/* Copyright (c) 2014, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "coresight-etm4x.h" static int boot_enable; module_param_named(boot_enable, boot_enable, int, S_IRUGO); /* The number of ETMv4 currently registered */ static int etm4_count; static struct etmv4_drvdata *etmdrvdata[NR_CPUS]; static void etm4_os_unlock(void *info) { struct etmv4_drvdata *drvdata = (struct etmv4_drvdata *)info; /* Writing any value to ETMOSLAR unlocks the trace registers */ writel_relaxed(0x0, drvdata->base + TRCOSLAR); isb(); } static bool etm4_arch_supported(u8 arch) { switch (arch) { case ETM_ARCH_V4: break; default: return false; } return true; } static int etm4_trace_id(struct coresight_device *csdev) { struct etmv4_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); unsigned long flags; int trace_id = -1; if (!drvdata->enable) return drvdata->trcid; pm_runtime_get_sync(drvdata->dev); spin_lock_irqsave(&drvdata->spinlock, flags); CS_UNLOCK(drvdata->base); trace_id = readl_relaxed(drvdata->base + TRCTRACEIDR); trace_id &= ETM_TRACEID_MASK; CS_LOCK(drvdata->base); spin_unlock_irqrestore(&drvdata->spinlock, flags); pm_runtime_put(drvdata->dev); return trace_id; } static void etm4_enable_hw(void *info) { int i; struct etmv4_drvdata *drvdata = info; CS_UNLOCK(drvdata->base); etm4_os_unlock(drvdata); /* Disable the trace unit before programming trace registers */ writel_relaxed(0, drvdata->base + TRCPRGCTLR); /* wait for TRCSTATR.IDLE to go up */ if (coresight_timeout(drvdata->base, TRCSTATR, TRCSTATR_IDLE_BIT, 1)) dev_err(drvdata->dev, "timeout observed when probing at offset %#x\n", TRCSTATR); writel_relaxed(drvdata->pe_sel, drvdata->base + TRCPROCSELR); writel_relaxed(drvdata->cfg, drvdata->base + TRCCONFIGR); /* nothing specific implemented */ writel_relaxed(0x0, drvdata->base + TRCAUXCTLR); writel_relaxed(drvdata->eventctrl0, drvdata->base + TRCEVENTCTL0R); writel_relaxed(drvdata->eventctrl1, drvdata->base + TRCEVENTCTL1R); writel_relaxed(drvdata->stall_ctrl, drvdata->base + TRCSTALLCTLR); writel_relaxed(drvdata->ts_ctrl, drvdata->base + TRCTSCTLR); writel_relaxed(drvdata->syncfreq, drvdata->base + TRCSYNCPR); writel_relaxed(drvdata->ccctlr, drvdata->base + TRCCCCTLR); writel_relaxed(drvdata->bb_ctrl, drvdata->base + TRCBBCTLR); writel_relaxed(drvdata->trcid, drvdata->base + TRCTRACEIDR); writel_relaxed(drvdata->vinst_ctrl, drvdata->base + TRCVICTLR); writel_relaxed(drvdata->viiectlr, drvdata->base + TRCVIIECTLR); writel_relaxed(drvdata->vissctlr, drvdata->base + TRCVISSCTLR); writel_relaxed(drvdata->vipcssctlr, drvdata->base + TRCVIPCSSCTLR); for (i = 0; i < drvdata->nrseqstate - 1; i++) writel_relaxed(drvdata->seq_ctrl[i], drvdata->base + TRCSEQEVRn(i)); writel_relaxed(drvdata->seq_rst, drvdata->base + TRCSEQRSTEVR); writel_relaxed(drvdata->seq_state, drvdata->base + TRCSEQSTR); writel_relaxed(drvdata->ext_inp, drvdata->base + TRCEXTINSELR); for (i = 0; i < drvdata->nr_cntr; i++) { writel_relaxed(drvdata->cntrldvr[i], drvdata->base + TRCCNTRLDVRn(i)); writel_relaxed(drvdata->cntr_ctrl[i], drvdata->base + TRCCNTCTLRn(i)); writel_relaxed(drvdata->cntr_val[i], drvdata->base + TRCCNTVRn(i)); } for (i = 0; i < drvdata->nr_resource; i++) writel_relaxed(drvdata->res_ctrl[i], drvdata->base + TRCRSCTLRn(i)); for (i = 0; i < drvdata->nr_ss_cmp; i++) { writel_relaxed(drvdata->ss_ctrl[i], drvdata->base + TRCSSCCRn(i)); writel_relaxed(drvdata->ss_status[i], drvdata->base + TRCSSCSRn(i)); writel_relaxed(drvdata->ss_pe_cmp[i], drvdata->base + TRCSSPCICRn(i)); } for (i = 0; i < drvdata->nr_addr_cmp; i++) { writeq_relaxed(drvdata->addr_val[i], drvdata->base + TRCACVRn(i)); writeq_relaxed(drvdata->addr_acc[i], drvdata->base + TRCACATRn(i)); } for (i = 0; i < drvdata->numcidc; i++) writeq_relaxed(drvdata->ctxid_pid[i], drvdata->base + TRCCIDCVRn(i)); writel_relaxed(drvdata->ctxid_mask0, drvdata->base + TRCCIDCCTLR0); writel_relaxed(drvdata->ctxid_mask1, drvdata->base + TRCCIDCCTLR1); for (i = 0; i < drvdata->numvmidc; i++) writeq_relaxed(drvdata->vmid_val[i], drvdata->base + TRCVMIDCVRn(i)); writel_relaxed(drvdata->vmid_mask0, drvdata->base + TRCVMIDCCTLR0); writel_relaxed(drvdata->vmid_mask1, drvdata->base + TRCVMIDCCTLR1); /* Enable the trace unit */ writel_relaxed(1, drvdata->base + TRCPRGCTLR); /* wait for TRCSTATR.IDLE to go back down to '0' */ if (coresight_timeout(drvdata->base, TRCSTATR, TRCSTATR_IDLE_BIT, 0)) dev_err(drvdata->dev, "timeout observed when probing at offset %#x\n", TRCSTATR); CS_LOCK(drvdata->base); dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu); } static int etm4_enable(struct coresight_device *csdev) { struct etmv4_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); int ret; pm_runtime_get_sync(drvdata->dev); spin_lock(&drvdata->spinlock); /* * Executing etm4_enable_hw on the cpu whose ETM is being enabled * ensures that register writes occur when cpu is powered. */ ret = smp_call_function_single(drvdata->cpu, etm4_enable_hw, drvdata, 1); if (ret) goto err; drvdata->enable = true; drvdata->sticky_enable = true; spin_unlock(&drvdata->spinlock); dev_info(drvdata->dev, "ETM tracing enabled\n"); return 0; err: spin_unlock(&drvdata->spinlock); pm_runtime_put(drvdata->dev); return ret; } static void etm4_disable_hw(void *info) { u32 control; struct etmv4_drvdata *drvdata = info; CS_UNLOCK(drvdata->base); control = readl_relaxed(drvdata->base + TRCPRGCTLR); /* EN, bit[0] Trace unit enable bit */ control &= ~0x1; /* make sure everything completes before disabling */ mb(); isb(); writel_relaxed(control, drvdata->base + TRCPRGCTLR); CS_LOCK(drvdata->base); dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu); } static void etm4_disable(struct coresight_device *csdev) { struct etmv4_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); /* * Taking hotplug lock here protects from clocks getting disabled * with tracing being left on (crash scenario) if user disable occurs * after cpu online mask indicates the cpu is offline but before the * DYING hotplug callback is serviced by the ETM driver. */ get_online_cpus(); spin_lock(&drvdata->spinlock); /* * Executing etm4_disable_hw on the cpu whose ETM is being disabled * ensures that register writes occur when cpu is powered. */ smp_call_function_single(drvdata->cpu, etm4_disable_hw, drvdata, 1); drvdata->enable = false; spin_unlock(&drvdata->spinlock); put_online_cpus(); pm_runtime_put(drvdata->dev); dev_info(drvdata->dev, "ETM tracing disabled\n"); } static const struct coresight_ops_source etm4_source_ops = { .trace_id = etm4_trace_id, .enable = etm4_enable, .disable = etm4_disable, }; static