/* * Copyright 2014 IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* for struct pci_controller */ #include #include #include "cxl.h" #include #define CXL_PCI_VSEC_ID 0x1280 #define CXL_VSEC_MIN_SIZE 0x80 #define CXL_READ_VSEC_LENGTH(dev, vsec, dest) \ { \ pci_read_config_word(dev, vsec + 0x6, dest); \ *dest >>= 4; \ } #define CXL_READ_VSEC_NAFUS(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0x8, dest) #define CXL_READ_VSEC_STATUS(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0x9, dest) #define CXL_STATUS_SECOND_PORT 0x80 #define CXL_STATUS_MSI_X_FULL 0x40 #define CXL_STATUS_MSI_X_SINGLE 0x20 #define CXL_STATUS_FLASH_RW 0x08 #define CXL_STATUS_FLASH_RO 0x04 #define CXL_STATUS_LOADABLE_AFU 0x02 #define CXL_STATUS_LOADABLE_PSL 0x01 /* If we see these features we won't try to use the card */ #define CXL_UNSUPPORTED_FEATURES \ (CXL_STATUS_MSI_X_FULL | CXL_STATUS_MSI_X_SINGLE) #define CXL_READ_VSEC_MODE_CONTROL(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0xa, dest) #define CXL_WRITE_VSEC_MODE_CONTROL(dev, vsec, val) \ pci_write_config_byte(dev, vsec + 0xa, val) #define CXL_VSEC_PROTOCOL_MASK 0xe0 #define CXL_VSEC_PROTOCOL_1024TB 0x80 #define CXL_VSEC_PROTOCOL_512TB 0x40 #define CXL_VSEC_PROTOCOL_256TB 0x20 /* Power 8 uses this */ #define CXL_VSEC_PROTOCOL_ENABLE 0x01 #define CXL_READ_VSEC_PSL_REVISION(dev, vsec, dest) \ pci_read_config_word(dev, vsec + 0xc, dest) #define CXL_READ_VSEC_CAIA_MINOR(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0xe, dest) #define CXL_READ_VSEC_CAIA_MAJOR(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0xf, dest) #define CXL_READ_VSEC_BASE_IMAGE(dev, vsec, dest) \ pci_read_config_word(dev, vsec + 0x10, dest) #define CXL_READ_VSEC_IMAGE_STATE(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0x13, dest) #define CXL_WRITE_VSEC_IMAGE_STATE(dev, vsec, val) \ pci_write_config_byte(dev, vsec + 0x13, val) #define CXL_VSEC_USER_IMAGE_LOADED 0x80 /* RO */ #define CXL_VSEC_PERST_LOADS_IMAGE 0x20 /* RW */ #define CXL_VSEC_PERST_SELECT_USER 0x10 /* RW */ #define CXL_READ_VSEC_AFU_DESC_OFF(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x20, dest) #define CXL_READ_VSEC_AFU_DESC_SIZE(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x24, dest) #define CXL_READ_VSEC_PS_OFF(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x28, dest) #define CXL_READ_VSEC_PS_SIZE(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x2c, dest) /* This works a little different than the p1/p2 register accesses to make it * easier to pull out individual fields */ #define AFUD_READ(afu, off) in_be64(afu->afu_desc_mmio + off) #define AFUD_READ_LE(afu, off) in_le64(afu->afu_desc_mmio + off) #define EXTRACT_PPC_BIT(val, bit) (!!(val & PPC_BIT(bit))) #define EXTRACT_PPC_BITS(val, bs, be) ((val & PPC_BITMASK(bs, be)) >> PPC_BITLSHIFT(be)) #define AFUD_READ_INFO(afu) AFUD_READ(afu, 0x0) #define AFUD_NUM_INTS_PER_PROC(val) EXTRACT_PPC_BITS(val, 0, 15) #define AFUD_NUM_PROCS(val) EXTRACT_PPC_BITS(val, 16, 31) #define AFUD_NUM_CRS(val) EXTRACT_PPC_BITS(val, 32, 47) #define AFUD_MULTIMODE(val) EXTRACT_PPC_BIT(val, 48) #define AFUD_PUSH_BLOCK_TRANSFER(val) EXTRACT_PPC_BIT(val, 55) #define AFUD_DEDICATED_PROCESS(val) EXTRACT_PPC_BIT(val, 59) #define AFUD_AFU_DIRECTED(val) EXTRACT_PPC_BIT(val, 61) #define AFUD_TIME_SLICED(val) EXTRACT_PPC_BIT(val, 63) #define AFUD_READ_CR(afu) AFUD_READ(afu, 0x20) #define AFUD_CR_LEN(val) EXTRACT_PPC_BITS(val, 8, 63) #define AFUD_READ_CR_OFF(afu) AFUD_READ(afu, 0x28) #define AFUD_READ_PPPSA(afu) AFUD_READ(afu, 0x30) #define AFUD_PPPSA_PP(val) EXTRACT_PPC_BIT(val, 6) #define AFUD_PPPSA_PSA(val) EXTRACT_PPC_BIT(val, 7) #define AFUD_PPPSA_LEN(val) EXTRACT_PPC_BITS(val, 8, 63) #define AFUD_READ_PPPSA_OFF(afu) AFUD_READ(afu, 0x38) #define AFUD_READ_EB(afu) AFUD_READ(afu, 0x40) #define AFUD_EB_LEN(val) EXTRACT_PPC_BITS(val, 8, 63) #define AFUD_READ_EB_OFF(afu) AFUD_READ(afu, 0x48) u16 cxl_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off) { u64 aligned_off = off & ~0x3L; u32 val; val = cxl_afu_cr_read32(afu, cr, aligned_off); return (val >> ((off & 0x2) * 8)) & 0xffff; } u8 cxl_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off) { u64 aligned_off = off & ~0x3L; u32 val; val = cxl_afu_cr_read32(afu, cr, aligned_off); return (val >> ((off & 0x3) * 8)) & 0xff; } static const struct pci_device_id cxl_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0477), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x044b), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x04cf), }, { PCI_DEVICE_CLASS(0x120000, ~0), }, { } }; MODULE_DEVICE_TABLE(pci, cxl_pci_tbl); /* * Mostly using these wrappers to avoid confusion: * priv 1 is BAR2, while priv 2 is BAR0 */ static inline resource_size_t p1_base(struct pci_dev *dev) { return pci_resource_start(dev, 2); } static inline resource_size_t p1_size(struct pci_dev *dev) { return pci_resource_len(dev, 2); } static inline resource_size_t p2_base(struct pci_dev *dev) { return pci_resource_start(dev, 0); } static inline resource_size_t p2_size(struct pci_dev *dev) { return pci_resource_len(dev, 0); } static int find_cxl_vsec(struct pci_dev *dev) { int