/* * Block driver for media (i.e., flash cards) * * Copyright 2002 Hewlett-Packard Company * Copyright 2005-2008 Pierre Ossman * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. * * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS * FITNESS FOR ANY PARTICULAR PURPOSE. * * Many thanks to Alessandro Rubini and Jonathan Corbet! * * Author: Andrew Christian * 28 May 2002 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "queue.h" MODULE_ALIAS("mmc:block"); #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "mmcblk." #define INAND_CMD38_ARG_EXT_CSD 113 #define INAND_CMD38_ARG_ERASE 0x00 #define INAND_CMD38_ARG_TRIM 0x01 #define INAND_CMD38_ARG_SECERASE 0x80 #define INAND_CMD38_ARG_SECTRIM1 0x81 #define INAND_CMD38_ARG_SECTRIM2 0x88 static DEFINE_MUTEX(block_mutex); /* * The defaults come from config options but can be overriden by module * or bootarg options. */ static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; /* * We've only got one major, so number of mmcblk devices is * limited to 256 / number of minors per device. */ static int max_devices; /* 256 minors, so at most 256 separate devices */ static DECLARE_BITMAP(dev_use, 256); static DECLARE_BITMAP(name_use, 256); /* * There is one mmc_blk_data per slot. */ struct mmc_blk_data { spinlock_t lock; struct gendisk *disk; struct mmc_queue queue; struct list_head part; unsigned int flags; #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ unsigned int usage; unsigned int read_only; unsigned int part_type; unsigned int name_idx; unsigned int reset_done; #define MMC_BLK_READ BIT(0) #define MMC_BLK_WRITE BIT(1) #define MMC_BLK_DISCARD BIT(2) #define MMC_BLK_SECDISCARD BIT(3) /* * Only set in main mmc_blk_data associated * with mmc_card with mmc_set_drvdata, and keeps * track of the current selected device partition. */ unsigned int part_curr; struct device_attribute force_ro; }; static DEFINE_MUTEX(open_lock); enum mmc_blk_status { MMC_BLK_SUCCESS = 0, MMC_BLK_PARTIAL, MMC_BLK_CMD_ERR, MMC_BLK_RETRY, MMC_BLK_ABORT, MMC_BLK_DATA_ERR, MMC_BLK_ECC_ERR, }; module_param(perdev_minors, int, 0444); MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) { struct mmc_blk_data *md; mutex_lock(&open_lock); md = disk->private_data; if (md && md->usage == 0) md = NULL; if (md) md->usage++; mutex_unlock(&open_lock); return md; } static inline int mmc_get_devidx(struct gendisk *disk) { int devmaj = MAJOR(disk_devt(disk)); int devidx = MINOR(disk_devt(disk)) / perdev_minors; if (!devmaj) devidx = disk->first_minor / perdev_minors; return devidx; } static void mmc_blk_put(struct mmc_blk_data *md) { mutex_lock(&open_lock); md->usage--; if (md->usage == 0) { int devidx = mmc_get_devidx(md->disk); blk_cleanup_queue(md->queue.queue); __clear_bit(devidx, dev_use); put_disk(md->disk); kfree(md); } mutex_unlock(&open_lock); } static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); ret = snprintf(buf, PAGE_SIZE, "%d", get_disk_ro(dev_to_disk(dev)) ^ md->read_only); mmc_blk_put(md); return ret; } static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; char *end; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); unsigned long set = simple_strtoul(buf, &end, 0); if (end == buf) { ret = -EINVAL; goto out; } set_disk_ro(dev_to_disk(dev), set || md->read_only); ret = count; out: mmc_blk_put(md); return ret; } static int mmc_blk_open(struct block_device *bdev, fmode_t mode) { struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); int ret = -ENXIO; mutex_lock(&block_mutex); if (md) { if (md->usage == 2) check_disk_change(bdev); ret = 0; if ((mode & FMODE_WRITE) && md->read_only) { mmc_blk_put(md); ret = -EROFS; } } mutex_unlock(&block_mutex); return ret; } static int mmc_blk_release(struct gendisk *disk, fmode_t mode) { struct mmc_blk_data *md = disk->private_data; mutex_lock(&block_mutex); mmc_blk_put(md); mutex_unlock(&block_mutex); return 0; } static int mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) { geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); geo->heads = 4; geo->sectors = 16; return 0; } struct mmc_blk_ioc_data { struct mmc_ioc_cmd ic; unsigned char *buf; u64 buf_bytes; }; static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( struct mmc_ioc_cmd __user *user) { struct mmc_blk_ioc_data *idata; int err; idata = kzalloc(sizeof(*idata), GFP_KERNEL); if (!idata) { err = -ENOMEM; goto out; } if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { err = -EFAULT; goto idata_err; } idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { err = -EOVERFLOW; goto idata_err; } idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL); if (!idata->buf) { err = -ENOMEM; goto idata_err; } if (copy_from_user(idata->buf, (void __user *)(unsigned long) idata->ic.data_ptr, idata->buf_bytes)) { err = -EFAULT; goto copy_err; } return idata; copy_err: kfree(idata->buf); idata_err: kfree(idata); out: return ERR_PTR(err); } static int mmc_blk_ioctl_cmd(struct block_device *bdev, struct mmc_ioc_cmd __user *ic_ptr) { struct mmc_blk_ioc_data *idata; struct mmc_blk_data *md; struct mmc_card *card; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct mmc_request mrq = {NULL}; struct scatterlist sg; int err; /* * The caller must have CAP_SYS_RAWIO, and must be calling this on the * whole block device, not on a partition. This prevents overspray * between sibling partitions. */ if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) return -EPERM; idata = mmc_blk_ioctl_copy_from_user(ic_ptr); if (IS_ERR(idata)) return PTR_ERR(idata); cmd.opcode = idata->ic.opcode; cmd.arg = idata->ic.arg; cmd.flags = idata->ic.flags; data.sg = &sg; data.sg_len = 1; data.blksz = idata->ic.blksz; data.blocks = idata->ic.blocks; sg_init_one(data.sg, idata->buf, idata->buf_bytes); if (idata->ic.write_flag) data.flags = MMC_DATA_WRITE; else data.flags = MMC_DATA_READ; mrq.cmd = &cmd; mrq.data = &data; md = mmc_blk_get(bdev->bd_disk); if (!md) { err = -EINVAL; goto cmd_done; } card = md->queue.card; if (IS_ERR(card)) { err = PTR_ERR(card); goto cmd_done; } mmc_claim_host(card->host); if (idata->ic.is_acmd) { err = mmc_app_cmd(card->host, card); if (err) goto cmd_rel_host; } /* data.flags must already be set before doing this. */ mmc_set_data_timeout(&data, card); /* Allow overriding the timeout_ns for empirical tuning. */ if (idata->ic.data_timeout_ns) data.timeout_ns = idata->ic.data_timeout_ns; if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { /* * Pretend this is a data transfer and rely on the host driver * to compute timeout. When all host drivers support * cmd.cmd_timeout for R1B, this can be changed to: * * mrq.data = NULL; * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; */ data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; } mmc_wait_for_req(card->host, &mrq); if (cmd.error) { dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error); err = cmd.error; goto cmd_rel_host; } if (data.error) { dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error); err = data.error; goto cmd_rel_host; } /* * According to the SD specs, some commands require a delay after * issuing the command. */ if (idata->ic.postsleep_min_us) usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) { err = -EFAULT; goto cmd_rel_host; } if (!idata->ic.write_flag) { if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr, idata->buf, idata->buf_bytes)) { err = -EFAULT; goto cmd_rel_host; } } cmd_rel_host: mmc_release_host(card->host); cmd_done: mmc_blk_put(md); kfree(idata->buf); kfree(idata); return err; } static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { int ret = -EINVAL; if (cmd == MMC_IOC_CMD) ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg); return ret; } #ifdef CONFIG_COMPAT static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); } #endif static const struct block_device_operations mmc_bdops = { .open = mmc_blk_open, .release = mmc_blk_release, .getgeo = mmc_blk_getgeo, .owner = THIS_MODULE, .ioctl = mmc_blk_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mmc_blk_compat_ioctl, #endif }; static inline int mmc_blk_part_switch(struct mmc_card *card, struct mmc_blk_data *md) { int ret; struct mmc_blk_data *main_md = mmc_get_drvdata(card); if (main_md->part_curr == md->part_type) return 0; if (mmc_card_mmc(card)) { u8 part_config = card->ext_csd.part_config; part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= md->part_type; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time); if (ret) return ret; card->ext_csd.part_config = part_config; } main_md->part_curr = md->part_type; return 0; } static u32 mmc_sd_num_wr_blocks(struct mmc_card *card) { int err; u32 result; __be32 *blocks; struct mmc_request mrq = {NULL}; struct mmc_command cmd = {0}; struct mmc_data data = {0}; unsigned int timeout_us; struct scatterlist sg; cmd.opcode = MMC_APP_CMD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) return (u32)-1; if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) return (u32)-1; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.timeout_ns = card->csd.tacc_ns * 100; data.timeout_clks = card->csd.tacc_clks * 100; timeout_us = data.timeout_ns / 1000; timeout_us += data.timeout_clks * 1000 / (card->host->ios.clock / 1000); if (timeout_us > 100000) { data.timeout_ns = 100000000; data.timeout_clks = 0; } data.blksz = 4; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; mrq.cmd = &cmd; mrq.data = &data; blocks = kmalloc(4, GFP_KERNEL); if (!blocks) return (u32)-1; sg_init_one(&sg, blocks, 4); mmc_wait_for_req(card->host, &mrq); result = ntohl(*blocks); kfree(blocks); if (cmd.error || data.error) result = (u32)-1; return result; } static int send_stop(struct mmc_card *card, u32 *status) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_STOP_TRANSMISSION; cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 5); if (err == 0) *status = cmd.resp[0]; return err; } static int get_card_status(struct mmc_card *card, u32 *status, int retries) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_SEND_STATUS; if (!mmc_host_is_spi(card->host)) cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, retries); if (err == 0) *status = cmd.resp[0]; return err; } #define ERR_RETRY 2 #define ERR_ABORT 1 #define ERR_CONTINUE 0 static int mmc_blk_cmd_error(struct request *req, const char *name, int error, bool status_valid, u32 status) { switch (error) { case -EILSEQ: /* response crc error, retry the r/w cmd */ pr_err("%s: %s sending %s command, card status %#x\n", req->rq_disk->disk_name, "response CRC error", name, status); return ERR_RETRY; case -ETIMEDOUT: pr_err("%s: %s sending %s command, card status %#x\n", req->rq_disk->disk_name, "timed out", name, status); /* If the status cmd initially failed, retry the r/w cmd */ if (!status_valid) return ERR_RETRY; /* * If it was a r/w cmd crc error, or illegal command * (eg, issued in wrong state) then retry - we should * have corrected the state problem above. */ if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) return ERR_RETRY; /* Otherwise abort the command */ return ERR_ABORT; default: /* We don't understand the error code the driver gave us */ pr_err("%s: unknown error %d sending read/write command, card status %#x\n", req->rq_disk->disk_name, error, status); return ERR_ABORT; } } /* * Initial r/w and stop cmd error recovery. * We don't know whether the card received the r/w cmd or not, so try to * restore things back to a sane state. Essentially, we do this as follows: * - Obtain card status. If the first attempt to obtain card status fails, * the status word will reflect the failed status cmd, not the failed * r/w cmd. If we fail to obtain card status, it suggests we can no * longer communicate with the card. * - Check the card state. If the card received the cmd but there was a * transient problem with the response, it might still be in a data transfer * mode. Try to send it a stop command. If this fails, we can't recover. * - If the r/w cmd failed due to a response CRC error, it was probably * transient, so retry the cmd. * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or * illegal cmd, retry. * Otherwise we don't understand what happened, so abort. */ static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, struct mmc_blk_request *brq, int *ecc_err) { bool prev_cmd_status_valid = true; u32 status, stop_status = 0; int err, retry; /* * Try to get card status which indicates both the card state * and why there was no response. If the first attempt fails, * we can't be sure the returned status is for the r/w command. */ for (retry = 2; retry >= 0; retry--) { err = get_card_status(card, &status, 0); if (!err) break; prev_cmd_status_valid = false; pr_err("%s: error %d sending status command, %sing\n", req->rq_disk->disk_name, err, retry ? "retry" : "abort"); } /* We couldn't get a response from the card. Give up. */ if (err) return ERR_ABORT; /* Flag ECC errors */ if ((status & R1_CARD_ECC_FAILED) || (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) *ecc_err = 1; /* * Check the current card state. If it is in some data transfer * mode, tell it to stop (and hopefully transition back to TRAN.) */ if (R1_CURRENT_STATE(status) == R1_STATE_DATA || R1_CURRENT_STATE(status) == R1_STATE_RCV) { err = send_stop(card, &stop_status); if (err) pr_err("%s: error %d sending stop command\n", req->rq_disk->disk_name, err); /* * If the stop cmd also timed out, the card is probably * not present, so abort. Other errors are bad news too. */ if (err) return ERR_ABORT; if (stop_status & R1_CARD_ECC_FAILED) *ecc_err = 1; } /* Check for set block count errors */ if (brq->sbc.error) return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, prev_cmd_status_valid, status); /* Check for r/w command errors */ if (brq->cmd.error) return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, prev_cmd_status_valid, status); /* Data errors */ if (!brq->stop.error) return ERR_CONTINUE; /* Now for stop