const struct coresight_ops etm4_cs_ops = { .source_ops = &etm4_source_ops, }; static int etm4_set_mode_exclude(struct etmv4_drvdata *drvdata, bool exclude) { u8 idx = drvdata->addr_idx; /* * TRCACATRn.TYPE bit[1:0]: type of comparison * the trace unit performs */ if (BMVAL(drvdata->addr_acc[idx], 0, 1) == ETM_INSTR_ADDR) { if (idx % 2 != 0) return -EINVAL; /* * We are performing instruction address comparison. Set the * relevant bit of ViewInst Include/Exclude Control register * for corresponding address comparator pair. */ if (drvdata->addr_type[idx] != ETM_ADDR_TYPE_RANGE || drvdata->addr_type[idx + 1] != ETM_ADDR_TYPE_RANGE) return -EINVAL; if (exclude == true) { /* * Set exclude bit and unset the include bit * corresponding to comparator pair */ drvdata->viiectlr |= BIT(idx / 2 + 16); drvdata->viiectlr &= ~BIT(idx / 2); } else { /* * Set include bit and unset exclude bit * corresponding to comparator pair */ drvdata->viiectlr |= BIT(idx / 2); drvdata->viiectlr &= ~BIT(idx / 2 + 16); } } return 0; } static ssize_t nr_pe_cmp_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_pe_cmp; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_pe_cmp); static ssize_t nr_addr_cmp_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_addr_cmp; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_addr_cmp); static ssize_t nr_cntr_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_cntr; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_cntr); static ssize_t nr_ext_inp_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_ext_inp; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_ext_inp); static ssize_t numcidc_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->numcidc; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(numcidc); static ssize_t numvmidc_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->numvmidc; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(numvmidc); static ssize_t nrseqstate_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nrseqstate; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nrseqstate); static ssize_t nr_resource_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_resource; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_resource); static ssize_t nr_ss_cmp_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->nr_ss_cmp; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static DEVICE_ATTR_RO(nr_ss_cmp); static ssize_t reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { int i; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); if (val) drvdata->mode = 0x0; /* Disable data tracing: do not trace load and store data transfers */ drvdata->mode &= ~(ETM_MODE_LOAD | ETM_MODE_STORE); drvdata->cfg &= ~(BIT(1) | BIT(2)); /* Disable data value and data address tracing */ drvdata->mode &= ~(ETM_MODE_DATA_TRACE_ADDR | ETM_MODE_DATA_TRACE_VAL); drvdata->cfg &= ~(BIT(16) | BIT(17)); /* Disable all events tracing */ drvdata->eventctrl0 = 0x0; drvdata->eventctrl1 = 0x0; /* Disable timestamp event */ drvdata->ts_ctrl = 0x0; /* Disable stalling */ drvdata->stall_ctrl = 0x0; /* Reset trace synchronization period to 2^8 = 256 bytes*/ if (drvdata->syncpr == false) drvdata->syncfreq = 0x8; /* * Enable ViewInst to trace everything with start-stop logic in * started state. ARM recommends start-stop logic is set before * each trace run. */ drvdata->vinst_ctrl |= BIT(0); if (drvdata->nr_addr_cmp == true) { drvdata->mode |= ETM_MODE_VIEWINST_STARTSTOP; /* SSSTATUS, bit[9] */ drvdata->vinst_ctrl |= BIT(9); } /* No address range filtering for ViewInst */ drvdata->viiectlr = 0x0; /* No start-stop filtering for ViewInst */ drvdata->vissctlr = 0x0; /* Disable seq events */ for (i = 0; i < drvdata->nrseqstate-1; i++) drvdata->seq_ctrl[i] = 0x0; drvdata->seq_rst = 0x0; drvdata->seq_state = 0x0; /* Disable external input events */ drvdata->ext_inp = 0x0; drvdata->cntr_idx = 0x0; for (i = 0; i < drvdata->nr_cntr; i++) { drvdata->cntrldvr[i] = 0x0; drvdata->cntr_ctrl[i] = 0x0; drvdata->cntr_val[i] = 0x0; } drvdata->res_idx = 0x0; for (i = 0; i < drvdata->nr_resource; i++) drvdata->res_ctrl[i] = 0x0; for (i = 0; i < drvdata->nr_ss_cmp; i++) { drvdata->ss_ctrl[i] = 0x0; drvdata->ss_pe_cmp[i] = 0x0; } drvdata->addr_idx = 0x0; for (i = 0; i < drvdata->nr_addr_cmp * 2; i++) { drvdata->addr_val[i] = 0x0; drvdata->addr_acc[i] = 0x0; drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE; } drvdata->ctxid_idx = 0x0; for (i = 0; i < drvdata->numcidc; i++) { drvdata->ctxid_pid[i] = 0x0; drvdata->ctxid_vpid[i] = 0x0; } drvdata->ctxid_mask0 = 0x0; drvdata->ctxid_mask1 = 0x0; drvdata->vmid_idx = 0x0; for (i = 0; i < drvdata->numvmidc; i++) drvdata->vmid_val[i] = 0x0; drvdata->vmid_mask0 = 0x0; drvdata->vmid_mask1 = 0x0; drvdata->trcid = drvdata->cpu + 1; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_WO(reset); static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->mode; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val, mode; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->mode = val & ETMv4_MODE_ALL; if (drvdata->mode & ETM_MODE_EXCLUDE) etm4_set_mode_exclude(drvdata, true); else etm4_set_mode_exclude(drvdata, false); if (drvdata->instrp0 == true) { /* start by clearing instruction P0 field */ drvdata->cfg &= ~(BIT(1) | BIT(2)); if (drvdata->mode & ETM_MODE_LOAD) /* 0b01 Trace load instructions as P0 instructions */ drvdata->cfg |= BIT(1); if (drvdata->mode & ETM_MODE_STORE) /* 0b10 Trace store instructions as P0 instructions */ drvdata->cfg |= BIT(2); if (drvdata->mode & ETM_MODE_LOAD_STORE) /* * 0b11 Trace load and store instructions * as P0 instructions */ drvdata->cfg |= BIT(1) | BIT(2); } /* bit[3], Branch broadcast mode */ if ((drvdata->mode & ETM_MODE_BB) && (drvdata->trcbb == true)) drvdata->cfg |= BIT(3); else drvdata->cfg &= ~BIT(3); /* bit[4], Cycle counting instruction trace bit */ if ((drvdata->mode & ETMv4_MODE_CYCACC) && (drvdata->trccci == true)) drvdata->cfg |= BIT(4); else drvdata->cfg &= ~BIT(4); /* bit[6], Context ID tracing bit */ if ((drvdata->mode & ETMv4_MODE_CTXID) && (drvdata->ctxid_size)) drvdata->cfg |= BIT(6); else drvdata->cfg &= ~BIT(6); if ((drvdata->mode & ETM_MODE_VMID) && (drvdata->vmid_size)) drvdata->cfg |= BIT(7); else drvdata->cfg &= ~BIT(7); /* bits[10:8], Conditional instruction tracing bit */ mode = ETM_MODE_COND(drvdata->mode); if (drvdata->trccond == true) { drvdata->cfg &= ~(BIT(8) | BIT(9) | BIT(10)); drvdata->cfg |= mode << 8; } /* bit[11], Global timestamp tracing bit */ if ((drvdata->mode & ETMv4_MODE_TIMESTAMP) && (drvdata->ts_size)) drvdata->cfg |= BIT(11); else drvdata->cfg &= ~BIT(11); /* bit[12], Return stack enable bit */ if ((drvdata->mode & ETM_MODE_RETURNSTACK) && (drvdata->retstack == true)) drvdata->cfg |= BIT(12); else drvdata->cfg &= ~BIT(12); /* bits[14:13], Q element enable field */ mode = ETM_MODE_QELEM(drvdata->mode); /* start by clearing QE bits */ drvdata->cfg &= ~(BIT(13) | BIT(14)); /* if supported, Q elements with instruction counts are enabled */ if ((mode & BIT(0)) && (drvdata->q_support & BIT(0))) drvdata->cfg |= BIT(13); /* * if supported, Q elements with and without instruction * counts are enabled */ if ((mode & BIT(1)) && (drvdata->q_support & BIT(1))) drvdata->cfg |= BIT(14); /* bit[11], AMBA Trace Bus (ATB) trigger enable bit */ if ((drvdata->mode & ETM_MODE_ATB_TRIGGER) && (drvdata->atbtrig == true)) drvdata->eventctrl1 |= BIT(11); else drvdata->eventctrl1 &= ~BIT(11); /* bit[12], Low-power state behavior override bit */ if ((drvdata->mode & ETM_MODE_LPOVERRIDE) && (drvdata->lpoverride == true)) drvdata->eventctrl1 |= BIT(12); else drvdata->eventctrl1 &= ~BIT(12); /* bit[8], Instruction stall bit */ if (drvdata->mode & ETM_MODE_ISTALL_EN) drvdata->stall_ctrl |= BIT(8); else drvdata->stall_ctrl &= ~BIT(8); /* bit[10], Prioritize instruction trace bit */ if (drvdata->mode & ETM_MODE_INSTPRIO) drvdata->stall_ctrl |= BIT(10); else drvdata->stall_ctrl &= ~BIT(10); /* bit[13], Trace overflow prevention bit */ if ((drvdata->mode & ETM_MODE_NOOVERFLOW) && (drvdata->nooverflow == true)) drvdata->stall_ctrl |= BIT(13); else drvdata->stall_ctrl &= ~BIT(13); /* bit[9] Start/stop logic control bit */ if (drvdata->mode & ETM_MODE_VIEWINST_STARTSTOP) drvdata->vinst_ctrl |= BIT(9); else drvdata->vinst_ctrl &= ~BIT(9); /* bit[10], Whether a trace unit must trace a Reset exception */ if (drvdata->mode & ETM_MODE_TRACE_RESET) drvdata->vinst_ctrl |= BIT(10); else drvdata->vinst_ctrl &= ~BIT(10); /* bit[11], Whether a trace unit must trace a system error exception */ if ((drvdata->mode & ETM_MODE_TRACE_ERR) && (drvdata->trc_error == true)) drvdata->vinst_ctrl |= BIT(11); else drvdata->vinst_ctrl &= ~BIT(11); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(mode); static ssize_t pe_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->pe_sel; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t pe_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); if (val > drvdata->nr_pe) { spin_unlock(&drvdata->spinlock); return -EINVAL; } drvdata->pe_sel = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(pe); static ssize_t event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->eventctrl0; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); switch (drvdata->nr_event) { case 0x0: /* EVENT0, bits[7:0] */ drvdata->eventctrl0 = val & 0xFF; break; case 0x1: /* EVENT1, bits[15:8] */ drvdata->eventctrl0 = val & 0xFFFF; break; case 0x2: /* EVENT2, bits[23:16] */ drvdata->eventctrl0 = val & 0xFFFFFF; break; case 0x3: /* EVENT3, bits[31:24] */ drvdata->eventctrl0 = val; break; default: break; } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(event); static ssize_t event_instren_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = BMVAL(drvdata->eventctrl1, 0, 3); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t event_instren_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); /* start by clearing all instruction event enable bits */ drvdata->eventctrl1 &= ~(BIT(0) | BIT(1) | BIT(2) | BIT(3)); switch (drvdata->nr_event) { case 0x0: /* generate Event element for event 1 */ drvdata->eventctrl1 |= val & BIT(1); break; case 0x1: /* generate Event element for event 1 and 2 */ drvdata->eventctrl1 |= val & (BIT(0) | BIT(1)); break; case 0x2: /* generate Event element for event 1, 2 and 3 */ drvdata->eventctrl1 |= val & (BIT(0) | BIT(1) | BIT(2)); break; case 0x3: /* generate Event element for all 4 events */ drvdata->eventctrl1 |= val & 0xF; break; default: break; } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(event_instren); static ssize_t event_ts_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->ts_ctrl; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t event_ts_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (!drvdata->ts_size) return -EINVAL; drvdata->ts_ctrl = val & ETMv4_EVENT_MASK; return size; } static DEVICE_ATTR_RW(event_ts); static ssize_t syncfreq_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->syncfreq; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t syncfreq_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (drvdata->syncpr == true) return -EINVAL; drvdata->syncfreq = val & ETMv4_SYNC_MASK; return size; } static DEVICE_ATTR_RW(syncfreq); static ssize_t cyc_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->ccctlr; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t cyc_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val < drvdata->ccitmin) return -EINVAL; drvdata->ccctlr = val & ETM_CYC_THRESHOLD_MASK; return size; } static DEVICE_ATTR_RW(cyc_threshold); static ssize_t bb_ctrl_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->bb_ctrl; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t bb_ctrl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (drvdata->trcbb == false) return -EINVAL; if (!drvdata->nr_addr_cmp) return -EINVAL; /* * Bit[7:0] selects which address range comparator is used for * branch broadcast control. */ if (BMVAL(val, 0, 7) > drvdata->nr_addr_cmp) return -EINVAL; drvdata->bb_ctrl = val; return size; } static DEVICE_ATTR_RW(bb_ctrl); static ssize_t event_vinst_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->vinst_ctrl & ETMv4_EVENT_MASK; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t event_vinst_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); val &= ETMv4_EVENT_MASK; drvdata->vinst_ctrl &= ~ETMv4_EVENT_MASK; drvdata->vinst_ctrl |= val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(event_vinst); static ssize_t s_exlevel_vinst_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = BMVAL(drvdata->vinst_ctrl, 16, 19); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t s_exlevel_vinst_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); /* clear all EXLEVEL_S bits (bit[18] is never implemented) */ drvdata->vinst_ctrl &= ~(BIT(16) | BIT(17) | BIT(19)); /* enable instruction tracing for corresponding exception level */ val &= drvdata->s_ex_level; drvdata->vinst_ctrl |= (val << 16); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(s_exlevel_vinst); static ssize_t ns_exlevel_vinst_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); /* EXLEVEL_NS, bits[23:20] */ val = BMVAL(drvdata->vinst_ctrl, 20, 23); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t ns_exlevel_vinst_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); /* clear EXLEVEL_NS bits (bit[23] is never implemented */ drvdata->vinst_ctrl &= ~(BIT(20) | BIT(21) | BIT(22)); /* enable instruction tracing for corresponding exception level */ val &= drvdata->ns_ex_level; drvdata->vinst_ctrl |= (val << 20); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(ns_exlevel_vinst); static ssize_t addr_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->addr_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t addr_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val >= drvdata->nr_addr_cmp * 2) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->addr_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_idx); static ssize_t addr_instdatatype_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t len; u8 val, idx; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; val = BMVAL(drvdata->addr_acc[idx], 0, 1); len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_INSTR_ADDR ? "instr" : (val == ETM_DATA_LOAD_ADDR ? "data_load" : (val == ETM_DATA_STORE_ADDR ? "data_store" : "data_load_store"))); spin_unlock(&drvdata->spinlock); return len; } static ssize_t addr_instdatatype_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; char str[20] = ""; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (strlen(buf) >= 20) return -EINVAL; if (sscanf(buf, "%s", str) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!strcmp(str, "instr")) /* TYPE, bits[1:0] */ drvdata->addr_acc[idx] &= ~(BIT(0) | BIT(1)); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_instdatatype); static ssize_t addr_single_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); idx = drvdata->addr_idx; spin_lock(&drvdata->spinlock); if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = (unsigned long)drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t addr_single_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = (u64)val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_single); static ssize_t addr_range_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val1, val2; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) || (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) { spin_unlock(&drvdata->spinlock); return -EPERM; } val1 = (unsigned long)drvdata->addr_val[idx]; val2 = (unsigned long)drvdata->addr_val[idx + 1]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2); } static ssize_t addr_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val1, val2; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (sscanf(buf, "%lx %lx", &val1, &val2) != 2) return -EINVAL; /* lower address comparator cannot have a higher address value */ if (val1 > val2) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (idx % 2 != 0) { spin_unlock(&drvdata->spinlock); return -EPERM; } if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) || (drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE && drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = (u64)val1; drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE; drvdata->addr_val[idx + 1] = (u64)val2; drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE; /* * Program include or exclude control bits for vinst or vdata * whenever we change addr comparators to ETM_ADDR_TYPE_RANGE */ if (drvdata->mode & ETM_MODE_EXCLUDE) etm4_set_mode_exclude(drvdata, true); else etm4_set_mode_exclude(drvdata, false); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_range); static ssize_t addr_start_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = (unsigned long)drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t addr_start_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!drvdata->nr_addr_cmp) { spin_unlock(&drvdata->spinlock); return -EINVAL; } if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = (u64)val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_START; drvdata->vissctlr |= BIT(idx); /* SSSTATUS, bit[9] - turn on start/stop logic */ drvdata->vinst_ctrl |= BIT(9); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_start); static ssize_t addr_stop_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) { spin_unlock(&drvdata->spinlock); return -EPERM; } val = (unsigned long)drvdata->addr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t addr_stop_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!drvdata->nr_addr_cmp) { spin_unlock(&drvdata->spinlock); return -EINVAL; } if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE || drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) { spin_unlock(&drvdata->spinlock); return -EPERM; } drvdata->addr_val[idx] = (u64)val; drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP; drvdata->vissctlr |= BIT(idx + 16); /* SSSTATUS, bit[9] - turn on start/stop logic */ drvdata->vinst_ctrl |= BIT(9); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_stop); static ssize_t addr_ctxtype_show(struct device *dev, struct device_attribute *attr, char *buf) { ssize_t len; u8 idx, val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; /* CONTEXTTYPE, bits[3:2] */ val = BMVAL(drvdata->addr_acc[idx], 2, 3); len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_CTX_NONE ? "none" : (val == ETM_CTX_CTXID ? "ctxid" : (val == ETM_CTX_VMID ? "vmid" : "all"))); spin_unlock(&drvdata->spinlock); return len; } static ssize_t addr_ctxtype_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; char str[10] = ""; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (strlen(buf) >= 10) return -EINVAL; if (sscanf(buf, "%s", str) != 1) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; if (!strcmp(str, "none")) /* start by clearing context type bits */ drvdata->addr_acc[idx] &= ~(BIT(2) | BIT(3)); else if (!strcmp(str, "ctxid")) { /* 0b01 The trace unit performs a Context ID */ if (drvdata->numcidc) { drvdata->addr_acc[idx] |= BIT(2); drvdata->addr_acc[idx] &= ~BIT(3); } } else if (!strcmp(str, "vmid")) { /* 0b10 The trace unit performs a VMID */ if (drvdata->numvmidc) { drvdata->addr_acc[idx] &= ~BIT(2); drvdata->addr_acc[idx] |= BIT(3); } } else if (!strcmp(str, "all")) { /* * 0b11 The trace unit performs a Context ID * comparison and a VMID */ if (drvdata->numcidc) drvdata->addr_acc[idx] |= BIT(2); if (drvdata->numvmidc) drvdata->addr_acc[idx] |= BIT(3); } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_ctxtype); static ssize_t addr_context_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; /* context ID comparator bits[6:4] */ val = BMVAL(drvdata->addr_acc[idx], 4, 6); spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t addr_context_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if ((drvdata->numcidc <= 1) && (drvdata->numvmidc <= 1)) return -EINVAL; if (val >= (drvdata->numcidc >= drvdata->numvmidc ? drvdata->numcidc : drvdata->numvmidc)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->addr_idx; /* clear context ID comparator bits[6:4] */ drvdata->addr_acc[idx] &= ~(BIT(4) | BIT(5) | BIT(6)); drvdata->addr_acc[idx] |= (val << 4); spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(addr_context); static ssize_t seq_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t seq_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val >= drvdata->nrseqstate - 1) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->seq_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(seq_idx); static ssize_t seq_state_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_state; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t seq_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val >= drvdata->nrseqstate) return -EINVAL; drvdata->seq_state = val; return size; } static DEVICE_ATTR_RW(seq_state); static ssize_t seq_event_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->seq_idx; val = drvdata->seq_ctrl[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t seq_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->seq_idx; /* RST, bits[7:0] */ drvdata->seq_ctrl[idx] = val & 0xFF; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(seq_event); static ssize_t seq_reset_event_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->seq_rst; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t seq_reset_event_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (!(drvdata->nrseqstate)) return -EINVAL; drvdata->seq_rst = val & ETMv4_EVENT_MASK; return size; } static DEVICE_ATTR_RW(seq_reset_event); static ssize_t cntr_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->cntr_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t cntr_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val >= drvdata->nr_cntr) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->cntr_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_idx); static ssize_t cntrldvr_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->cntr_idx; val = drvdata->cntrldvr[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t cntrldvr_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val > ETM_CNTR_MAX_VAL) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->cntr_idx; drvdata->cntrldvr[idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntrldvr); static ssize_t cntr_val_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->cntr_idx; val = drvdata->cntr_val[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t cntr_val_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val > ETM_CNTR_MAX_VAL) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->cntr_idx; drvdata->cntr_val[idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_val); static ssize_t cntr_ctrl_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->cntr_idx; val = drvdata->cntr_ctrl[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t cntr_ctrl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->cntr_idx; drvdata->cntr_ctrl[idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(cntr_ctrl); static ssize_t res_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->res_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t res_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; /* Resource selector pair 0 is always implemented and reserved */ if ((val == 0) || (val >= drvdata->nr_resource)) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->res_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(res_idx); static ssize_t res_ctrl_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->res_idx; val = drvdata->res_ctrl[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t res_ctrl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); idx = drvdata->res_idx; /* For odd idx pair inversal bit is RES0 */ if (idx % 2 != 0) /* PAIRINV, bit[21] */ val &= ~BIT(21); drvdata->res_ctrl[idx] = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(res_ctrl); static ssize_t ctxid_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->ctxid_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t ctxid_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val >= drvdata->numcidc) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->ctxid_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(ctxid_idx); static ssize_t ctxid_pid_show(struct device *dev, struct device_attribute *attr, char *buf) { u8 idx; unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); idx = drvdata->ctxid_idx; val = (unsigned long)drvdata->ctxid_vpid[idx]; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t ctxid_pid_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 idx; unsigned long vpid, pid; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); /* * only implemented when ctxid tracing is enabled, i.e. at least one * ctxid comparator is implemented and ctxid is greater than 0 bits * in length */ if (!drvdata->ctxid_size || !drvdata->numcidc) return -EINVAL; if (kstrtoul(buf, 16, &vpid)) return -EINVAL; pid = coresight_vpid_to_pid(vpid); spin_lock(&drvdata->spinlock); idx = drvdata->ctxid_idx; drvdata->ctxid_pid[idx] = (u64)pid; drvdata->ctxid_vpid[idx] = (u64)vpid; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(ctxid_pid); static ssize_t ctxid_masks_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val1, val2; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val1 = drvdata->ctxid_mask0; val2 = drvdata->ctxid_mask1; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2); } static ssize_t ctxid_masks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 i, j, maskbyte; unsigned long val1, val2, mask; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); /* * only implemented when ctxid tracing is enabled, i.e. at least one * ctxid comparator is implemented and ctxid is greater than 0 bits * in length */ if (!drvdata->ctxid_size || !drvdata->numcidc) return -EINVAL; if (sscanf(buf, "%lx %lx", &val1, &val2) != 2) return -EINVAL; spin_lock(&drvdata->spinlock); /* * each byte[0..3] controls mask value applied to ctxid * comparator[0..3] */ switch (drvdata->numcidc) { case 0x1: /* COMP0, bits[7:0] */ drvdata->ctxid_mask0 = val1 & 0xFF; break; case 0x2: /* COMP1, bits[15:8] */ drvdata->ctxid_mask0 = val1 & 0xFFFF; break; case 0x3: /* COMP2, bits[23:16] */ drvdata->ctxid_mask0 = val1 & 0xFFFFFF; break; case 0x4: /* COMP3, bits[31:24] */ drvdata->ctxid_mask0 = val1; break; case 0x5: /* COMP4, bits[7:0] */ drvdata->ctxid_mask0 = val1; drvdata->ctxid_mask1 = val2 & 0xFF; break; case 0x6: /* COMP5, bits[15:8] */ drvdata->ctxid_mask0 = val1; drvdata->ctxid_mask1 = val2 & 0xFFFF; break; case 0x7: /* COMP6, bits[23:16] */ drvdata->ctxid_mask0 = val1; drvdata->ctxid_mask1 = val2 & 0xFFFFFF; break; case 0x8: /* COMP7, bits[31:24] */ drvdata->ctxid_mask0 = val1; drvdata->ctxid_mask1 = val2; break; default: break; } /* * If software sets a mask bit to 1, it must program relevant byte * of ctxid comparator value 0x0, otherwise behavior is unpredictable. * For example, if bit[3] of ctxid_mask0 is 1, we must clear bits[31:24] * of ctxid comparator0 value (corresponding to byte 0) register. */ mask = drvdata->ctxid_mask0; for (i = 0; i < drvdata->numcidc; i++) { /* mask value of corresponding ctxid comparator */ maskbyte = mask & ETMv4_EVENT_MASK; /* * each bit corresponds to a byte of respective ctxid comparator * value register */ for (j = 0; j < 8; j++) { if (maskbyte & 1) drvdata->ctxid_pid[i] &= ~(0xFF << (j * 8)); maskbyte >>= 1; } /* Select the next ctxid comparator mask value */ if (i == 3) /* ctxid comparators[4-7] */ mask = drvdata->ctxid_mask1; else mask >>= 0x8; } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(ctxid_masks); static ssize_t vmid_idx_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->vmid_idx; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t vmid_idx_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); if (kstrtoul(buf, 16, &val)) return -EINVAL; if (val >= drvdata->numvmidc) return -EINVAL; /* * Use spinlock to ensure index doesn't change while it gets * dereferenced multiple times within a spinlock block elsewhere. */ spin_lock(&drvdata->spinlock); drvdata->vmid_idx = val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(vmid_idx); static ssize_t vmid_val_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = (unsigned long)drvdata->vmid_val[drvdata->vmid_idx]; return scnprintf(buf, PAGE_SIZE, "%#lx\n", val); } static ssize_t vmid_val_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { unsigned long val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); /* * only implemented when vmid tracing is enabled, i.e. at least one * vmid comparator is implemented and at least 8 bit vmid size */ if (!drvdata->vmid_size || !drvdata->numvmidc) return -EINVAL; if (kstrtoul(buf, 16, &val)) return -EINVAL; spin_lock(&drvdata->spinlock); drvdata->vmid_val[drvdata->vmid_idx] = (u64)val; spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(vmid_val); static ssize_t vmid_masks_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long val1, val2; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); spin_lock(&drvdata->spinlock); val1 = drvdata->vmid_mask0; val2 = drvdata->vmid_mask1; spin_unlock(&drvdata->spinlock); return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2); } static ssize_t vmid_masks_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { u8 i, j, maskbyte; unsigned long val1, val2, mask; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); /* * only implemented when vmid tracing is enabled, i.e. at least one * vmid comparator is implemented and at least 8 bit vmid size */ if (!drvdata->vmid_size || !drvdata->numvmidc) return -EINVAL; if (sscanf(buf, "%lx %lx", &val1, &val2) != 2) return -EINVAL; spin_lock(&drvdata->spinlock); /* * each byte[0..3] controls mask value applied to vmid * comparator[0..3] */ switch (drvdata->numvmidc) { case 0x1: /* COMP0, bits[7:0] */ drvdata->vmid_mask0 = val1 & 0xFF; break; case 0x2: /* COMP1, bits[15:8] */ drvdata->vmid_mask0 = val1 & 0xFFFF; break; case 0x3: /* COMP2, bits[23:16] */ drvdata->vmid_mask0 = val1 & 0xFFFFFF; break; case 0x4: /* COMP3, bits[31:24] */ drvdata->vmid_mask0 = val1; break; case 0x5: /* COMP4, bits[7:0] */ drvdata->vmid_mask0 = val1; drvdata->vmid_mask1 = val2 & 0xFF; break; case 0x6: /* COMP5, bits[15:8] */ drvdata->vmid_mask0 = val1; drvdata->vmid_mask1 = val2 & 0xFFFF; break; case 0x7: /* COMP6, bits[23:16] */ drvdata->vmid_mask0 = val1; drvdata->vmid_mask1 = val2 & 0xFFFFFF; break; case 0x8: /* COMP7, bits[31:24] */ drvdata->vmid_mask0 = val1; drvdata->vmid_mask1 = val2; break; default: break; } /* * If software sets a mask bit to 1, it must program relevant byte * of vmid comparator value 0x0, otherwise behavior is unpredictable. * For example, if bit[3] of vmid_mask0 is 1, we must clear bits[31:24] * of vmid comparator0 value (corresponding to byte 0) register. */ mask = drvdata->vmid_mask0; for (i = 0; i < drvdata->numvmidc; i++) { /* mask value of corresponding vmid comparator */ maskbyte = mask & ETMv4_EVENT_MASK; /* * each bit corresponds to a byte of respective vmid comparator * value register */ for (j = 0; j < 8; j++) { if (maskbyte & 1) drvdata->vmid_val[i] &= ~(0xFF << (j * 8)); maskbyte >>= 1; } /* Select the next vmid comparator mask value */ if (i == 3) /* vmid comparators[4-7] */ mask = drvdata->vmid_mask1; else mask >>= 0x8; } spin_unlock(&drvdata->spinlock); return size; } static DEVICE_ATTR_RW(vmid_masks); static ssize_t cpu_show(struct device *dev, struct device_attribute *attr, char *buf) { int val; struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent); val = drvdata->cpu; return scnprintf(buf, PAGE_SIZE, "%d\n", val); } static DEVICE_ATTR_RO(cpu); static struct attribute *coresight_etmv4_attrs[] = { &dev_attr_nr_pe_cmp.attr, &dev_attr_nr_addr_cmp.attr, &dev_attr_nr_cntr.attr, &dev_attr_nr_ext_inp.attr, &dev_attr_numcidc.attr, &dev_attr_numvmidc.attr, &dev_attr_nrseqstate.attr, &dev_attr_nr_resource.attr, &dev_attr_nr_ss_cmp.attr, &dev_attr_reset.attr, &dev_attr_mode.attr, &dev_attr_pe.attr, &dev_attr_event.attr, &dev_attr_event_instren.attr, &dev_attr_event_ts.attr, &dev_attr_syncfreq.attr, &dev_attr_cyc_threshold.attr, &dev_attr_bb_ctrl.attr, &dev_attr_event_vinst.attr, &dev_attr_s_exlevel_vinst.attr, &dev_attr_ns_exlevel_vinst.attr, &dev_attr_addr_idx.attr, &dev_attr_addr_instdatatype.attr, &dev_attr_addr_single.attr, &dev_attr_addr_range.attr, &dev_attr_addr_start.attr, &dev_attr_addr_stop.attr, &dev_attr_addr_ctxtype.attr, &dev_attr_addr_context.attr, &dev_attr_seq_idx.attr, &dev_attr_seq_state.attr, &dev_attr_seq_event.attr, &dev_attr_seq_reset_event.attr, &dev_attr_cntr_idx.attr, &dev_attr_cntrldvr.attr, &dev_attr_cntr_val.attr, &dev_attr_cntr_ctrl.attr, &dev_attr_res_idx.attr, &dev_attr_res_ctrl.attr, &dev_attr_ctxid_idx.attr, &dev_attr_ctxid_pid.attr, &dev_attr_ctxid_masks.attr, &dev_attr_vmid_idx.attr, &dev_attr_vmid_val.attr, &dev_attr_vmid_masks.attr, &dev_attr_cpu.attr, NULL, }; #define