/* * NXP TDA18218HN silicon tuner driver * * Copyright (C) 2010 Antti Palosaari * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "tda18218.h" #include "tda18218_priv.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); /* write multiple registers */ static int tda18218_wr_regs(struct tda18218_priv *priv, u8 reg, u8 *val, u8 len) { int ret = 0; u8 buf[1+len], quotient, remainder, i, msg_len, msg_len_max; struct i2c_msg msg[1] = { { .addr = priv->cfg->i2c_address, .flags = 0, .buf = buf, } }; msg_len_max = priv->cfg->i2c_wr_max - 1; quotient = len / msg_len_max; remainder = len % msg_len_max; msg_len = msg_len_max; for (i = 0; (i <= quotient && remainder); i++) { if (i == quotient) /* set len of the last msg */ msg_len = remainder; msg[0].len = msg_len + 1; buf[0] = reg + i * msg_len_max; memcpy(&buf[1], &val[i * msg_len_max], msg_len); ret = i2c_transfer(priv->i2c, msg, 1); if (ret != 1) break; } if (ret == 1) { ret = 0; } else { warn("i2c wr failed ret:%d reg:%02x len:%d", ret, reg, len); ret = -EREMOTEIO; } return ret; } /* read multiple registers */ static int tda18218_rd_regs(struct tda18218_priv *priv, u8 reg, u8 *val, u8 len) { int ret; u8 buf[reg+len]; /* we must start read always from reg 0x00 */ struct i2c_msg msg[2] = { { .addr = priv->cfg->i2c_address, .flags = 0, .len = 1, .buf = "\x00", }, { .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = sizeof(buf), .buf = buf, } }; ret = i2c_transfer(priv->i2c, msg, 2); if (ret == 2) { memcpy(val, &buf[reg], len); ret = 0; } else { warn("i2c rd failed ret:%d reg:%02x len:%d", ret, reg, len); ret = -EREMOTEIO; } return ret; } /* write single register */ static int tda18218_wr_reg(struct tda18218_priv *priv, u8 reg, u8 val) { return tda18218_wr_regs(priv, reg, &val, 1); } /* read single register */ static int tda18218_rd_reg(struct tda18218_priv *priv, u8 reg, u8 *val) { return tda18218_rd_regs(priv, reg, val, 1); } static int tda18218_set_params(struct dvb_frontend *fe) { struct tda18218_priv *priv = fe->tuner_priv; struct dtv_frontend_properties *c = &fe->dtv_property_cache; u32 bw = c->bandwidth_hz; int ret; u8 buf[3], i, BP_Filter, LP_Fc; u32 LO_Frac; /* TODO: find out correct AGC algorithm */ u8 agc[][2] = { { R20_AGC11, 0x60 }, { R23_AGC21, 0x02 }, { R20_AGC11, 0xa0 }, { R23_AGC21, 0x09 }, { R20_AGC11, 0xe0 }, { R23_AGC21, 0x0c }, { R20_AGC11, 0x40 }, { R23_AGC21, 0x01 }, { R20_AGC11, 0x80 }, { R23_AGC21, 0x08 }, { R20_AGC11, 0xc0 }, { R23_AGC21, 0x0b }, { R24_AGC22, 0x1c }, { R24_AGC22, 0x0c }, }; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ /* low-pass filter cut-off frequency */ if (bw <= 6000000) { LP_Fc = 0; priv->if_frequency = 3000000; } else if (bw <= 7000000) { LP_Fc = 1; priv->if_frequency = 3500000; } else { LP_Fc = 2; priv->if_frequency = 4000000; } LO_Frac = c->frequency + priv->if_frequency; /* band-pass filter */ if (LO_Frac < 188000000) BP_Filter = 3; else if (LO_Frac < 253000000) BP_Filter = 4; else if (LO_Frac < 343000000) BP_Filter = 5; else BP_Filter = 6; buf[0] = (priv->regs[R1A_IF1] & ~7) | BP_Filter; /* BP_Filter */ buf[1] = (priv->regs[R1B_IF2] & ~3) | LP_Fc; /* LP_Fc */ buf[2] = priv->regs[R1C_AGC2B]; ret = tda18218_wr_regs(priv, R1A_IF1, buf, 3); if (ret) goto error; buf[0] = (LO_Frac / 1000) >> 12; /* LO_Frac_0 */ buf[1] = (LO_Frac / 1000) >> 4; /* LO_Frac_1 */ buf[2] = (LO_Frac / 1000) << 4 | (priv->regs[R0C_MD5] & 0x0f); /* LO_Frac_2 */ ret = tda18218_wr_regs(priv, R0A_MD3, buf, 3); if (ret) goto error; buf[0] = priv->regs[R0F_MD8] | (1 << 6); /* Freq_prog_Start */ ret = tda18218_wr_regs(priv, R0F_MD8, buf, 1); if (ret) goto error; buf[0] = priv->regs[R0F_MD8] & ~(1 << 6); /* Freq_prog_Start */ ret = tda18218_wr_regs(priv, R0F_MD8, buf, 1); if (ret) goto error; /* trigger AGC */ for (i = 0; i < ARRAY_SIZE(agc); i++) { ret = tda18218_wr_reg(priv, agc[i][0], agc[i][1]); if (ret) goto error; } error: if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ if (ret) dbg("%s: failed ret:%d", __func__, ret); return ret; } static int tda18218_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { struct tda18218_priv *priv = fe->tuner_priv; *frequency = priv->if_frequency; dbg("%s: if=%d", __func__, *frequency); return 0; } static int tda18218_sleep(struct dvb_frontend *fe) { struct tda18218_priv *priv = fe->tuner_priv; int ret; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ /* standby */ ret = tda18218_wr_reg(priv, R17_PD1, priv->regs[R17_PD1] | (1 << 0)); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ if (ret) dbg("%s: failed ret:%d", __func__, ret); return ret; } static int tda18218_init(struct dvb_frontend *fe) { struct tda18218_priv *priv = fe->tuner_priv; int ret; /* TODO: calibrations */ if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ ret = tda18218_wr_regs(priv, R00_ID, priv->regs, TDA18218_NUM_REGS); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ if (ret) dbg("%s: failed ret:%d", __func__, ret); return ret; } static int tda18218_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } static const struct dvb_tuner_ops tda18218_tuner_ops = { .info = { .name = "NXP TDA18218", .frequency_min = 174000000, .frequency_max = 864000000, .frequency_step = 1000, }, .release = tda18218_release, .init = tda18218_init, .sleep = tda18218_sleep, .set_params = tda18218_set_params, .get_if_frequency = tda18218_get_if_frequency, }; struct dvb_frontend *tda18218_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct tda18218_config *cfg) { struct tda18218_priv *priv = NULL; u8 val; int ret; /* chip default registers values */ static u8 def_regs[] = { 0xc0, 0x88, 0x00, 0x8e, 0x03, 0x00, 0x00, 0xd0, 0x00, 0x40, 0x00, 0x00, 0x07, 0xff, 0x84, 0x09, 0x00, 0x13, 0x00, 0x00, 0x01, 0x84, 0x09, 0xf0, 0x19, 0x0a, 0x8e, 0x69, 0x98, 0x01, 0x00, 0x58, 0x10, 0x40, 0x8c, 0x00, 0x0c, 0x48, 0x85, 0xc9, 0xa7, 0x00, 0x00, 0x00, 0x30, 0x81, 0x80, 0x00, 0x39, 0x00, 0x8a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf6, 0xf6 }; priv = kzalloc(sizeof(struct tda18218_priv), GFP_KERNEL); if (priv == NULL) return NULL; priv->cfg = cfg; priv->i2c = i2c; fe->tuner_priv = priv; if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 1); /* open I2C-gate */ /* check if the tuner is there */ ret = tda18218_rd_reg(priv, R00_ID, &val); dbg("%s: ret:%d chip ID:%02x", __func__, ret, val); if (ret || val != def_regs[R00_ID]) { kfree(priv); return NULL; } info("NXP TDA18218HN successfully identified."); memcpy(&fe->ops.tuner_ops, &tda18218_tuner_ops, sizeof(struct dvb_tuner_ops)); memcpy(priv->regs, def_regs, sizeof(def_regs)); /* loop-through enabled chip default register values */ if (priv->cfg->loop_through) { priv->regs[R17_PD1] = 0xb0; priv->regs[R18_PD2] = 0x59; } /* standby */ ret = tda18218_wr_reg(priv, R17_PD1, priv->regs[R17_PD1] | (1 << 0)); if (ret) dbg("%s: failed ret:%d", __func__, ret); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); /* close I2C-gate */ return fe; } EXPORT_SYMBOL(tda18218_attach); MODULE_DESCRIPTION("NXP TDA18218HN silicon tuner driver"); MODULE_AUTHOR("Antti Palosaari "); MODULE_LICENSE("GPL");