtool_pauseparam: cmd %d\n" " autoneg %d rx_pause %d tx_pause %d\n", epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause); } static int bnx2x_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct bnx2x *bp = netdev_priv(dev); u32 cfg_idx = bnx2x_get_link_cfg_idx(bp); if (IS_MF(bp)) return 0; DP(NETIF_MSG_LINK, "ethtool_pauseparam: cmd %d\n" " autoneg %d rx_pause %d tx_pause %d\n", epause->cmd, epause->autoneg, epause->rx_pause, epause->tx_pause); bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO; if (epause->rx_pause) bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_RX; if (epause->tx_pause) bp->link_params.req_flow_ctrl[cfg_idx] |= BNX2X_FLOW_CTRL_TX; if (bp->link_params.req_flow_ctrl[cfg_idx] == BNX2X_FLOW_CTRL_AUTO) bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_NONE; if (epause->autoneg) { if (!(bp->port.supported[cfg_idx] & SUPPORTED_Autoneg)) { DP(NETIF_MSG_LINK, "autoneg not supported\n"); return -EINVAL; } if (bp->link_params.req_line_speed[cfg_idx] == SPEED_AUTO_NEG) { bp->link_params.req_flow_ctrl[cfg_idx] = BNX2X_FLOW_CTRL_AUTO; } } DP(NETIF_MSG_LINK, "req_flow_ctrl 0x%x\n", bp->link_params.req_flow_ctrl[cfg_idx]); if (netif_running(dev)) { bnx2x_stats_handle(bp, STATS_EVENT_STOP); bnx2x_link_set(bp); } return 0; } static const struct { char string[ETH_GSTRING_LEN]; } bnx2x_tests_str_arr[BNX2X_NUM_TESTS] = { { "register_test (offline)" }, { "memory_test (offline)" }, { "loopback_test (offline)" }, { "nvram_test (online)" }, { "interrupt_test (online)" }, { "link_test (online)" }, { "idle check (online)" } }; enum { BNX2X_CHIP_E1_OFST = 0, BNX2X_CHIP_E1H_OFST, BNX2X_CHIP_E2_OFST, BNX2X_CHIP_E3_OFST, BNX2X_CHIP_E3B0_OFST, BNX2X_CHIP_MAX_OFST }; #define BNX2X_CHIP_MASK_E1 (1 << BNX2X_CHIP_E1_OFST) #define BNX2X_CHIP_MASK_E1H (1 << BNX2X_CHIP_E1H_OFST) #define BNX2X_CHIP_MASK_E2 (1 << BNX2X_CHIP_E2_OFST) #define BNX2X_CHIP_MASK_E3 (1 << BNX2X_CHIP_E3_OFST) #define BNX2X_CHIP_MASK_E3B0 (1 << BNX2X_CHIP_E3B0_OFST) #define BNX2X_CHIP_MASK_ALL ((1 << BNX2X_CHIP_MAX_OFST) - 1) #define BNX2X_CHIP_MASK_E1X (BNX2X_CHIP_MASK_E1 | BNX2X_CHIP_MASK_E1H) static int bnx2x_test_registers(struct bnx2x *bp) { int idx, i, rc = -ENODEV; u32 wr_val = 0, hw; int port = BP_PORT(bp); static const struct { u32 hw; u32 offset0; u32 offset1; u32 mask; } reg_tbl[] = { /* 0 */ { BNX2X_CHIP_MASK_ALL, BRB1_REG_PAUSE_LOW_THRESHOLD_0, 4, 0x000003ff }, { BNX2X_CHIP_MASK_ALL, DORQ_REG_DB_ADDR0, 4, 0xffffffff }, { BNX2X_CHIP_MASK_E1X, HC_REG_AGG_INT_0, 4, 0x000003ff }, { BNX2X_CHIP_MASK_ALL, PBF_REG_MAC_IF0_ENABLE, 4, 0x00000001 }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2 | BNX2X_CHIP_MASK_E3, PBF_REG_P0_INIT_CRD, 4, 0x000007ff }, { BNX2X_CHIP_MASK_E3B0, PBF_REG_INIT_CRD_Q0, 4, 0x000007ff }, { BNX2X_CHIP_MASK_ALL, PRS_REG_CID_PORT_0, 4, 0x00ffffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_PSWRQ_CDU0_L2P, 4, 0x000fffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_RQ_CDU0_EFIRST_MEM_ADDR, 8, 0x0003ffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_PSWRQ_TM0_L2P, 