vsec = 0; u16 val; while ((vsec = pci_find_next_ext_capability(dev, vsec, PCI_EXT_CAP_ID_VNDR))) { pci_read_config_word(dev, vsec + 0x4, &val); if (val == CXL_PCI_VSEC_ID) return vsec; } return 0; } static void dump_cxl_config_space(struct pci_dev *dev) { int vsec; u32 val; dev_info(&dev->dev, "dump_cxl_config_space\n"); pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &val); dev_info(&dev->dev, "BAR0: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &val); dev_info(&dev->dev, "BAR1: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_2, &val); dev_info(&dev->dev, "BAR2: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_3, &val); dev_info(&dev->dev, "BAR3: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_4, &val); dev_info(&dev->dev, "BAR4: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_5, &val); dev_info(&dev->dev, "BAR5: %#.8x\n", val); dev_info(&dev->dev, "p1 regs: %#llx, len: %#llx\n", p1_base(dev), p1_size(dev)); dev_info(&dev->dev, "p2 regs: %#llx, len: %#llx\n", p2_base(dev), p2_size(dev)); dev_info(&dev->dev, "BAR 4/5: %#llx, len: %#llx\n", pci_resource_start(dev, 4), pci_resource_len(dev, 4)); if (!(vsec = find_cxl_vsec(dev))) return; #define show_reg(name, what) \ dev_info(&dev->dev, "cxl vsec: %30s: %#x\n", name, what) pci_read_config_dword(dev, vsec + 0x0, &val); show_reg("Cap ID", (val >> 0) & 0xffff); show_reg("Cap Ver", (val >> 16) & 0xf); show_reg("Next Cap Ptr", (val >> 20) & 0xfff); pci_read_config_dword(dev, vsec + 0x4, &val); show_reg("VSEC ID", (val >> 0) & 0xffff); show_reg("VSEC Rev", (val >> 16) & 0xf); show_reg("VSEC Length", (val >> 20) & 0xfff); pci_read_config_dword(dev, vsec + 0x8, &val); show_reg("Num AFUs", (val >> 0) & 0xff); show_reg("Status", (val >> 8) & 0xff); show_reg("Mode Control", (val >> 16) & 0xff); show_reg("Reserved", (val >> 24) & 0xff); pci_read_config_dword(dev, vsec + 0xc, &val); show_reg("PSL Rev", (val >> 0) & 0xffff); show_reg("CAIA Ver", (val >> 16) & 0xffff); pci_read_config_dword(dev, vsec + 0x10, &val); show_reg("Base Image Rev", (val >> 0) & 0xffff); show_reg("Reserved", (val >> 16) & 0x0fff); show_reg("Image Control", (val >> 28) & 0x3); show_reg("Reserved", (val >> 30) & 0x1); show_reg("Image Loaded", (val >> 31) & 0x1); pci_read_config_dword(dev, vsec + 0x14, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x18, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x1c, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x20, &val); show_reg("AFU Descriptor Offset", val); pci_read_config_dword(dev, vsec + 0x24, &val); show_reg("AFU Descriptor Size", val); pci_read_config_dword(dev, vsec + 0x28, &val); show_reg("Problem State Offset", val); pci_read_config_dword(dev, vsec + 0x2c, &val); show_reg("Problem State Size", val); pci_read_config_dword(dev, vsec + 0x30, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x34, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x38, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x3c, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x40, &val); show_reg("PSL Programming Port", val); pci_read_config_dword(dev, vsec + 0x44, &val); show_reg("PSL Programming Control", val); pci_read_config_dword(dev, vsec + 0x48, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x4c, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x50, &val); show_reg("Flash Address Register", val); pci_read_config_dword(dev, vsec + 0x54, &val); show_reg("Flash Size Register", val); pci_read_config_dword(dev, vsec + 0x58, &val); show_reg("Flash Status/Control Register", val); pci_read_config_dword(dev, vsec + 0x58, &val); show_reg("Flash Data Port", val); #undef show_reg } static void dump_afu_descriptor(struct cxl_afu *afu) { u64 val, afu_cr_num, afu_cr_off, afu_cr_len; int i; #define show_reg(name, what) \ dev_info(&afu->dev, "afu desc: %30s: %#llx\n", name, what) val = AFUD_READ_INFO(afu); show_reg("num_ints_per_process", AFUD_NUM_INTS_PER_PROC(val)); show_reg("num_of_processes", AFUD_NUM_PROCS(val)); show_reg("num_of_afu_CRs", AFUD_NUM_CRS(val)); show_reg("req_prog_mode", val & 0xffffULL); afu_cr_num = AFUD_NUM_CRS(val); val = AFUD_READ(afu, 0x8); show_reg("Reserved", val); val = AFUD_READ(afu, 0x10); show_reg("Reserved", val); val = AFUD_READ(afu, 0x18); show_reg("Reserved", val); val = AFUD_READ_CR(afu); show_reg("Reserved", (val >> (63-7)) & 0xff); show_reg("AFU_CR_len", AFUD_CR_LEN(val)); afu_cr_len = AFUD_CR_LEN(val) * 256; val = AFUD_READ_CR_OFF(afu); afu_cr_off = val; show_reg("AFU_CR_offset", val); val = AFUD_READ_PPPSA(afu); show_reg("PerProcessPSA_control", (val >> (63-7)) & 0xff); show_reg("PerProcessPSA Length", AFUD_PPPSA_LEN(val)); val = AFUD_READ_PPPSA_OFF(afu); show_reg("PerProcessPSA_offset", val); val = AFUD_READ_EB(afu); show_reg("Reserved", (val >> (63-7)) & 0xff); show_reg("AFU_EB_len", AFUD_EB_LEN(val)); val = AFUD_READ_EB_OFF(afu); show_reg("AFU_EB_offset", val); for (i = 0; i < afu_cr_num; i++) { val = AFUD_READ_LE(afu, afu_cr_off + i * afu_cr_len); show_reg("CR Vendor", val & 0xffff); show_reg("CR Device", (val >> 16) & 0xffff); } #undef show_reg } static int init_implementation_adapter_regs(struct cxl *adapter, struct pci_dev *dev) { struct device_node *np; const __be32 *prop; u64 psl_dsnctl; u64 chipid; if (!