coresight_simple_func(name, offset) \ static ssize_t name##_show(struct device *_dev, \ struct device_attribute *attr, char *buf) \ { \ struct etmv4_drvdata *drvdata = dev_get_drvdata(_dev->parent); \ return scnprintf(buf, PAGE_SIZE, "0x%x\n", \ readl_relaxed(drvdata->base + offset)); \ } \ DEVICE_ATTR_RO(name) coresight_simple_func(trcoslsr, TRCOSLSR); coresight_simple_func(trcpdcr, TRCPDCR); coresight_simple_func(trcpdsr, TRCPDSR); coresight_simple_func(trclsr, TRCLSR); coresight_simple_func(trcauthstatus, TRCAUTHSTATUS); coresight_simple_func(trcdevid, TRCDEVID); coresight_simple_func(trcdevtype, TRCDEVTYPE); coresight_simple_func(trcpidr0, TRCPIDR0); coresight_simple_func(trcpidr1, TRCPIDR1); coresight_simple_func(trcpidr2, TRCPIDR2); coresight_simple_func(trcpidr3, TRCPIDR3); static struct attribute *coresight_etmv4_mgmt_attrs[] = { &dev_attr_trcoslsr.attr, &dev_attr_trcpdcr.attr, &dev_attr_trcpdsr.attr, &dev_attr_trclsr.attr, &dev_attr_trcauthstatus.attr, &dev_attr_trcdevid.attr, &dev_attr_trcdevtype.attr, &dev_attr_trcpidr0.attr, &dev_attr_trcpidr1.attr, &dev_attr_trcpidr2.attr, &dev_attr_trcpidr3.attr, NULL, }; coresight_simple_func(trcidr0, TRCIDR0); coresight_simple_func(trcidr1, TRCIDR1); coresight_simple_func(trcidr2, TRCIDR2); coresight_simple_func(trcidr3, TRCIDR3); coresight_simple_func(trcidr4, TRCIDR4); coresight_simple_func(trcidr5, TRCIDR5); /* trcidr[6,7] are reserved */ coresight_simple_func(trcidr8, TRCIDR8); coresight_simple_func(trcidr9, TRCIDR9); coresight_simple_func(trcidr10, TRCIDR10); coresight_simple_func(trcidr11, TRCIDR11); coresight_simple_func(trcidr12, TRCIDR12); coresight_simple_func(trcidr13, TRCIDR13); static struct attribute *coresight_etmv4_trcidr_attrs[] = { &dev_attr_trcidr0.attr, &dev_attr_trcidr1.attr, &dev_attr_trcidr2.attr, &dev_attr_trcidr3.attr, &dev_attr_trcidr4.attr, &dev_attr_trcidr5.attr, /* trcidr[6,7] are reserved */ &dev_attr_trcidr8.attr, &dev_attr_trcidr9.attr, &dev_attr_trcidr10.attr, &dev_attr_trcidr11.attr, &dev_attr_trcidr12.attr, &dev_attr_trcidr13.attr, NULL, }; static const struct attribute_group coresight_etmv4_group = { .attrs = coresight_etmv4_attrs, }; static const struct attribute_group coresight_etmv4_mgmt_group = { .attrs = coresight_etmv4_mgmt_attrs, .name = "mgmt", }; static const struct attribute_group coresight_etmv4_trcidr_group = { .attrs = coresight_etmv4_trcidr_attrs, .name = "trcidr", }; static const struct attribute_group *coresight_etmv4_groups[] = { &coresight_etmv4_group, &coresight_etmv4_mgmt_group, &coresight_etmv4_trcidr_group, NULL, }; static void etm4_init_arch_data(void *info) { u32 etmidr0; u32 etmidr1; u32 etmidr2; u32 etmidr3; u32 etmidr4; u32 etmidr5; struct etmv4_drvdata *drvdata = info; CS_UNLOCK(drvdata->base); /* find all capabilities of the tracing unit */ etmidr0 = readl_relaxed(drvdata->base + TRCIDR0); /* INSTP0, bits[2:1] P0 tracing support field */ if (BMVAL(etmidr0, 1, 1) && BMVAL(etmidr0, 2, 2)) drvdata->instrp0 = true; else drvdata->instrp0 = false; /* TRCBB, bit[5] Branch broadcast tracing support bit */ if (BMVAL(etmidr0, 5, 5)) drvdata->trcbb = true; else drvdata->trcbb = false; /* TRCCOND, bit[6] Conditional instruction tracing support bit */ if (BMVAL(etmidr0, 6, 6)) drvdata->trccond = true; else drvdata->trccond = false; /* TRCCCI, bit[7] Cycle counting instruction bit */ if (BMVAL(etmidr0, 7, 7)) drvdata->trccci = true; else drvdata->trccci = false; /* RETSTACK, bit[9] Return stack bit */ if (BMVAL(etmidr0, 9, 9)) drvdata->retstack = true; else drvdata->retstack = false; /* NUMEVENT, bits[11:10] Number of events field */ drvdata->nr_event = BMVAL(etmidr0, 10, 11); /* QSUPP, bits[16:15] Q element support field */ drvdata->q_support = BMVAL(etmidr0, 15, 16); /* TSSIZE, bits[28:24] Global timestamp size field */ drvdata->ts_size = BMVAL(etmidr0, 24, 28); /* base architecture of trace unit */ etmidr1 = readl_relaxed(drvdata->base + TRCIDR1); /* * TRCARCHMIN, bits[7:4] architecture the minor version number * TRCARCHMAJ, bits[11:8] architecture major versin number */ drvdata->arch = BMVAL(etmidr1, 4, 11); /* maximum size of resources */ etmidr2 = readl_relaxed(drvdata->base + TRCIDR2); /* CIDSIZE, bits[9:5] Indicates the Context ID size */ drvdata->ctxid_size = BMVAL(etmidr2, 5, 9); /* VMIDSIZE, bits[14:10] Indicates the VMID size */ drvdata->vmid_size = BMVAL(etmidr2, 10, 14); /* CCSIZE, bits[28:25] size of the cycle counter in bits minus 12 */ drvdata->ccsize = BMVAL(etmidr2, 25, 28); etmidr3 = readl_relaxed(drvdata->base + TRCIDR3); /* CCITMIN, bits[11:0] minimum threshold value that can be programmed */ drvdata->ccitmin = BMVAL(etmidr3, 0, 11); /* EXLEVEL_S, bits[19:16] Secure state instruction tracing */ drvdata->s_ex_level = BMVAL(etmidr3, 16, 19); /* EXLEVEL_NS, bits[23:20] Non-secure state instruction tracing */ drvdata->ns_ex_level = BMVAL(etmidr3, 20, 23); /* * TRCERR, bit[24] whether a trace unit can trace a * system error exception. */ if (BMVAL(etmidr3, 24, 24)) drvdata->trc_error = true; else drvdata->trc_error = false; /* SYNCPR, bit[25] implementation has a fixed synchronization period? */ if (BMVAL(etmidr3, 25, 25)) drvdata->syncpr = true; else drvdata->syncpr = false; /* STALLCTL, bit[26] is stall control implemented? */ if (BMVAL(etmidr3, 26, 26)) drvdata->stallctl = true; else drvdata->stallctl = false; /* SYSSTALL, bit[27] implementation can support stall control? */ if (BMVAL(etmidr3, 27, 27)) drvdata->sysstall = true; else drvdata->sysstall = false; /* NUMPROC, bits[30:28] the number of PEs available for tracing */ drvdata->nr_pe = BMVAL(etmidr3, 28, 30); /* NOOVERFLOW, bit[31] is trace overflow prevention supported */ if (BMVAL(etmidr3, 31, 31)) drvdata->nooverflow = true; else drvdata->nooverflow = false; /* number of resources trace unit supports */ etmidr4 = readl_relaxed(drvdata->base + TRCIDR4); /* NUMACPAIRS, bits[0:3] number of addr comparator pairs for tracing */ drvdata->nr_addr_cmp = BMVAL(etmidr4, 0, 3); /* NUMPC, bits[15:12] number of PE comparator inputs for tracing */ drvdata->nr_pe_cmp = BMVAL(etmidr4, 12, 15); /* NUMRSPAIR, bits[19:16] the number of resource pairs for tracing */ drvdata->nr_resource = BMVAL(etmidr4, 16, 19); /* * NUMSSCC, bits[23:20] the number of single-shot * comparator control for tracing */ drvdata->nr_ss_cmp = BMVAL(etmidr4, 20, 23); /* NUMCIDC, bits[27:24] number of Context ID comparators for tracing */ drvdata->numcidc = BMVAL(etmidr4, 