4, 0x000fffff }, /* 10 */ { BNX2X_CHIP_MASK_ALL, PXP2_REG_RQ_USDM0_EFIRST_MEM_ADDR, 8, 0x0003ffff }, { BNX2X_CHIP_MASK_ALL, PXP2_REG_PSWRQ_TSDM0_L2P, 4, 0x000fffff }, { BNX2X_CHIP_MASK_ALL, QM_REG_CONNNUM_0, 4, 0x000fffff }, { BNX2X_CHIP_MASK_ALL, TM_REG_LIN0_MAX_ACTIVE_CID, 4, 0x0003ffff }, { BNX2X_CHIP_MASK_ALL, SRC_REG_KEYRSS0_0, 40, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, SRC_REG_KEYRSS0_7, 40, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, XCM_REG_WU_DA_SET_TMR_CNT_FLG_CMD00, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, XCM_REG_WU_DA_CNT_CMD00, 4, 0x00000003 }, { BNX2X_CHIP_MASK_ALL, XCM_REG_GLB_DEL_ACK_MAX_CNT_0, 4, 0x000000ff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_T_BIT, 4, 0x00000001 }, /* 20 */ { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_EMAC0_IN_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_BMAC0_IN_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_XCM0_OUT_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_BRB0_OUT_EN, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_XCM_MASK, 4, 0x00000007 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_ACPI_PAT_6_LEN, 68, 0x000000ff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_ACPI_PAT_0_CRC, 68, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_MAC_0_0, 160, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_IP_0_1, 160, 0xffffffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_IPV4_IPV6_0, 160, 0x00000001 }, /* 30 */ { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_UDP_0, 160, 0x0000ffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_DEST_TCP_0, 160, 0x0000ffff }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LLH0_VLAN_ID_0, 160, 0x00000fff }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_XGXS_SERDES0_MODE_SEL, 4, 0x00000001 }, { BNX2X_CHIP_MASK_ALL, NIG_REG_LED_CONTROL_OVERRIDE_TRAFFIC_P0, 4, 0x00000001}, { BNX2X_CHIP_MASK_ALL, NIG_REG_STATUS_INTERRUPT_PORT0, 4, 0x07ffffff }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_XGXS0_CTRL_EXTREMOTEMDIOST, 24, 0x00000001 }, { BNX2X_CHIP_MASK_E1X | BNX2X_CHIP_MASK_E2, NIG_REG_SERDES0_CTRL_PHY_ADDR, 16, 0x0000001f }, { BNX2X_CHIP_MASK_ALL, 0xffffffff, 0, 0x00000000 } }; if (!netif_running(bp->dev)) return rc; if (CHIP_IS_E1(bp)) hw = BNX2X_CHIP_MASK_E1; else if (CHIP_IS_E1H(bp)) hw = BNX2X_CHIP_MASK_E1H; else if (CHIP_IS_E2(bp)) hw = BNX2X_CHIP_MASK_E2; else if (CHIP_IS_E3B0(bp)) hw = BNX2X_CHIP_MASK_E3B0; else /* e3 A0 */ hw = BNX2X_CHIP_MASK_E3; /* Repeat the test twice: First by writing 0x00000000, second by writing 0xffffffff */ for (idx = 0; idx < 2; idx++) { switch (idx) { case 0: wr_val = 0; break; case 1: wr_val = 0xffffffff; break; } for (i = 0; reg_tbl[i].offset0 != 0xffffffff; i++) { u32 offset, mask, save_val, val; if (!