(np = pnv_pci_get_phb_node(dev))) return -ENODEV; while (np && !(prop = of_get_property(np, "ibm,chip-id", NULL))) np = of_get_next_parent(np); if (!np) return -ENODEV; chipid = be32_to_cpup(prop); of_node_put(np); /* Tell PSL where to route data to */ psl_dsnctl = 0x02E8900002000000ULL | (chipid << (63-5)); cxl_p1_write(adapter, CXL_PSL_DSNDCTL, psl_dsnctl); cxl_p1_write(adapter, CXL_PSL_RESLCKTO, 0x20000000200ULL); /* snoop write mask */ cxl_p1_write(adapter, CXL_PSL_SNWRALLOC, 0x00000000FFFFFFFFULL); /* set fir_accum */ cxl_p1_write(adapter, CXL_PSL_FIR_CNTL, 0x0800000000000000ULL); /* for debugging with trace arrays */ cxl_p1_write(adapter, CXL_PSL_TRACE, 0x0000FF7C00000000ULL); return 0; } #define TBSYNC_CNT(n) (((u64)n & 0x7) << (63-6)) #define _2048_250MHZ_CYCLES 1 static int cxl_setup_psl_timebase(struct cxl *adapter, struct pci_dev *dev) { u64 psl_tb; int delta; unsigned int retry = 0; struct device_node *np; if (!(np = pnv_pci_get_phb_node(dev))) return -ENODEV; /* Do not fail when CAPP timebase sync is not supported by OPAL */ of_node_get(np); if (! of_get_property(np, "ibm,capp-timebase-sync", NULL)) { of_node_put(np); pr_err("PSL: Timebase sync: OPAL support missing\n"); return 0; } of_node_put(np); /* * Setup PSL Timebase Control and Status register * with the recommended Timebase Sync Count value */ cxl_p1_write(adapter, CXL_PSL_TB_CTLSTAT, TBSYNC_CNT(2 * _2048_250MHZ_CYCLES)); /* Enable PSL Timebase */ cxl_p1_write(adapter, CXL_PSL_Control, 0x0000000000000000); cxl_p1_write(adapter, CXL_PSL_Control, CXL_PSL_Control_tb); /* Wait until CORE TB and PSL TB difference <= 16usecs */ do { msleep(1); if (retry++ > 5) { pr_err("PSL: Timebase sync: giving up!\n"); return -EIO; } psl_tb = cxl_p1_read(adapter, CXL_PSL_Timebase); delta = mftb() - psl_tb; if (delta < 0) delta = -delta; } while (cputime_to_usecs(delta) > 16); return 0; } static int init_implementation_afu_regs(struct cxl_afu *afu) { /* read/write masks for this slice */ cxl_p1n_write(afu, CXL_PSL_APCALLOC_A, 0xFFFFFFFEFEFEFEFEULL); /* APC read/write masks for this slice */ cxl_p1n_write(afu, CXL_PSL_COALLOC_A, 0xFF000000FEFEFEFEULL); /* for debugging with trace arrays */ cxl_p1n_write(afu, CXL_PSL_SLICE_TRACE, 0x0000FFFF00000000ULL); cxl_p1n_write(afu, CXL_PSL_RXCTL_A, CXL_PSL_RXCTL_AFUHP_4S); return 0; } int cxl_setup_irq(struct cxl *adapter, unsigned int hwirq, unsigned int virq) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_ioda_msi_setup(dev, hwirq, virq); } int cxl_update_image_control(struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); int rc; int vsec; u8 image_state; if (!(vsec = find_cxl_vsec(dev))) { dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n"); return -ENODEV; } if ((rc = CXL_READ_VSEC_IMAGE_STATE(dev, vsec, &image_state))) { dev_err(&dev->dev, "failed to read image state: %i\n", rc); return rc; } if (adapter->perst_loads_image) image_state |= CXL_VSEC_PERST_LOADS_IMAGE; else image_state &= ~CXL_VSEC_PERST_LOADS_IMAGE; if (adapter->perst_select_user) image_state |= CXL_VSEC_PERST_SELECT_USER; else image_state &= ~CXL_VSEC_PERST_SELECT_USER; if ((rc = CXL_WRITE_VSEC_IMAGE_STATE(dev, vsec, image_state))) { dev_err(&dev->dev, "failed to update image control: %i\n", rc); return rc; } return 0; } int cxl_alloc_one_irq(struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_alloc_hwirqs(dev, 1); } void cxl_release_one_irq(struct cxl *adapter, int hwirq) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_release_hwirqs(dev, hwirq, 1); } int cxl_alloc_irq_ranges(struct cxl_irq_ranges *irqs, struct cxl *adapter, unsigned int num) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_alloc_hwirq_ranges(irqs, dev, num); } void cxl_release_irq_ranges(struct cxl_irq_ranges *irqs, struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); pnv_cxl_release_hwirq_ranges(irqs, dev); } static int setup_cxl_bars(struct pci_dev *dev) { /* Safety check in case we get backported to < 3.17 without M64 */ if ((p1_base(dev) < 0x100000000ULL) || (p2_base(dev) < 0x100000000ULL)) { dev_err(&dev->dev, "ABORTING: M32 BAR assignment incompatible with CXL\n"); return -ENODEV; } /* * BAR 4/5 has a special meaning for CXL and must be programmed with a * special value corresponding to the CXL protocol address range. * For POWER 8 that means bits 48:49 must be set to 10 */ pci_write_config_dword(dev, PCI_BASE_ADDRESS_4, 0x00000000); pci_write_config_dword(dev, PCI_BASE_ADDRESS_5, 0x00020000); return 0; } /* pciex node: ibm,opal-m64-window = <0x3d058 0x0 0x3d058 0x0 0x8 0x0>; */ static int switch_card_to_cxl(struct pci_dev *dev) { int vsec; u8 val; int rc; dev_info(&dev->dev, "switch card to CXL\n"); if (!