24, 27); /* NUMVMIDC, bits[31:28] number of VMID comparators for tracing */ drvdata->numvmidc = BMVAL(etmidr4, 28, 31); etmidr5 = readl_relaxed(drvdata->base + TRCIDR5); /* NUMEXTIN, bits[8:0] number of external inputs implemented */ drvdata->nr_ext_inp = BMVAL(etmidr5, 0, 8); /* TRACEIDSIZE, bits[21:16] indicates the trace ID width */ drvdata->trcid_size = BMVAL(etmidr5, 16, 21); /* ATBTRIG, bit[22] implementation can support ATB triggers? */ if (BMVAL(etmidr5, 22, 22)) drvdata->atbtrig = true; else drvdata->atbtrig = false; /* * LPOVERRIDE, bit[23] implementation supports * low-power state override */ if (BMVAL(etmidr5, 23, 23)) drvdata->lpoverride = true; else drvdata->lpoverride = false; /* NUMSEQSTATE, bits[27:25] number of sequencer states implemented */ drvdata->nrseqstate = BMVAL(etmidr5, 25, 27); /* NUMCNTR, bits[30:28] number of counters available for tracing */ drvdata->nr_cntr = BMVAL(etmidr5, 28, 30); CS_LOCK(drvdata->base); } static void etm4_init_default_data(struct etmv4_drvdata *drvdata) { int i; drvdata->pe_sel = 0x0; drvdata->cfg = (ETMv4_MODE_CTXID | ETM_MODE_VMID | ETMv4_MODE_TIMESTAMP | ETM_MODE_RETURNSTACK); /* disable all events tracing */ drvdata->eventctrl0 = 0x0; drvdata->eventctrl1 = 0x0; /* disable stalling */ drvdata->stall_ctrl = 0x0; /* disable timestamp event */ drvdata->ts_ctrl = 0x0; /* enable trace synchronization every 4096 bytes for trace */ if (drvdata->syncpr == false) drvdata->syncfreq = 0xC; /* * enable viewInst to trace everything with start-stop logic in * started state */ drvdata->vinst_ctrl |= BIT(0); /* set initial state of start-stop logic */ if (drvdata->nr_addr_cmp) drvdata->vinst_ctrl |= BIT(9); /* no address range filtering for ViewInst */ drvdata->viiectlr = 0x0; /* no start-stop filtering for ViewInst */ drvdata->vissctlr = 0x0; /* disable seq events */ for (i = 0; i < drvdata->nrseqstate-1; i++) drvdata->seq_ctrl[i] = 0x0; drvdata->seq_rst = 0x0; drvdata->seq_state = 0x0; /* disable external input events */ drvdata->ext_inp = 0x0; for (i = 0; i < drvdata->nr_cntr; i++) { drvdata->cntrldvr[i] = 0x0; drvdata->cntr_ctrl[i] = 0x0; drvdata->cntr_val[i] = 0x0; } for (i = 2; i < drvdata->nr_resource * 2; i++) drvdata->res_ctrl[i] = 0x0; for (i = 0; i < drvdata->nr_ss_cmp; i++) { drvdata->ss_ctrl[i] = 0x0; drvdata->ss_pe_cmp[i] = 0x0; } if (drvdata->nr_addr_cmp >= 1) { drvdata->addr_val[0] = (unsigned long)_stext; drvdata->addr_val[1] = (unsigned long)_etext; drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE; drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE; } for (i = 0; i < drvdata->numcidc; i++) { drvdata->ctxid_pid[i] = 0x0; drvdata->ctxid_vpid[i] = 0x0; } drvdata->ctxid_mask0 = 0x0; drvdata->ctxid_mask1 = 0x0; for (i = 0; i < drvdata->numvmidc; i++) drvdata->vmid_val[i] = 0x0; drvdata->vmid_mask0 = 0x0; drvdata->vmid_mask1 = 0x0; /* * A trace ID value of 0 is invalid, so let's start at some * random value that fits in 7 bits. ETMv3.x has 0x10 so let's * start at 0x20. */ drvdata->trcid = 0x20 + drvdata->cpu; } static int etm4_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; if (!etmdrvdata[cpu]) goto out; switch (action & (~CPU_TASKS_FROZEN)) { case CPU_STARTING: spin_lock(&etmdrvdata[cpu]->spinlock); if (!etmdrvdata[cpu]->os_unlock) { etm4_os_unlock(etmdrvdata[cpu]); etmdrvdata[cpu]->os_unlock = true; } if (etmdrvdata[cpu]->enable) etm4_enable_hw(etmdrvdata[cpu]); spin_unlock(&etmdrvdata[cpu]->spinlock); break; case CPU_ONLINE: if (etmdrvdata[cpu]->boot_enable && !etmdrvdata[cpu]->sticky_enable) coresight_enable(etmdrvdata[cpu]->csdev); break; case CPU_DYING: spin_lock(&etmdrvdata[cpu]->spinlock); if (etmdrvdata[cpu]->enable) etm4_disable_hw(etmdrvdata[cpu]); spin_unlock(&etmdrvdata[cpu]->spinlock); break; } out: return NOTIFY_OK; } static struct notifier_block etm4_cpu_notifier = { .notifier_call = etm4_cpu_callback, }; static int etm4_probe(struct amba_device *adev, const struct amba_id *id) { int ret; void __iomem *base; struct device *dev = &adev->dev; struct coresight_platform_data *pdata = NULL; struct etmv4_drvdata *drvdata; struct resource *res = &adev->res; struct coresight_desc *desc; struct device_node *np = adev->dev.of_node; desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL); if (!desc) return -ENOMEM; drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL); if (!drvdata) return -ENOMEM; if (np) { pdata = of_get_coresight_platform_data(dev, np); if (IS_ERR(pdata)) return PTR_ERR(pdata); adev->dev.platform_data = pdata; } drvdata->dev = &adev->dev; dev_set_drvdata(dev, drvdata); /* Validity for the resource is already checked by the AMBA core */ base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); drvdata->base = base; spin_lock_init(&drvdata->spinlock); drvdata->cpu = pdata ? pdata->cpu : 0; get_online_cpus(); etmdrvdata[drvdata->cpu] = drvdata; if (!smp_call_function_single(drvdata->cpu, etm4_os_unlock, drvdata, 1)) drvdata->os_unlock = true; if (smp_call_function_single(drvdata->cpu, etm4_init_arch_data, drvdata, 1)) dev_err(dev, "ETM arch init failed\n"); if (!etm4_count++) register_hotcpu_notifier(&etm4_cpu_notifier); put_online_cpus(); if (etm4_arch_supported(drvdata->arch) == false) { ret = -EINVAL; goto err_arch_supported; } etm4_init_default_data(drvdata); pm_runtime_put(&adev->dev); desc->type = CORESIGHT_DEV_TYPE_SOURCE; desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC; desc->ops = &etm4_cs_ops; desc->pdata = pdata; desc->dev = dev; desc->groups = coresight_etmv4_groups; drvdata->csdev = coresight_register(desc); if (IS_ERR(drvdata->csdev)) { ret = PTR_ERR(drvdata->csdev); goto err_coresight_register; } dev_info(dev, "%s initialized\n", (char *)id->data); if (boot_enable) { coresight_enable(drvdata->csdev); drvdata->boot_enable = true; } return 0; err_arch_supported: pm_runtime_put(&adev->dev); err_coresight_register: if (--etm4_count == 0) unregister_hotcpu_notifier(&etm4_cpu_notifier); return ret; } static int etm4_remove(struct amba_device *adev) { struct etmv4_drvdata *drvdata = amba_get_drvdata(adev); coresight_unregister(drvdata->csdev); if (--etm4_count == 0) unregister_hotcpu_notifier(&etm4_cpu_notifier); return 0; } static struct amba_id etm4_ids[] = { { /* ETM 4.0 - Qualcomm */ .id = 0x0003b95d, .mask = 0x0003ffff, .data = "ETM 4.0", }, { /* ETM 4.0 - Juno board */ .id = 0x000bb95e, .mask = 0x000fffff, .data = "ETM 4.0", }, { 0, 0}, }; static struct amba_driver etm4x_driver = { .drv = { .name = "coresight-etm4x", }, .probe = etm4_probe, .remove = etm4_remove, .id_table = etm4_ids, }; module_amba_driver(etm4x_driver);