(hw & reg_tbl[i].hw)) continue; offset = reg_tbl[i].offset0 + port*reg_tbl[i].offset1; mask = reg_tbl[i].mask; save_val = REG_RD(bp, offset); REG_WR(bp, offset, wr_val & mask); val = REG_RD(bp, offset); /* Restore the original register's value */ REG_WR(bp, offset, save_val); /* verify value is as expected */ if ((val & mask) != (wr_val & mask)) { DP(NETIF_MSG_HW, "offset 0x%x: val 0x%x != 0x%x mask 0x%x\n", offset, val, wr_val, mask); goto test_reg_exit; } } } rc = 0; test_reg_exit: return rc; } static int bnx2x_test_memory(struct bnx2x *bp) { int i, j, rc = -ENODEV; u32 val, index; static const struct { u32 offset; int size; } mem_tbl[] = { { CCM_REG_XX_DESCR_TABLE, CCM_REG_XX_DESCR_TABLE_SIZE }, { CFC_REG_ACTIVITY_COUNTER, CFC_REG_ACTIVITY_COUNTER_SIZE }, { CFC_REG_LINK_LIST, CFC_REG_LINK_LIST_SIZE }, { DMAE_REG_CMD_MEM, DMAE_REG_CMD_MEM_SIZE }, { TCM_REG_XX_DESCR_TABLE, TCM_REG_XX_DESCR_TABLE_SIZE }, { UCM_REG_XX_DESCR_TABLE, UCM_REG_XX_DESCR_TABLE_SIZE }, { XCM_REG_XX_DESCR_TABLE, XCM_REG_XX_DESCR_TABLE_SIZE }, { 0xffffffff, 0 } }; static const struct { char *name; u32 offset; u32 hw_mask[BNX2X_CHIP_MAX_OFST]; } prty_tbl[] = { { "CCM_PRTY_STS", CCM_REG_CCM_PRTY_STS, {0x3ffc0, 0, 0, 0} }, { "CFC_PRTY_STS", CFC_REG_CFC_PRTY_STS, {0x2, 0x2, 0, 0} }, { "DMAE_PRTY_STS", DMAE_REG_DMAE_PRTY_STS, {0, 0, 0, 0} }, { "TCM_PRTY_STS", TCM_REG_TCM_PRTY_STS, {0x3ffc0, 0, 0, 0} }, { "UCM_PRTY_STS", UCM_REG_UCM_PRTY_STS, {0x3ffc0, 0, 0, 0} }, { "XCM_PRTY_STS", XCM_REG_XCM_PRTY_STS, {0x3ffc1, 0, 0, 0} }, { NULL, 0xffffffff, {0, 0, 0, 0} } }; if (!netif_running(bp->dev)) return rc; if (CHIP_IS_E1(bp)) index = BNX2X_CHIP_E1_OFST; else if (CHIP_IS_E1H(bp)) index = BNX2X_CHIP_E1H_OFST; else if (CHIP_IS_E2(bp)) index = BNX2X_CHIP_E2_OFST; else /* e3 */ index = BNX2X_CHIP_E3_OFST; /* pre-Check the parity status */ for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) { val = REG_RD(bp, prty_tbl[i].offset); if (val & ~(prty_tbl[i].hw_mask[index])) { DP(NETIF_MSG_HW, "%s is 0x%x\n", prty_tbl[i].name, val); goto test_mem_exit; } } /* Go through all the memories */ for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) for (j = 0; j < mem_tbl[i].size; j++) REG_RD(bp, mem_tbl[i].offset + j*4); /* Check the parity status */ for (i = 0; prty_tbl[i].offset != 0xffffffff; i++) { val = REG_RD(bp, prty_tbl[i].offset); if (val & ~(prty_tbl[i].hw_mask[index])) { DP(NETIF_MSG_HW, "%s is 0x%x\n", prty_tbl[i].name, val); goto test_mem_exit; } } rc = 0; test_mem_exit: return rc; } static void bnx2x_wait_for_link(struct bnx2x *bp, u8 link_up, u8 is_serdes) { int cnt = 1400; if (link_up) { while (bnx2x_link_test(bp, is_serdes) && cnt--) msleep(20); if (cnt <= 0 && bnx2x_link_test(bp, is_serdes)) DP(NETIF_MSG_LINK, "Timeout waiting for link up\n"); } } static int bnx2x_run_loopback(struct bnx2x *bp, int loopback_mode) { unsigned int pkt_size, num_pkts, i; struct sk_buff *skb; unsigned char *packet; struct bnx2x_fastpath *fp_rx = &bp->fp[0]; struct bnx2x_fastpath *fp_tx = &bp->fp[0]; struct bnx2x_fp_txdata *txdata = &fp_tx->txdata[0]; u16 tx_start_idx, tx_idx; u16 rx_start_idx, rx_idx; u16 pkt_prod, bd_prod, rx_comp_cons; struct sw_tx_bd *tx_buf; struct eth_tx_start_bd *tx_start_bd; struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; dma_addr_t