(vsec = find_cxl_vsec(dev))) { dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n"); return -ENODEV; } if ((rc = CXL_READ_VSEC_MODE_CONTROL(dev, vsec, &val))) { dev_err(&dev->dev, "failed to read current mode control: %i", rc); return rc; } val &= ~CXL_VSEC_PROTOCOL_MASK; val |= CXL_VSEC_PROTOCOL_256TB | CXL_VSEC_PROTOCOL_ENABLE; if ((rc = CXL_WRITE_VSEC_MODE_CONTROL(dev, vsec, val))) { dev_err(&dev->dev, "failed to enable CXL protocol: %i", rc); return rc; } /* * The CAIA spec (v0.12 11.6 Bi-modal Device Support) states * we must wait 100ms after this mode switch before touching * PCIe config space. */ msleep(100); return 0; } static int cxl_map_slice_regs(struct cxl_afu *afu, struct cxl *adapter, struct pci_dev *dev) { u64 p1n_base, p2n_base, afu_desc; const u64 p1n_size = 0x100; const u64 p2n_size = 0x1000; p1n_base = p1_base(dev) + 0x10000 + (afu->slice * p1n_size); p2n_base = p2_base(dev) + (afu->slice * p2n_size); afu->psn_phys = p2_base(dev) + (adapter->ps_off + (afu->slice * adapter->ps_size)); afu_desc = p2_base(dev) + adapter->afu_desc_off + (afu->slice * adapter->afu_desc_size); if (!(afu->p1n_mmio = ioremap(p1n_base, p1n_size))) goto err; if (!(afu->p2n_mmio = ioremap(p2n_base, p2n_size))) goto err1; if (afu_desc) { if (!(afu->afu_desc_mmio = ioremap(afu_desc, adapter->afu_desc_size))) goto err2; } return 0; err2: iounmap(afu->p2n_mmio); err1: iounmap(afu->p1n_mmio); err: dev_err(&afu->dev, "Error mapping AFU MMIO regions\n"); return -ENOMEM; } static void cxl_unmap_slice_regs(struct cxl_afu *afu) { if (afu->p2n_mmio) { iounmap(afu->p2n_mmio); afu->p2n_mmio = NULL; } if (afu->p1n_mmio) { iounmap(afu->p1n_mmio); afu->p1n_mmio = NULL; } if (afu->afu_desc_mmio) { iounmap(afu->afu_desc_mmio); afu->afu_desc_mmio = NULL; } } static void cxl_release_afu(struct device *dev) { struct cxl_afu *afu = to_cxl_afu(dev); pr_devel("cxl_release_afu\n"); idr_destroy(&afu->contexts_idr); cxl_release_spa(afu); kfree(afu); } static struct cxl_afu *cxl_alloc_afu(struct cxl *adapter, int slice) { struct cxl_afu *afu; if (!(afu = kzalloc(sizeof(struct cxl_afu), GFP_KERNEL))) return NULL; afu->adapter = adapter; afu->dev.parent = &adapter->dev; afu->dev.release = cxl_release_afu; afu->slice = slice; idr_init(&afu->contexts_idr); mutex_init(&afu->contexts_lock); spin_lock_init(&afu->afu_cntl_lock); mutex_init(&afu->spa_mutex); afu->prefault_mode = CXL_PREFAULT_NONE; afu->irqs_max = afu->adapter->user_irqs; return afu; } /* Expects AFU struct to have recently been zeroed out */ static int cxl_read_afu_descriptor(struct cxl_afu *afu) { u64 val; val = AFUD_READ_INFO(afu); afu->pp_irqs = AFUD_NUM_INTS_PER_PROC(val); afu->max_procs_virtualised = AFUD_NUM_PROCS(val); afu->crs_num = AFUD_NUM_CRS(val); if (AFUD_AFU_DIRECTED(val)) afu->modes_supported |= CXL_MODE_DIRECTED; if (AFUD_DEDICATED_PROCESS(val)) afu->modes_supported |= CXL_MODE_DEDICATED; if (AFUD_TIME_SLICED(val)) afu->modes_supported |= CXL_MODE_TIME_SLICED; val = AFUD_READ_PPPSA(afu); afu->pp_size = AFUD_PPPSA_LEN(val) * 4096; afu->psa = AFUD_PPPSA_PSA(val); if ((afu->pp_psa = AFUD_PPPSA_PP(val))) afu->pp_offset = AFUD_READ_PPPSA_OFF(afu); val = AFUD_READ_CR(afu); afu->crs_len = AFUD_CR_LEN(val) * 256; afu->crs_offset = AFUD_READ_CR_OFF(afu); /* eb_len is in multiple of 4K */ afu->eb_len = AFUD_EB_LEN(AFUD_READ_EB(afu)) * 4096; afu->eb_offset = AFUD_READ_EB_OFF(afu); /* eb_off is 4K aligned so lower 12 bits are always zero */ if (EXTRACT_PPC_BITS(afu->eb_offset, 0, 11) != 0) { dev_warn(&afu->dev, "Invalid AFU error buffer offset %Lx\n", afu->eb_offset); dev_info(&afu->dev, "Ignoring AFU error buffer in the descriptor\n"); /* indicate that no afu buffer exists */ afu->eb_len = 0; } return 0; } static int cxl_afu_descriptor_looks_ok(struct cxl_afu *afu) { int i; if (afu->psa && afu->adapter->ps_size < (afu->pp_offset + afu->pp_size*afu->max_procs_virtualised)) { dev_err(&afu->dev, "per-process PSA can't fit inside the PSA!\n"); return -ENODEV; } if (afu->pp_psa && (afu->pp_size < PAGE_SIZE)) dev_warn(&afu->dev, "AFU uses < PAGE_SIZE per-process PSA!"); for (i = 0; i < afu->crs_num; i++) { if ((cxl_afu_cr_read32(afu, i, 0) == 0)) { dev_err(&afu->dev, "ABORTING: AFU configuration record %i is invalid\n", i); return -EINVAL; } } return 0; } static int sanitise_afu_regs(struct cxl_afu *afu) { u64 reg; /* * Clear out any regs that contain either an IVTE or address or may be * waiting on an acknowledgement to try to be a bit safer as we bring * it online */ reg = cxl_p2n_read(afu, CXL_AFU_Cntl_An); if ((reg & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { dev_warn(&afu->dev, "WARNING: AFU was not disabled: %#016llx\n", reg); if (__cxl_afu_reset(afu)) return -EIO; if (cxl_afu_disable(afu)) return -EIO; if (cxl_psl_purge(afu)) return -EIO; } cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_AMBAR_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_SPOffset_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_HAURP_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_CSRP_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_AURP1_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_AURP0_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_SSTP1_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_SSTP0_An, 0x0000000000000000); reg = cxl_p2n_read(afu, CXL_PSL_DSISR_An); if (reg) { dev_warn(&afu->dev, "AFU had pending DSISR: %#016llx\n", reg); if (reg & CXL_PSL_DSISR_TRANS) cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); else cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); } reg = cxl_p1n_read(afu, CXL_PSL_SERR_An); if (reg) { if (reg & ~0xffff) dev_warn(&afu->dev, "AFU had pending SERR: %#016llx\n", reg); cxl_p1n_write(afu, CXL_PSL_SERR_An, reg & ~0xffff); } reg = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); if (reg) { dev_warn(&afu->dev, "AFU had pending error status: %#016llx\n", reg); cxl_p2n_write(afu, CXL_PSL_ErrStat_An, reg); } return 0; } #define ERR_BUFF_MAX_COPY_SIZE PAGE_SIZE /* * afu_eb_read: * Called from sysfs and reads the afu error info buffer. The h/w only supports * 4/8 bytes aligned access. So in case the requested offset/count arent 8 byte * aligned the function uses a bounce buffer which can be max PAGE_SIZE. */ ssize_t cxl_afu_read_err_buffer(struct cxl_afu *afu, char *buf, loff_t off, size_t count) { loff_t aligned_start, aligned_end; size_t aligned_length; void *tbuf; const void __iomem *ebuf = afu->afu_desc_mmio + afu->eb_offset; if (count == 0 || off < 0 || (size_t)off >= afu->eb_len) return 0; /* calculate aligned read window */ count = min((size_t)(afu->eb_len - off), count); aligned_start = round_down(off, 8); aligned_end = round_up(off + count, 8); aligned_length = aligned_end - aligned_start; /* max we can copy in one read is PAGE_SIZE */ if (aligned_length > ERR_BUFF_MAX_COPY_SIZE) { aligned_length = ERR_BUFF_MAX_COPY_SIZE; count = ERR_BUFF_MAX_COPY_SIZE - (off & 0x7); } /* use bounce buffer for copy */ tbuf = (void *)__get_free_page(GFP_TEMPORARY); if (!tbuf) return -ENOMEM; /* perform aligned read from the mmio region */ memcpy_fromio(tbuf, ebuf + aligned_start, aligned_length); memcpy(buf, tbuf + (off & 0x7), count); free_page((unsigned long)tbuf); return count; } static int cxl_configure_afu(struct cxl_afu *afu, struct cxl *adapter, struct pci_dev *dev) { int rc; if ((rc = cxl_map_slice_regs(afu, adapter, dev))) return rc; if ((rc = sanitise_afu_regs(afu))) goto err1; /* We need to reset the AFU before we can read the AFU descriptor */ if ((rc = __cxl_afu_reset(afu))) goto err1; if (cxl_verbose) dump_afu_descriptor(afu); if ((rc = cxl_read_afu_descriptor(afu))) goto err1; if ((rc = cxl_afu_descriptor_looks_ok(afu))) goto err1; if ((rc = init_implementation_afu_regs(afu))) goto err1; if ((rc = cxl_register_serr_irq(afu))) goto err1; if ((rc = cxl_register_psl_irq(afu))) goto err2; return 0; err2: cxl_release_serr_irq(afu); err1: cxl_unmap_slice_regs(afu); return rc; } static void cxl_deconfigure_afu(struct cxl_afu *afu) { cxl_release_psl_irq(afu); cxl_release_serr_irq(afu); cxl_unmap_slice_regs(afu); } static int cxl_init_afu(struct cxl *adapter, int slice, struct pci_dev *dev) { struct cxl_afu *afu; int rc; afu = cxl_alloc_afu(adapter, slice); if (!afu) return -ENOMEM; rc = dev_set_name(&afu->dev, "afu%i.%i", adapter->adapter_num, slice); if (rc) goto err_free; rc = cxl_configure_afu(afu, adapter, dev); if (rc) goto err_free; /* Don't care if this fails */ cxl_debugfs_afu_add(afu); /* * After we call this function we must not free the afu directly, even * if it returns an error! */ if ((rc = cxl_register_afu(afu))) goto err_put1; if ((rc = cxl_sysfs_afu_add(afu))) goto err_put1; adapter->afu[afu->slice] = afu; if ((rc = cxl_pci_vphb_add(afu))) dev_info(&afu->dev, "Can't register vPHB\n"); return 0; err_put1: cxl_deconfigure_afu(afu); cxl_debugfs_afu_remove(afu); device_unregister(&afu->dev); return rc; err_free: kfree(afu); return rc; } static void cxl_remove_afu(struct cxl_afu *afu) { pr_devel("cxl_remove_afu\n"); if (!afu) return; cxl_sysfs_afu_remove(afu); cxl_debugfs_afu_remove(afu); spin_lock(&afu->adapter->afu_list_lock); afu->adapter->afu[afu->slice] = NULL; spin_unlock(&afu->adapter->afu_list_lock); cxl_context_detach_all(afu); cxl_afu_deactivate_mode(afu); cxl_deconfigure_afu(afu); device_unregister(&afu->dev); } int cxl_reset(struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); int rc; if (adapter->perst_same_image) { dev_warn(&dev->dev, "cxl: refusing to reset/reflash when perst_reloads_same_image is set.\n"); return -EINVAL; } dev_info(&dev->dev, "CXL reset\n"); /* pcie_warm_reset requests a fundamental pci reset which includes a * PERST assert/deassert. PERST triggers a loading of the image * if "user" or "factory" is selected in sysfs */ if ((rc = pci_set_pcie_reset_state(dev, pcie_warm_reset))) { dev_err(&dev->dev, "cxl: pcie_warm_reset failed\n"); return rc; } return rc; } static int cxl_map_adapter_regs(struct cxl *adapter, struct pci_dev *dev) { if (pci_request_region(dev, 2, "priv 2 regs")) goto err1; if (pci_request_region(dev, 0, "priv 1 regs")) goto err2; pr_devel("cxl_map_adapter_regs: p1: %#016llx %#llx, p2: %#016llx %#llx", p1_base(dev), p1_size(dev), p2_base(dev), p2_size(dev)); if (!(adapter->p1_mmio = ioremap(p1_base(dev), p1_size(dev)))) goto err3; if (!(adapter->p2_mmio = ioremap(p2_base(dev), p2_size(dev)))) goto err4; return 0; err4: iounmap(adapter->p1_mmio); adapter->p1_mmio = NULL; err3: pci_release_region(dev, 0); err2: pci_release_region(dev, 2); err1: return -ENOMEM; } static void cxl_unmap_adapter_regs(struct cxl *adapter) { if (adapter->p1_mmio) { iounmap(adapter->p1_mmio); adapter->p1_mmio = NULL; pci_release_region(to_pci_dev(adapter->dev.parent), 2); } if (adapter->p2_mmio) { iounmap(adapter->p2_mmio); adapter->p2_mmio = NULL; pci_release_region(to_pci_dev(adapter->dev.parent), 0); } } static int cxl_read_vsec(struct cxl *adapter, struct pci_dev *dev) { int vsec; u32 afu_desc_off, afu_desc_size; u32 ps_off, ps_size; u16 vseclen; u8 image_state; if (!