errors. These aren't fatal to the transfer. */ pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", req->rq_disk->disk_name, brq->stop.error, brq->cmd.resp[0], status); /* * Subsitute in our own stop status as this will give the error * state which happened during the execution of the r/w command. */ if (stop_status) { brq->stop.resp[0] = stop_status; brq->stop.error = 0; } return ERR_CONTINUE; } static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, int type) { int err; if (md->reset_done & type) return -EEXIST; md->reset_done |= type; err = mmc_hw_reset(host); /* Ensure we switch back to the correct partition */ if (err != -EOPNOTSUPP) { struct mmc_blk_data *main_md = mmc_get_drvdata(host->card); int part_err; main_md->part_curr = main_md->part_type; part_err = mmc_blk_part_switch(host->card, md); if (part_err) { /* * We have failed to get back into the correct * partition, so we need to abort the whole request. */ return -ENODEV; } } return err; } static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) { md->reset_done &= ~type; } static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_DISCARD; if (!mmc_can_erase(card)) { err = -EOPNOTSUPP; goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_discard(card)) arg = MMC_DISCARD_ARG; else if (mmc_can_trim(card)) arg = MMC_TRIM_ARG; else arg = MMC_ERASE_ARG; retry: if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE, 0); if (err) goto out; } err = mmc_erase(card, from, nr, arg); out: if (err == -EIO && !mmc_blk_reset(md, card->host, type)) goto retry; if (!err) mmc_blk_reset_success(md, type); spin_lock_irq(&md->lock); __blk_end_request(req, err, blk_rq_bytes(req)); spin_unlock_irq(&md->lock); return err ? 0 : 1; } static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_SECDISCARD; if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) { err = -EOPNOTSUPP; goto out; } /* The sanitize operation is supported at v4.5 only */ if (mmc_can_sanitize(card)) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START, 1, 0); goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) arg = MMC_SECURE_TRIM1_ARG; else arg = MMC_SECURE_ERASE_ARG; retry: if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE, 0); if (err) goto out; } err = mmc_erase(card, from, nr, arg); if (!err && arg == MMC_SECURE_TRIM1_ARG) { if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2, 0); if (err) goto out; } err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); } out: if (err == -EIO && !mmc_blk_reset(md, card->host, type)) goto retry; if (!err) mmc_blk_reset_success(md, type); spin_lock_irq(&md->lock); __blk_end_request(req, err, blk_rq_bytes(req)); spin_unlock_irq(&md->lock); return err ? 0 : 1; } static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; int ret = 0; ret = mmc_flush_cache(card); if (ret) ret = -EIO; spin_lock_irq(&md->lock); __blk_end_request_all(req, ret); spin_unlock_irq(&md->lock); return ret ? 0 : 1; } /* * Reformat current write as a reliable write, supporting * both legacy and the enhanced reliable write MMC cards. * In each transfer we'll handle only as much as a single * reliable write can handle, thus finish the request in * partial completions. */ static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, struct mmc_card *card, struct request *req) { if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { /* Legacy mode imposes restrictions on transfers. */ if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors)) brq->data.blocks = 1; if (brq->data.blocks > card->ext_csd.rel_sectors) brq->data.blocks = card->ext_csd.rel_sectors; else if (brq->data.blocks < card->ext_csd.rel_sectors) brq->data.blocks = 1; } } #define CMD_ERRORS \ (R1_OUT_OF_RANGE | /* Command argument out of range */ \ R1_ADDRESS_ERROR | /* Misaligned address */ \ R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ R1_WP_VIOLATION | /* Tried to write to protected block */ \ R1_CC_ERROR | /* Card controller error */ \ R1_ERROR) /* General/unknown error */ static int mmc_blk_err_check(struct mmc_card *card, struct mmc_async_req *areq) { struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, mmc_active); struct mmc_blk_request *brq = &mq_mrq->brq; struct request *req = mq_mrq->req; int ecc_err = 0; /* * sbc.error indicates a problem with the set block count * command. No data will have been transferred. * * cmd.error indicates a problem with the r/w command. No * data will have been transferred. * * stop.error indicates a problem with the stop command. Data * may have been transferred, or may still be transferring. */ if (brq->sbc.error || brq->cmd.error || brq->stop.error || brq->data.error) { switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) { case ERR_RETRY: return MMC_BLK_RETRY; case ERR_ABORT: return MMC_BLK_ABORT; case ERR_CONTINUE: break; } } /* * Check for errors relating to the execution of the * initial command - such as address errors. No data * has been transferred. */ if (brq->cmd.resp[0] & CMD_ERRORS) { pr_err("%s: r/w command failed, status = %#x\n", req->rq_disk->disk_name, brq->cmd.resp[0]); return MMC_BLK_ABORT; } /* * Everything else is either success, or a data error of some * kind. If it was a write, we may have transitioned to * program mode, which we have to wait for it to complete. */ if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { u32 status; do { int err = get_card_status(card, &status, 5); if (err) { pr_err("%s: error %d requesting status\n", req->rq_disk->disk_name, err); return MMC_BLK_CMD_ERR; } /* * Some cards mishandle the status bits, * so make sure to check both the busy * indication and the card state. */ } while (!(status & R1_READY_FOR_DATA) || (R1_CURRENT_STATE(status) == R1_STATE_PRG)); } if (brq->data.error) { pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", req->rq_disk->disk_name, brq->data.error, (unsigned)blk_rq_pos(req), (unsigned)blk_rq_sectors(req), brq->cmd.resp[0], brq->stop.resp[0]); if (rq_data_dir(req) == READ) { if (ecc_err) return MMC_BLK_ECC_ERR; return MMC_BLK_DATA_ERR; } else { return MMC_BLK_CMD_ERR; } } if (!brq->data.bytes_xfered) return MMC_BLK_RETRY; if (blk_rq_bytes(req) != brq->data.bytes_xfered) return MMC_BLK_PARTIAL; return MMC_BLK_SUCCESS; } static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int disable_multi, struct mmc_queue *mq) { u32 readcmd, writecmd; struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mqrq->req; struct mmc_blk_data *md = mq->data; /* * Reliable writes are used to implement Forced Unit Access and * REQ_META accesses, and are supported only on MMCs. * * XXX: this really needs a good explanation of why REQ_META * is treated special. */ bool do_rel_wr = ((req->cmd_flags & REQ_FUA) || (req->cmd_flags & REQ_META)) && (rq_data_dir(req) == WRITE) && (md->flags & MMC_BLK_REL_WR); memset(brq, 0, sizeof(struct mmc_blk_request)); brq->mrq.cmd = &brq->cmd; brq->mrq.data = &brq->data; brq->cmd.arg = blk_rq_pos(req); if (!mmc_card_blockaddr(card)) brq->cmd.arg <<= 9; brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; brq->data.blksz = 512; brq->stop.opcode = MMC_STOP_TRANSMISSION; brq->stop.arg = 0; brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; brq->data.blocks = blk_rq_sectors(req); /* * The block layer doesn't support all sector count * restrictions, so we need to be prepared for too big * requests. */ if (brq->data.blocks > card->host->max_blk_count) brq->data.blocks = card->host->max_blk_count; /* * After a read error, we redo the request one sector at a time * in order to accurately determine which sectors can be read * successfully. */ if (disable_multi && brq->data.blocks > 1) brq->data.blocks = 1; if (brq->data.blocks > 1 || do_rel_wr) { /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (!mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) brq->mrq.stop = &brq->stop; readcmd = MMC_READ_MULTIPLE_BLOCK; writecmd = MMC_WRITE_MULTIPLE_BLOCK; } else { brq->mrq.stop = NULL; readcmd = MMC_READ_SINGLE_BLOCK; writecmd = MMC_WRITE_BLOCK; } if (rq_data_dir(req) == READ) { brq->cmd.opcode = readcmd; brq->data.flags |= MMC_DATA_READ; } else { brq->cmd.opcode = writecmd; brq->data.flags |= MMC_DATA_WRITE; } if (do_rel_wr) mmc_apply_rel_rw(brq, card, req); /* * Pre-defined multi-block transfers are preferable to * open ended-ones (and necessary for reliable writes). * However, it is not sufficient to just send CMD23, * and avoid the final CMD12, as on an error condition * CMD12 (stop) needs to be sent anyway. This, coupled * with Auto-CMD23 enhancements provided by some * hosts, means that the complexity of dealing * with this is best left to the host. If CMD23 is * supported by card and host, we'll fill sbc in and let * the host deal with handling it correctly. This means * that for hosts that don't expose MMC_CAP_CMD23, no * change of behavior will be observed. * * N.B: Some MMC cards experience perf degradation. * We'll avoid using CMD23-bounded multiblock writes for * these, while retaining features like reliable writes. */ if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) { brq->sbc.opcode = MMC_SET_BLOCK_COUNT; brq->sbc.arg = brq->data.blocks | (do_rel_wr ? (1 << 31) : 0); brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; brq->mrq.sbc = &brq->sbc; } mmc_set_data_timeout(&brq->data, card); brq->data.sg = mqrq->sg; brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); /* * Adjust the sg list so it is the same size as the * request. */ if (brq->data.blocks != blk_rq_sectors(req)) { int i, data_size = brq->data.blocks << 9; struct scatterlist *sg; for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { data_size -= sg->length; if (data_size <= 0) { sg->length += data_size; i++; break; } } brq->data.sg_len = i; } mqrq->mmc_active.mrq = &brq->mrq; mqrq->mmc_active.err_check = mmc_blk_err_check; mmc_queue_bounce_pre(mqrq); } static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, struct mmc_blk_request *brq, struct request *req, int ret) { /* * If this is an SD card and we're writing, we can first * mark the known good sectors as ok. * * If the card is not SD, we can still ok written sectors * as reported by the controller (which might be less than * the real number of written sectors, but never more). */ if (mmc_card_sd(card)) { u32 blocks; blocks = mmc_sd_num_wr_blocks(card); if (blocks != (u32)-1) { spin_lock_irq(&md->lock); ret = __blk_end_request(req, 0, blocks << 9); spin_unlock_irq(&md->lock); } } else { spin_lock_irq(&md->lock); ret = __blk_end_request(req, 0, brq->data.bytes_xfered); spin_unlock_irq(&md->lock); } return ret; } static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; struct mmc_blk_request *brq = &mq->mqrq_cur->brq; int ret = 1, disable_multi = 0, retry = 0, type; enum mmc_blk_status status; struct mmc_queue_req *mq_rq; struct request *req; struct mmc_async_req *areq; if (!rqc && !mq->mqrq_prev->req) return 0; do { if (rqc) { mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); areq = &mq->mqrq_cur->mmc_active; } else areq = NULL; areq = mmc_start_req(card->host, areq, (int *) &status); if (!areq) return 0; mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); brq = &mq_rq->brq; req = mq_rq->req; type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; mmc_queue_bounce_post(mq_rq); switch (status) { case MMC_BLK_SUCCESS: case MMC_BLK_PARTIAL: /* * A block was successfully transferred. */ mmc_blk_reset_success(md, type); spin_lock_irq(&md->lock); ret = __blk_end_request(req, 0, brq->data.bytes_xfered); spin_unlock_irq(&md->lock); /* * If the blk_end_request function returns non-zero even * though all data has been transferred and no errors * were returned by the host controller, it's a bug. */ if (status == MMC_BLK_SUCCESS && ret) { pr_err("%s BUG rq_tot %d d_xfer %d\n", __func__, blk_rq_bytes(req), brq->data.bytes_xfered); rqc = NULL; goto cmd_abort; } break; case MMC_BLK_CMD_ERR: ret = mmc_blk_cmd_err(md, card, brq, req, ret); if (!mmc_blk_reset(md, card->host, type)) break; goto cmd_abort; case MMC_BLK_RETRY: if (retry++ < 5) break; /* Fall through */ case MMC_BLK_ABORT: if (!mmc_blk_reset(md, card->host, type)) break; goto cmd_abort; case MMC_BLK_DATA_ERR: { int err; err = mmc_blk_reset(md, card->host, type); if (!err) break; if (err == -ENODEV) goto cmd_abort; /* Fall through */ } case MMC_BLK_ECC_ERR: if (brq->data.blocks > 1) { /* Redo read one sector at a time */ pr_warning("%s: retrying using single block read\n", req->rq_disk->disk_name); disable_multi = 1; break; } /* * After an error, we redo I/O one sector at a * time, so we only reach here after trying to * read a single sector. */ spin_lock_irq(&md->lock); ret = __blk_end_request(req, -EIO, brq->data.blksz); spin_unlock_irq(&md->lock); if (!ret) goto start_new_req; break; } if (ret) { /* * In case of a incomplete request * prepare it again and resend. */ mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq); mmc_start_req(card->host, &mq_rq->mmc_active, NULL); } } while (ret); return 1; cmd_abort: spin_lock_irq(&md->lock); while (ret) ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req)); spin_unlock_irq(&md->lock); start_new_req: if (rqc) { mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL); } return 0; } static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) { int ret; struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; if (req && !mq->mqrq_prev->req) /* claim host only for the first request */ mmc_claim_host(card->host); ret = mmc_blk_part_switch(card, md); if (ret) { if (req) { spin_lock_irq(&md->lock); __blk_end_request_all(req, -EIO); spin_unlock_irq(&md->lock); } ret = 0; goto out; } if (req && req->cmd_flags & REQ_DISCARD) { /* complete ongoing async transfer before issuing discard */ if (card->host->areq) mmc_blk_issue_rw_rq(mq, NULL); if (req->cmd_flags & REQ_SECURE) ret = mmc_blk_issue_secdiscard_rq(mq, req); else ret = mmc_blk_issue_discard_rq(mq, req); } else if (req && req->cmd_flags & REQ_FLUSH) { /* complete ongoing async transfer before issuing flush */ if (card->host->areq) mmc_blk_issue_rw_rq(mq, NULL); ret = mmc_blk_issue_flush(mq, req); } else { ret = mmc_blk_issue_rw_rq(mq, req); } out: if (!req) /* release host only when there are no more requests */ mmc_release_host(card->host); return ret; } static inline int mmc_blk_readonly(struct mmc_card *card) { return mmc_card_readonly(card) || !