mapping; union eth_rx_cqe *cqe; u8 cqe_fp_flags, cqe_fp_type; struct sw_rx_bd *rx_buf; u16 len; int rc = -ENODEV; u8 *data; struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txdata->txq_index); /* check the loopback mode */ switch (loopback_mode) { case BNX2X_PHY_LOOPBACK: if (bp->link_params.loopback_mode != LOOPBACK_XGXS) return -EINVAL; break; case BNX2X_MAC_LOOPBACK: if (CHIP_IS_E3(bp)) { int cfg_idx = bnx2x_get_link_cfg_idx(bp); if (bp->port.supported[cfg_idx] & (SUPPORTED_10000baseT_Full | SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full)) bp->link_params.loopback_mode = LOOPBACK_XMAC; else bp->link_params.loopback_mode = LOOPBACK_UMAC; } else bp->link_params.loopback_mode = LOOPBACK_BMAC; bnx2x_phy_init(&bp->link_params, &bp->link_vars); break; default: return -EINVAL; } /* prepare the loopback packet */ pkt_size = (((bp->dev->mtu < ETH_MAX_PACKET_SIZE) ? bp->dev->mtu : ETH_MAX_PACKET_SIZE) + ETH_HLEN); skb = netdev_alloc_skb(bp->dev, fp_rx->rx_buf_size); if (!skb) { rc = -ENOMEM; goto test_loopback_exit; } packet = skb_put(skb, pkt_size); memcpy(packet, bp->dev->dev_addr, ETH_ALEN); memset(packet + ETH_ALEN, 0, ETH_ALEN); memset(packet + 2*ETH_ALEN, 0x77, (ETH_HLEN - 2*ETH_ALEN)); for (i = ETH_HLEN; i < pkt_size; i++) packet[i] = (unsigned char) (i & 0xff); mapping = dma_map_single(&bp->pdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { rc = -ENOMEM; dev_kfree_skb(skb); BNX2X_ERR("Unable to map SKB\n"); goto test_loopback_exit; } /* send the loopback packet */ num_pkts = 0; tx_start_idx = le16_to_cpu(*txdata->tx_cons_sb); rx_start_idx = le16_to_cpu(*fp_rx->rx_cons_sb); netdev_tx_sent_queue(txq, skb->len); pkt_prod = txdata->tx_pkt_prod++; tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; tx_buf->first_bd = txdata->tx_bd_prod; tx_buf->skb = skb; tx_buf->flags = 0; bd_prod = TX_BD(txdata->tx_bd_prod); tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); tx_start_bd->nbd = cpu_to_le16(2); /* start + pbd */ tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_ETH_ADDR_TYPE, UNICAST_ADDRESS); SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_HDR_NBDS, 1); /* turn on parsing and get a BD */ bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); wmb(); txdata->tx_db.data.prod += 2; barrier(); DOORBELL(bp, txdata->cid, txdata->tx_db.raw); mmiowb(); barrier(); num_pkts++; txdata->tx_bd_prod += 2; /* start + pbd */ udelay(100); tx_idx = le16_to_cpu(*txdata->tx_cons_sb); if (tx_idx != tx_start_idx + num_pkts) goto test_loopback_exit; /* Unlike HC IGU won't generate an interrupt for status block * updates that have been performed while interrupts were * disabled. */ if (bp->common.int_block == INT_BLOCK_IGU) { /* Disable local BHes to prevent a dead-lock situation between * sch_direct_xmit() and bnx2x_run_loopback() (calling * bnx2x_tx_int()), as both are taking netif_tx_lock(). */ local_bh_disable(); bnx2x_tx_int(bp, txdata); local_bh_enable(); } rx_idx = le16_to_cpu(*fp_rx->rx_cons_sb); if (rx_idx != rx_start_idx + num_pkts) goto test_loopback_exit; rx_comp_cons = le16_to_cpu(fp_rx->rx_comp_cons); cqe = &fp_rx->rx_comp_ring[RCQ_BD(rx_comp_cons)]; cqe_fp_flags = cqe->fast_path_cqe.type_error_flags; cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; if (!CQE_TYPE_FAST(cqe_fp_type) || (cqe_fp_flags & ETH_RX_ERROR_FALGS)) goto test_loopback_rx_exit; len = le16_to_cpu(cqe->fast_path_cqe.pkt_len); if (len != pkt_size) goto test_loopback_rx_exit; rx_buf = &fp_rx->rx_buf_ring[RX_BD(fp_rx->rx_bd_cons)]; dma_sync_single_for_cpu(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), fp_rx->rx_buf_size, DMA_FROM_DEVICE); data = rx_buf->data + NET_SKB_PAD + cqe->fast_path_cqe.placement_offset; for (i = ETH_HLEN; i < pkt_size; i++) if (*(data + i) != (unsigned char) (i & 0xff)) goto test_loopback_rx_exit; rc = 0; test_loopback_rx_exit: fp_rx->rx_bd_cons = NEXT_RX_IDX(fp_rx->rx_bd_cons); fp_rx->rx_bd_prod = NEXT_RX_IDX(fp_rx->rx_bd_prod); fp_rx->rx_comp_cons = NEXT_RCQ_IDX(fp_rx->rx_comp_cons); fp_rx->rx_comp_prod = NEXT_RCQ_IDX(fp_rx->rx_comp_prod); /* Update producers */ bnx2x_update_rx_prod(bp, fp_rx, fp_rx->rx_bd_prod, fp_rx->rx_comp_prod, fp_rx->rx_sge_prod); test_loopback_exit: bp->link_params.loopback_mode = LOOPBACK_NONE; return rc; } static int bnx2x_test_loopback(struct bnx2x *bp) { int rc = 0, res; if (BP_NOMCP(bp)) return rc; if (!netif_running(bp->dev)) return BNX2X_LOOPBACK_FAILED; bnx2x_netif_stop(bp, 1); bnx2x_acquire_phy_lock(bp); res = bnx2x_run_loopback(bp, BNX2X_PHY_LOOPBACK); if (res) { DP(NETIF_MSG_PROBE, " PHY loopback failed (res %d)\n", res); rc |= BNX2X_PHY_LOOPBACK_FAILED; } res = bnx2x_run_loopback(bp, BNX2X_MAC_LOOPBACK); if (res) { DP(NETIF_MSG_PROBE, " MAC loopback failed (res %d)\n", res); rc |= BNX2X_MAC_LOOPBACK_FAILED; } bnx2x_release_phy_lock(bp); bnx2x_netif_start(bp); return rc; } #define CRC32_RESIDUAL 0xdebb20e3 static int bnx2x_test_nvram(struct bnx2x *bp) { static const struct { int offset; int size; } nvram_tbl[] = { { 0, 0x14 }, /* bootstrap */ { 0x14, 0xec }, /* dir */ { 0x100, 0x350 }, /* manuf_info */ { 0x450, 0xf0 }, /* feature_info */ { 0x640, 0x64 }, /* upgrade_key_info */ { 0x708, 0x70 }, /* manuf_key_info */ { 0, 0 } }; __be32 buf[0x350 / 4]; u8 *data = (u8 *)buf; int i, rc; u32 magic, crc; if (BP_NOMCP(bp)) return 0; rc = bnx2x_nvram_read(bp, 0, data, 4); if (rc) { DP(NETIF_MSG_PROBE, "magic value read (rc %d)\n", rc); goto test_nvram_exit; } magic = be32_to_cpu(buf[0]); if (magic != 0x669955aa) { DP(NETIF_MSG_PROBE, "magic value (0x%08x)\n", magic); rc = -ENODEV; goto test_nvram_exit; } for (i = 0; nvram_tbl[i].size; i++) { rc = bnx2x_nvram_read(bp, nvram_tbl[i].offset, data, nvram_tbl[i].size); if (rc) { DP(NETIF_MSG_PROBE, "nvram_tbl[%d] read data (rc %d)\n", i, rc); goto test_nvram_exit; } crc = ether_crc_le(nvram_tbl[i].size, data); if (crc != CRC32_RESIDUAL) { DP(NETIF_MSG_PROBE, "nvram_tbl[%d] crc value (0x%08x)\n", i, crc); rc = -ENODEV; goto test_nvram_exit; } } test_nvram_exit: return rc; } /* Send an EMPTY ramrod on the first queue */ static int bnx2x_test_intr(struct bnx2x *bp) { struct