(vsec = find_cxl_vsec(dev))) { dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n"); return -ENODEV; } CXL_READ_VSEC_LENGTH(dev, vsec, &vseclen); if (vseclen < CXL_VSEC_MIN_SIZE) { dev_err(&dev->dev, "ABORTING: CXL VSEC too short\n"); return -EINVAL; } CXL_READ_VSEC_STATUS(dev, vsec, &adapter->vsec_status); CXL_READ_VSEC_PSL_REVISION(dev, vsec, &adapter->psl_rev); CXL_READ_VSEC_CAIA_MAJOR(dev, vsec, &adapter->caia_major); CXL_READ_VSEC_CAIA_MINOR(dev, vsec, &adapter->caia_minor); CXL_READ_VSEC_BASE_IMAGE(dev, vsec, &adapter->base_image); CXL_READ_VSEC_IMAGE_STATE(dev, vsec, &image_state); adapter->user_image_loaded = !!(image_state & CXL_VSEC_USER_IMAGE_LOADED); adapter->perst_select_user = !!(image_state & CXL_VSEC_USER_IMAGE_LOADED); CXL_READ_VSEC_NAFUS(dev, vsec, &adapter->slices); CXL_READ_VSEC_AFU_DESC_OFF(dev, vsec, &afu_desc_off); CXL_READ_VSEC_AFU_DESC_SIZE(dev, vsec, &afu_desc_size); CXL_READ_VSEC_PS_OFF(dev, vsec, &ps_off); CXL_READ_VSEC_PS_SIZE(dev, vsec, &ps_size); /* Convert everything to bytes, because there is NO WAY I'd look at the * code a month later and forget what units these are in ;-) */ adapter->ps_off = ps_off * 64 * 1024; adapter->ps_size = ps_size * 64 * 1024; adapter->afu_desc_off = afu_desc_off * 64 * 1024; adapter->afu_desc_size = afu_desc_size *64 * 1024; /* Total IRQs - 1 PSL ERROR - #AFU*(1 slice error + 1 DSI) */ adapter->user_irqs = pnv_cxl_get_irq_count(dev) - 1 - 2*adapter->slices; return 0; } /* * Workaround a PCIe Host Bridge defect on some cards, that can cause * malformed Transaction Layer Packet (TLP) errors to be erroneously * reported. Mask this error in the Uncorrectable Error Mask Register. * * The upper nibble of the PSL revision is used to distinguish between * different cards. The affected ones have it set to 0. */ static void cxl_fixup_malformed_tlp(struct cxl *adapter, struct pci_dev *dev) { int aer; u32 data; if (adapter->psl_rev & 0xf000) return; if (!(aer = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR))) return; pci_read_config_dword(dev, aer + PCI_ERR_UNCOR_MASK, &data); if (data & PCI_ERR_UNC_MALF_TLP) if (data & PCI_ERR_UNC_INTN) return; data |= PCI_ERR_UNC_MALF_TLP; data |= PCI_ERR_UNC_INTN; pci_write_config_dword(dev, aer + PCI_ERR_UNCOR_MASK, data); } static int cxl_vsec_looks_ok(struct cxl *adapter, struct pci_dev *dev) { if (adapter->vsec_status & CXL_STATUS_SECOND_PORT) return -EBUSY; if (adapter->vsec_status & CXL_UNSUPPORTED_FEATURES) { dev_err(&dev->dev, "ABORTING: CXL requires unsupported features\n"); return -EINVAL; } if (!adapter->slices) { /* Once we support dynamic reprogramming we can use the card if * it supports loadable AFUs */ dev_err(&dev->dev, "ABORTING: Device has no AFUs\n"); return -EINVAL; } if (!adapter->afu_desc_off || !adapter->afu_desc_size) { dev_err(&dev->dev, "ABORTING: VSEC shows no AFU descriptors\n"); return -EINVAL; } if (adapter->ps_size > p2_size(dev) - adapter->ps_off) { dev_err(&dev->dev, "ABORTING: Problem state size larger than " "available in BAR2: 0x%llx > 0x%llx\n", adapter->ps_size, p2_size(dev) - adapter->ps_off); return -EINVAL; } return 0; } static void cxl_release_adapter(struct device *dev) { struct cxl *adapter = to_cxl_adapter(dev); pr_devel("cxl_release_adapter\n"); cxl_remove_adapter_nr(adapter); kfree(adapter); } static struct cxl *cxl_alloc_adapter(void) { struct cxl *adapter; if (!(adapter = kzalloc(sizeof(struct cxl), GFP_KERNEL))) return NULL; spin_lock_init(&adapter->afu_list_lock); if (cxl_alloc_adapter_nr(adapter)) goto err1; if (dev_set_name(&adapter->dev, "card%i", adapter->adapter_num)) goto err2; return adapter; err2: cxl_remove_adapter_nr(adapter); err1: kfree(adapter); return NULL; } #define CXL_PSL_ErrIVTE_tberror (0x1ull << (63-31)) static int sanitise_adapter_regs(struct cxl *adapter) { /* Clear PSL tberror bit by writing 1 to it */ cxl_p1_write(adapter, CXL_PSL_ErrIVTE, CXL_PSL_ErrIVTE_tberror); return cxl_tlb_slb_invalidate(adapter); } /* This should contain *only* operations that can safely be done in * both creation and recovery. */ static int cxl_configure_adapter(struct cxl *adapter, struct pci_dev *dev) { int rc; adapter->dev.parent = &dev->dev; adapter->dev.release = cxl_release_adapter; pci_set_drvdata(dev, adapter); rc = pci_enable_device(dev); if (rc) { dev_err(&dev->dev, "pci_enable_device failed: %i\n", rc); return rc; } if ((rc = cxl_read_vsec(adapter, dev))) return rc; if ((rc = cxl_vsec_looks_ok(adapter, dev))) return rc; cxl_fixup_malformed_tlp(adapter, dev); if ((rc = setup_cxl_bars(dev))) return rc; if ((rc = switch_card_to_cxl(dev))) return rc; if ((rc = cxl_update_image_control(adapter))) return rc; if ((rc = cxl_map_adapter_regs(adapter, dev))) return rc; if ((rc = sanitise_adapter_regs(adapter))) goto err; if ((rc = init_implementation_adapter_regs(adapter, dev))) goto err; if ((rc = pnv_phb_to_cxl_mode(dev, OPAL_PHB_CAPI_MODE_CAPI))) goto err; /* If recovery happened, the last step is to turn on snooping. * In the non-recovery case this has no effect */ if ((rc = pnv_phb_to_cxl_mode(dev, OPAL_PHB_CAPI_MODE_SNOOP_ON))) goto err; if ((rc = cxl_setup_psl_timebase(adapter, dev))) goto err; if ((rc = cxl_register_psl_err_irq(adapter))) goto err; return 0; err: cxl_unmap_adapter_regs(adapter); return rc; } static void cxl_deconfigure_adapter(struct cxl *adapter) { struct pci_dev *pdev = to_pci_dev(adapter->dev.parent); cxl_release_psl_err_irq(adapter); cxl_unmap_adapter_regs(adapter); pci_disable_device(pdev); } static struct cxl *cxl_init_adapter(struct pci_dev *dev) { struct cxl *adapter; int rc; adapter = cxl_alloc_adapter(); if (!adapter) return ERR_PTR(-ENOMEM); /* Set defaults for parameters which need to persist over * configure/reconfigure */ adapter->perst_loads_image = true; adapter->perst_same_image = false; rc = cxl_configure_adapter(adapter, dev); if (rc) { pci_disable_device(dev); cxl_release_adapter(&adapter->dev); return ERR_PTR(rc); } /* Don't care if this one fails: */ cxl_debugfs_adapter_add(adapter); /* * After we call this function we must not free the adapter directly, * even if it returns an error! */ if ((rc = cxl_register_adapter(adapter))) goto err_put1; if ((rc = cxl_sysfs_adapter_add(adapter))) goto err_put1; return adapter; err_put1: /* This should mirror cxl_remove_adapter, except without the * sysfs parts */ cxl_debugfs_adapter_remove(adapter); cxl_deconfigure_adapter(adapter); device_unregister(&adapter->dev); return ERR_PTR(rc); } static void cxl_remove_adapter(struct cxl *adapter) { pr_devel("cxl_remove_adapter\n"); cxl_sysfs_adapter_remove(adapter); cxl_debugfs_adapter_remove(adapter); cxl_deconfigure_adapter(adapter); device_unregister(&adapter->dev); } static int cxl_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct cxl *adapter; int slice; int rc; if (cxl_verbose) dump_cxl_config_space(dev); adapter = cxl_init_adapter(dev); if (IS_ERR(adapter)) { dev_err(&dev->dev, "cxl_init_adapter failed: %li\n", PTR_ERR(adapter)); return PTR_ERR(adapter); } for (slice = 0; slice < adapter->slices; slice++) { if ((rc = cxl_init_afu(adapter, slice, dev))) { dev_err(&dev->dev, "AFU %i failed to initialise: %i\n", slice, rc); continue; } rc = cxl_afu_select_best_mode(adapter->afu[slice]); if (rc) dev_err(&dev->dev, "AFU %i failed to start: %i\n", slice, rc); } return 0; } static void cxl_remove(struct pci_dev *dev) { struct cxl *adapter = pci_get_drvdata(dev); struct cxl_afu *afu; int i; /* * Lock to prevent someone grabbing a ref through the adapter list as * we are removing it */ for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; cxl_pci_vphb_remove(afu); cxl_remove_afu(afu); } cxl_remove_adapter(adapter); } static pci_ers_result_t cxl_vphb_error_detected(struct cxl_afu *afu, pci_channel_state_t state) { struct pci_dev *afu_dev; pci_ers_result_t result = PCI_ERS_RESULT_NEED_RESET; pci_ers_result_t afu_result = PCI_ERS_RESULT_NEED_RESET; /* There should only be one entry, but go through the list * anyway */ list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) { if (!afu_dev->driver) continue; afu_dev->error_state = state; if (afu_dev->driver->err_handler) afu_result = afu_dev->driver->err_handler->error_detected(afu_dev, state); /* Disconnect trumps all, NONE trumps NEED_RESET */ if (afu_result == PCI_ERS_RESULT_DISCONNECT) result = PCI_ERS_RESULT_DISCONNECT; else if ((afu_result == PCI_ERS_RESULT_NONE) && (result == PCI_ERS_RESULT_NEED_RESET)) result = PCI_ERS_RESULT_NONE; } return result; } static pci_ers_result_t cxl_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct cxl *adapter = pci_get_drvdata(pdev); struct cxl_afu *afu; pci_ers_result_t result = PCI_ERS_RESULT_NEED_RESET; int i; /* At this point, we could still have an interrupt pending. * Let's try to get them out of the way before they do * anything we don't like. */ schedule(); /* If we're permanently dead, give up. */ if (state == pci_channel_io_perm_failure) { /* Tell the AFU drivers; but we don't care what they * say, we're going away. */ for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; cxl_vphb_error_detected(afu, state); } return PCI_ERS_RESULT_DISCONNECT; } /* Are we reflashing? * * If we reflash, we could come back as something entirely * different, including a non-CAPI card. As such, by default * we don't participate in the process. We'll be unbound and * the slot re-probed. (TODO: check EEH doesn't blindly rebind * us!) * * However, this isn't the entire story: for reliablity * reasons, we usually want to reflash the FPGA on PERST in * order to get back to a more reliable known-good state. * * This causes us a bit of a problem: if we reflash we can't * trust that we'll come back the same - we could have a new * image and been PERSTed in order to load that * image. However, most of the time we actually *will* come * back the same - for example a regular EEH event. * * Therefore, we allow the user to assert that the image is * indeed the same and that we should continue on into EEH * anyway. */ if (adapter->perst_loads_image && !adapter->perst_same_image) { /* TODO take the PHB out of CXL mode */ dev_info(&pdev->dev, "reflashing, so opting out of EEH!