(card->csd.cmdclass & CCC_BLOCK_WRITE); } static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, struct device *parent, sector_t size, bool default_ro, const char *subname) { struct mmc_blk_data *md; int devidx, ret; devidx = find_first_zero_bit(dev_use, max_devices); if (devidx >= max_devices) return ERR_PTR(-ENOSPC); __set_bit(devidx, dev_use); md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); if (!md) { ret = -ENOMEM; goto out; } /* * !subname implies we are creating main mmc_blk_data that will be * associated with mmc_card with mmc_set_drvdata. Due to device * partitions, devidx will not coincide with a per-physical card * index anymore so we keep track of a name index. */ if (!subname) { md->name_idx = find_first_zero_bit(name_use, max_devices); __set_bit(md->name_idx, name_use); } else md->name_idx = ((struct mmc_blk_data *) dev_to_disk(parent)->private_data)->name_idx; /* * Set the read-only status based on the supported commands * and the write protect switch. */ md->read_only = mmc_blk_readonly(card); md->disk = alloc_disk(perdev_minors); if (md->disk == NULL) { ret = -ENOMEM; goto err_kfree; } spin_lock_init(&md->lock); INIT_LIST_HEAD(&md->part); md->usage = 1; ret = mmc_init_queue(&md->queue, card, &md->lock, subname); if (ret) goto err_putdisk; md->queue.issue_fn = mmc_blk_issue_rq; md->queue.data = md; md->disk->major = MMC_BLOCK_MAJOR; md->disk->first_minor = devidx * perdev_minors; md->disk->fops = &mmc_bdops; md->disk->private_data = md; md->disk->queue = md->queue.queue; md->disk->driverfs_dev = parent; set_disk_ro(md->disk, md->read_only || default_ro); /* * As discussed on lkml, GENHD_FL_REMOVABLE should: * * - be set for removable media with permanent block devices * - be unset for removable block devices with permanent media * * Since MMC block devices clearly fall under the second * case, we do not set GENHD_FL_REMOVABLE. Userspace * should use the block device creation/destruction hotplug * messages to tell when the card is present. */ snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), "mmcblk%d%s", md->name_idx, subname ? subname : ""); blk_queue_logical_block_size(md->queue.queue, 512); set_capacity(md->disk, size); if (mmc_host_cmd23(card->host)) { if (mmc_card_mmc(card) || (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT)) md->flags |= MMC_BLK_CMD23; } if (mmc_card_mmc(card) && md->flags & MMC_BLK_CMD23 && ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || card->ext_csd.rel_sectors)) { md->flags |= MMC_BLK_REL_WR; blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA); } return md; err_putdisk: put_disk(md->disk); err_kfree: kfree(md); out: return ERR_PTR(ret); } static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) { sector_t size; struct mmc_blk_data *md; if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { /* * The EXT_CSD sector count is in number or 512 byte * sectors. */ size = card->ext_csd.sectors; } else { /* * The CSD capacity field is in units of read_blkbits. * set_capacity takes units of 512 bytes. */ size = card->csd.capacity << (card->csd.read_blkbits - 9); } md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL); return md; } static int mmc_blk_alloc_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_type, sector_t size, bool default_ro, const char *subname) { char cap_str[10]; struct mmc_blk_data *part_md; part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, subname); if (IS_ERR(part_md)) return PTR_ERR(part_md); part_md->part_type = part_type; list_add(&part_md->part, &md->part); string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s partition %u %s\n", part_md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), part_md->part_type, cap_str); return 0; } /* MMC Physical partitions consist of two boot partitions and * up to four general purpose partitions. * For each partition enabled in EXT_CSD a block device will be allocatedi * to provide access to the partition. */ static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) { int idx, ret = 0; if (!mmc_card_mmc(card)) return 0; for (idx = 0; idx < card->nr_parts; idx++) { if (card->part[idx].size) { ret = mmc_blk_alloc_part(card, md, card->part[idx].part_cfg, card->part[idx].size >> 9, card->part[idx].force_ro, card->part[idx].name); if (ret) return ret; } } return ret; } static int mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card) { int err; mmc_claim_host(card->host); err = mmc_set_blocklen(card, 512); mmc_release_host(card->host); if (err) { pr_err("%s: unable to set block size to 512: %d\n", md->disk->disk_name, err); return -EINVAL; } return 0; } static void mmc_blk_remove_req(struct mmc_blk_data *md) { if (md) { if (md->disk->flags & GENHD_FL_UP) { device_remove_file(disk_to_dev(md->disk), &md->force_ro); /* Stop new requests from getting into the queue */ del_gendisk(md->disk); } /* Then flush out any already in there */ mmc_cleanup_queue(&md->queue); mmc_blk_put(md); } } static void mmc_blk_remove_parts(struct mmc_card *card, struct mmc_blk_data *md) { struct list_head *pos, *q; struct mmc_blk_data *part_md; __clear_bit(md->name_idx, name_use); list_for_each_safe(pos, q, &md->part) { part_md = list_entry(pos, struct mmc_blk_data, part); list_del(pos); mmc_blk_remove_req(part_md); } } static int mmc_add_disk(struct mmc_blk_data *md) { int ret; add_disk(md->disk); md->force_ro.show = force_ro_show; md->force_ro.store = force_ro_store; sysfs_attr_init(&md->force_ro.attr); md->force_ro.attr.name = "force_ro"; md->force_ro.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); if (ret) del_gendisk(md->disk); return ret; } static const struct mmc_fixup blk_fixups[] = { MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), /* * Some MMC cards experience performance degradation with CMD23 * instead of CMD12-bounded multiblock transfers. For now we'll * black list what's bad... * - Certain Toshiba cards. * * N.B. This doesn't affect SD cards. */ MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_BLK_NO_CMD23), MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_BLK_NO_CMD23), MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_BLK_NO_CMD23), END_FIXUP }; static int mmc_blk_probe(struct mmc_card *card) { struct mmc_blk_data *md, *part_md; int err; char cap_str[10]; /* * Check that the card supports the command class(es) we need. */ if (!(card->csd.cmdclass & CCC_BLOCK_READ)) return -ENODEV; md = mmc_blk_alloc(card); if (IS_ERR(md)) return PTR_ERR(md); err = mmc_blk_set_blksize(md, card); if (err) goto out; string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s %s %s\n", md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), cap_str, md->read_only ? "(ro)" : ""); if (mmc_blk_alloc_parts(card, md)) goto out; mmc_set_drvdata(card, md); mmc_fixup_device(card, blk_fixups); if (mmc_add_disk(md)) goto out; list_for_each_entry(part_md, &md->part, part) { if (mmc_add_disk(part_md)) goto out; } return 0; out: mmc_blk_remove_parts(card, md); mmc_blk_remove_req(md); return err; } static void mmc_blk_remove(struct mmc_card *card) { struct mmc_blk_data *md = mmc_get_drvdata(card); mmc_blk_remove_parts(card, md); mmc_claim_host(card->host); mmc_blk_part_switch(card, md); mmc_release_host(card->host); mmc_blk_remove_req(md); mmc_set_drvdata(card, NULL); } #ifdef CONFIG_PM static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = mmc_get_drvdata(card); if (md) { mmc_queue_suspend(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_suspend(&part_md->queue); } } return 0; } static int mmc_blk_resume(struct mmc_card *card) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = mmc_get_drvdata(card); if (md) { mmc_blk_set_blksize(md, card); /* * Resume involves the card going into idle state, * so current partition is always the main one. */ md->part_curr = md->part_type; mmc_queue_resume(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_resume(&part_md->queue); } } return 0; } #else #define mmc_blk_suspend NULL #define mmc_blk_resume NULL #endif static struct mmc_driver mmc_driver = { .drv = { .name = "mmcblk", }, .probe = mmc_blk_probe, .remove = mmc_blk_remove, .suspend = mmc_blk_suspend, .resume = mmc_blk_resume, }; static int __init mmc_blk_init(void) { int res; if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) pr_info("mmcblk: using %d minors per device\n", perdev_minors); max_devices = 256 / perdev_minors; res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); if (res) goto out; res = mmc_register_driver(&mmc_driver); if (res) goto out2; return 0; out2: unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); out: return res; } static void __exit mmc_blk_exit(void) { mmc_unregister_driver(&mmc_driver); unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); } module_init(mmc_blk_init); module_exit(mmc_blk_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");