bnx2x_queue_state_params params = {0}; if (!netif_running(bp->dev)) return -ENODEV; params.q_obj = &bp->fp->q_obj; params.cmd = BNX2X_Q_CMD_EMPTY; __set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); return bnx2x_queue_state_change(bp, ¶ms); } static void bnx2x_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf) { struct bnx2x *bp = netdev_priv(dev); u8 is_serdes; if (bp->recovery_state != BNX2X_RECOVERY_DONE) { pr_err("Handling parity error recovery. Try again later\n"); etest->flags |= ETH_TEST_FL_FAILED; return; } memset(buf, 0, sizeof(u64) * BNX2X_NUM_TESTS); if (!netif_running(dev)) return; /* offline tests are not supported in MF mode */ if (IS_MF(bp)) etest->flags &= ~ETH_TEST_FL_OFFLINE; is_serdes = (bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) > 0; if (etest->flags & ETH_TEST_FL_OFFLINE) { int port = BP_PORT(bp); u32 val; u8 link_up; /* save current value of input enable for TX port IF */ val = REG_RD(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4); /* disable input for TX port IF */ REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, 0); link_up = bp->link_vars.link_up; bnx2x_nic_unload(bp, UNLOAD_NORMAL); bnx2x_nic_load(bp, LOAD_DIAG); /* wait until link state is restored */ bnx2x_wait_for_link(bp, 1, is_serdes); if (bnx2x_test_registers(bp) != 0) { buf[0] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2x_test_memory(bp) != 0) { buf[1] = 1; etest->flags |= ETH_TEST_FL_FAILED; } buf[2] = bnx2x_test_loopback(bp); if (buf[2] != 0) etest->flags |= ETH_TEST_FL_FAILED; bnx2x_nic_unload(bp, UNLOAD_NORMAL); /* restore input for TX port IF */ REG_WR(bp, NIG_REG_EGRESS_UMP0_IN_EN + port*4, val); bnx2x_nic_load(bp, LOAD_NORMAL); /* wait until link state is restored */ bnx2x_wait_for_link(bp, link_up, is_serdes); } if (bnx2x_test_nvram(bp) != 0) { buf[3] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2x_test_intr(bp) != 0) { buf[4] = 1; etest->flags |= ETH_TEST_FL_FAILED; } if (bnx2x_link_test(bp, is_serdes) != 0) { buf[5] = 1; etest->flags |= ETH_TEST_FL_FAILED; } #ifdef BNX2X_EXTRA_DEBUG bnx2x_panic_dump(bp); #endif } #define IS_PORT_STAT(i) \ ((bnx2x_stats_arr[i].flags & STATS_FLAGS_BOTH) == STATS_FLAGS_PORT) #define IS_FUNC_STAT(i) (bnx2x_stats_arr[i].flags & STATS_FLAGS_FUNC) #define IS_MF_MODE_STAT(bp) \ (IS_MF(bp) && !(bp->msg_enable & BNX2X_MSG_STATS)) /* ethtool statistics are displayed for all regular ethernet queues and the * fcoe L2 queue if not disabled */ static inline int bnx2x_num_stat_queues(struct bnx2x *bp) { return BNX2X_NUM_ETH_QUEUES(bp); } static int bnx2x_get_sset_count(struct net_device *dev, int stringset) { struct bnx2x *bp = netdev_priv(dev); int i, num_stats; switch (stringset) { case ETH_SS_STATS: if (is_multi(bp)) { num_stats = bnx2x_num_stat_queues(bp) * BNX2X_NUM_Q_STATS; if (!IS_MF_MODE_STAT(bp)) num_stats += BNX2X_NUM_STATS; } else { if (IS_MF_MODE_STAT(bp)) { num_stats = 0; for (i = 0; i < BNX2X_NUM_STATS; i++) if (IS_FUNC_STAT(i)) num_stats++; } else num_stats = BNX2X_NUM_STATS; } return num_stats; case