\n"); return PCI_ERS_RESULT_NONE; } /* * At this point, we want to try to recover. We'll always * need a complete slot reset: we don't trust any other reset. * * Now, we go through each AFU: * - We send the driver, if bound, an error_detected callback. * We expect it to clean up, but it can also tell us to give * up and permanently detach the card. To simplify things, if * any bound AFU driver doesn't support EEH, we give up on EEH. * * - We detach all contexts associated with the AFU. This * does not free them, but puts them into a CLOSED state * which causes any the associated files to return useful * errors to userland. It also unmaps, but does not free, * any IRQs. * * - We clean up our side: releasing and unmapping resources we hold * so we can wire them up again when the hardware comes back up. * * Driver authors should note: * * - Any contexts you create in your kernel driver (except * those associated with anonymous file descriptors) are * your responsibility to free and recreate. Likewise with * any attached resources. * * - We will take responsibility for re-initialising the * device context (the one set up for you in * cxl_pci_enable_device_hook and accessed through * cxl_get_context). If you've attached IRQs or other * resources to it, they remains yours to free. * * You can call the same functions to release resources as you * normally would: we make sure that these functions continue * to work when the hardware is down. * * Two examples: * * 1) If you normally free all your resources at the end of * each request, or if you use anonymous FDs, your * error_detected callback can simply set a flag to tell * your driver not to start any new calls. You can then * clear the flag in the resume callback. * * 2) If you normally allocate your resources on startup: * * Set a flag in error_detected as above. * * Let CXL detach your contexts. * * In slot_reset, free the old resources and allocate new ones. * * In resume, clear the flag to allow things to start. */ for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; result = cxl_vphb_error_detected(afu, state); /* Only continue if everyone agrees on NEED_RESET */ if (result != PCI_ERS_RESULT_NEED_RESET) return result; cxl_context_detach_all(afu); cxl_afu_deactivate_mode(afu); cxl_deconfigure_afu(afu); } cxl_deconfigure_adapter(adapter); return result; } static pci_ers_result_t cxl_pci_slot_reset(struct pci_dev *pdev) { struct cxl *adapter = pci_get_drvdata(pdev); struct cxl_afu *afu; struct cxl_context *ctx; struct pci_dev *afu_dev; pci_ers_result_t afu_result = PCI_ERS_RESULT_RECOVERED; pci_ers_result_t result = PCI_ERS_RESULT_RECOVERED; int i; if (cxl_configure_adapter(adapter, pdev)) goto err; for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; if (cxl_configure_afu(afu, adapter, pdev)) goto err; if (cxl_afu_select_best_mode(afu)) goto err; cxl_pci_vphb_reconfigure(afu); list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) { /* Reset the device context. * TODO: make this less disruptive */ ctx = cxl_get_context(afu_dev); if (ctx && cxl_release_context(ctx)) goto err; ctx = cxl_dev_context_init(afu_dev); if (!ctx) goto err; afu_dev->dev.archdata.cxl_ctx = ctx; if (cxl_afu_check_and_enable(afu)) goto err; afu_dev->error_state = pci_channel_io_normal; /* If there's a driver attached, allow it to * chime in on recovery. Drivers should check * if everything has come back OK, but * shouldn't start new work until we call * their resume function. */ if (!afu_dev->driver) continue; if (afu_dev->driver->err_handler && afu_dev->driver->err_handler->slot_reset) afu_result = afu_dev->driver->err_handler->slot_reset(afu_dev); if (afu_result == PCI_ERS_RESULT_DISCONNECT) result = PCI_ERS_RESULT_DISCONNECT; } } return result; err: /* All the bits that happen in both error_detected and cxl_remove * should be idempotent, so we don't need to worry about leaving a mix * of unconfigured and reconfigured resources. */ dev_err(&pdev->dev, "EEH recovery failed. Asking to be disconnected.\n"); return PCI_ERS_RESULT_DISCONNECT; } static void cxl_pci_resume(struct pci_dev *pdev) { struct cxl *adapter = pci_get_drvdata(pdev); struct cxl_afu *afu; struct pci_dev *afu_dev; int i; /* Everything is back now. Drivers should restart work now. * This is not the place to be checking if everything came back up * properly, because there's no return value: do that in slot_reset. */ for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) { if (afu_dev->driver && afu_dev->driver->err_handler && afu_dev->driver->err_handler->resume) afu_dev->driver->err_handler->resume(afu_dev); } } } static const struct pci_error_handlers cxl_err_handler = { .error_detected = cxl_pci_error_detected, .slot_reset = cxl_pci_slot_reset, .resume = cxl_pci_resume, }; struct pci_driver cxl_pci_driver = { .name = "cxl-pci", .id_table = cxl_pci_tbl, .probe = cxl_probe, .remove = cxl_remove, .shutdown = cxl_remove, .err_handler = &cxl_err_handler, };