ETH_SS_TEST: return BNX2X_NUM_TESTS; default: return -EINVAL; } } static void bnx2x_get_strings(struct net_device *dev, u32 stringset, u8 *buf) { struct bnx2x *bp = netdev_priv(dev); int i, j, k; char queue_name[MAX_QUEUE_NAME_LEN+1]; switch (stringset) { case ETH_SS_STATS: if (is_multi(bp)) { k = 0; for_each_eth_queue(bp, i) { memset(queue_name, 0, sizeof(queue_name)); sprintf(queue_name, "%d", i); for (j = 0; j < BNX2X_NUM_Q_STATS; j++) snprintf(buf + (k + j)*ETH_GSTRING_LEN, ETH_GSTRING_LEN, bnx2x_q_stats_arr[j].string, queue_name); k += BNX2X_NUM_Q_STATS; } if (IS_MF_MODE_STAT(bp)) break; for (j = 0; j < BNX2X_NUM_STATS; j++) strcpy(buf + (k + j)*ETH_GSTRING_LEN, bnx2x_stats_arr[j].string); } else { for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) { if (IS_MF_MODE_STAT(bp) && IS_PORT_STAT(i)) continue; strcpy(buf + j*ETH_GSTRING_LEN, bnx2x_stats_arr[i].string); j++; } } break; case ETH_SS_TEST: memcpy(buf, bnx2x_tests_str_arr, sizeof(bnx2x_tests_str_arr)); break; } } static void bnx2x_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *buf) { struct bnx2x *bp = netdev_priv(dev); u32 *hw_stats, *offset; int i, j, k; if (is_multi(bp)) { k = 0; for_each_eth_queue(bp, i) { hw_stats = (u32 *)&bp->fp[i].eth_q_stats; for (j = 0; j < BNX2X_NUM_Q_STATS; j++) { if (bnx2x_q_stats_arr[j].size == 0) { /* skip this counter */ buf[k + j] = 0; continue; } offset = (hw_stats + bnx2x_q_stats_arr[j].offset); if (bnx2x_q_stats_arr[j].size == 4) { /* 4-byte counter */ buf[k + j] = (u64) *offset; continue; } /* 8-byte counter */ buf[k + j] = HILO_U64(*offset, *(offset + 1)); } k += BNX2X_NUM_Q_STATS; } if (IS_MF_MODE_STAT(bp)) return; hw_stats = (u32 *)&bp->eth_stats; for (j = 0; j < BNX2X_NUM_STATS; j++) { if (bnx2x_stats_arr[j].size == 0) { /* skip this counter */ buf[k + j] = 0; continue; } offset = (hw_stats + bnx2x_stats_arr[j].offset); if (bnx2x_stats_arr[j].size == 4) { /* 4-byte counter */ buf[k + j] = (u64) *offset; continue; } /* 8-byte counter */ buf[k + j] = HILO_U64(*offset, *(offset + 1)); } } else { hw_stats = (u32 *)&bp->eth_stats; for (i = 0, j = 0; i < BNX2X_NUM_STATS; i++) { if (IS_MF_MODE_STAT(bp) && IS_PORT_STAT(i)) continue; if (bnx2x_stats_arr[i].size == 0) { /* skip this counter */ buf[j] = 0; j++; continue; } offset = (hw_stats + bnx2x_stats_arr[i].offset); if (bnx2x_stats_arr[i].size == 4) { /* 4-byte counter */ buf[j] = (u64) *offset; j++; continue; } /* 8-byte counter */ buf[j] = HILO_U64(*offset, *(offset + 1)); j++; } } } static int bnx2x_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state) { struct bnx2x *bp = netdev_priv(dev); if (!netif_running(dev)) return -EAGAIN; if (!bp->port.pmf) return -EOPNOTSUPP; switch (state) { case ETHTOOL_ID_ACTIVE: return 1; /* cycle on/off once per second */ case ETHTOOL_ID_ON: bnx2x_set_led(&bp->link_params, &bp->link_vars, LED_MODE_ON, SPEED_1000); break; case ETHTOOL_ID_OFF: bnx2x_set_led(&bp->link_params, &bp->link_vars, LED_MODE_FRONT_PANEL_OFF, 0); break; case ETHTOOL_ID_INACTIVE: bnx2x_set_led(&bp->link_params, &bp->link_vars, LED_MODE_OPER, bp->link_vars.line_speed); } return 0; } static int bnx2x_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules __always_unused) { struct bnx2x *bp = netdev_priv(dev); switch (info->cmd) { case ETHTOOL_GRXRINGS: info->data = BNX2X_NUM_ETH_QUEUES(bp); return 0; default: return -EOPNOTSUPP; } } static u32 bnx2x_get_rxfh_indir_size(struct net_device *dev) { struct bnx2x *bp = netdev_priv(dev); return (bp->multi_mode == ETH_RSS_MODE_DISABLED ? 0 : T_ETH_INDIRECTION_TABLE_SIZE); } static int bnx2x_get_rxfh_indir(struct net_device *dev, u32 *indir) { struct bnx2x *bp = netdev_priv(dev); u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0}; size_t i; /* Get the current configuration of the RSS indirection table */ bnx2x_get_rss_ind_table(&bp->rss_conf_obj, ind_table); /* * We can't use a memcpy() as an internal storage of an * indirection table is a u8 array while indir->ring_index * points to an array of u32. * * Indirection table contains the FW Client IDs, so we need to * align the returned table to the Client ID of the leading RSS * queue. */ for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) indir[i] = ind_table[i] - bp->fp->cl_id; return 0; } static int bnx2x_set_rxfh_indir(struct net_device *dev, const u32 *indir) { struct bnx2x *bp = netdev_priv(dev); size_t i; u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0}; for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { /* * The same as in bnx2x_get_rxfh_indir: we can't use a memcpy() * as an internal storage of an indirection table is a u8 array * while indir->ring_index points to an array of u32. * * Indirection table contains the FW Client IDs, so we need to * align the received table to the Client ID of the leading RSS * queue */ ind_table[i] = indir[i] + bp->fp->cl_id; } return bnx2x_config_rss_pf(bp, ind_table, false); } static const struct ethtool_ops bnx2x_ethtool_ops = { .get_settings = bnx2x_get_settings, .set_settings = bnx2x_set_settings, .get_drvinfo = bnx2x_get_drvinfo, .get_regs_len = bnx2x_get_regs_len, .get_regs = bnx2x_get_regs, .get_wol = bnx2x_get_wol, .set_wol = bnx2x_set_wol, .get_msglevel = bnx2x_get_msglevel, .set_msglevel = bnx2x_set_msglevel, .nway_reset = bnx2x_nway_reset, .get_link = bnx2x_get_link, .get_eeprom_len = bnx2x_get_eeprom_len, .get_eeprom = bnx2x_get_eeprom, .set_eeprom = bnx2x_set_eeprom, .get_coalesce = bnx2x_get_coalesce, .set_coalesce = bnx2x_set_coalesce, .get_ringparam = bnx2x_get_ringparam, .set_ringparam = bnx2x_set_ringparam, .get_pauseparam = bnx2x_get_pauseparam, .set_pauseparam = bnx2x_set_pauseparam, .self_test = bnx2x_self_test, .get_sset_count = bnx2x_get_sset_count, .get_strings = bnx2x_get_strings, .set_phys_id = bnx2x_set_phys_id, .get_ethtool_stats = bnx2x_get_ethtool_stats, .get_rxnfc = bnx2x_get_rxnfc, .get_rxfh_indir_size = bnx2x_get_rxfh_indir_size, .get_rxfh_indir = bnx2x_get_rxfh_indir, .set_rxfh_indir = bnx2x_set_rxfh_indir, }; void bnx2x_set_ethtool_ops(struct net_device *netdev) { SET_ETHTOOL_OPS(netdev, &bnx2x_ethtool_ops); }