/* * lm93.c - Part of lm_sensors, Linux kernel modules for hardware monitoring * * Author/Maintainer: Mark M. Hoffman * Copyright (c) 2004 Utilitek Systems, Inc. * * derived in part from lm78.c: * Copyright (c) 1998, 1999 Frodo Looijaard * * derived in part from lm85.c: * Copyright (c) 2002, 2003 Philip Pokorny * Copyright (c) 2003 Margit Schubert-While * * derived in part from w83l785ts.c: * Copyright (c) 2003-2004 Jean Delvare * * Ported to Linux 2.6 by Eric J. Bowersox * Copyright (c) 2005 Aspen Systems, Inc. * * Adapted to 2.6.20 by Carsten Emde * Copyright (c) 2006 Carsten Emde, Open Source Automation Development Lab * * Modified for mainline integration by Hans J. Koch * Copyright (c) 2007 Hans J. Koch, Linutronix GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include /* LM93 REGISTER ADDRESSES */ /* miscellaneous */ #define LM93_REG_MFR_ID 0x3e #define LM93_REG_VER 0x3f #define LM93_REG_STATUS_CONTROL 0xe2 #define LM93_REG_CONFIG 0xe3 #define LM93_REG_SLEEP_CONTROL 0xe4 /* alarm values start here */ #define LM93_REG_HOST_ERROR_1 0x48 /* voltage inputs: in1-in16 (nr => 0-15) */ #define LM93_REG_IN(nr) (0x56 + (nr)) #define LM93_REG_IN_MIN(nr) (0x90 + (nr) * 2) #define LM93_REG_IN_MAX(nr) (0x91 + (nr) * 2) /* temperature inputs: temp1-temp4 (nr => 0-3) */ #define LM93_REG_TEMP(nr) (0x50 + (nr)) #define LM93_REG_TEMP_MIN(nr) (0x78 + (nr) * 2) #define LM93_REG_TEMP_MAX(nr) (0x79 + (nr) * 2) /* temp[1-4]_auto_boost (nr => 0-3) */ #define LM93_REG_BOOST(nr) (0x80 + (nr)) /* #PROCHOT inputs: prochot1-prochot2 (nr => 0-1) */ #define LM93_REG_PROCHOT_CUR(nr) (0x67 + (nr) * 2) #define LM93_REG_PROCHOT_AVG(nr) (0x68 + (nr) * 2) #define LM93_REG_PROCHOT_MAX(nr) (0xb0 + (nr)) /* fan tach inputs: fan1-fan4 (nr => 0-3) */ #define LM93_REG_FAN(nr) (0x6e + (nr) * 2) #define LM93_REG_FAN_MIN(nr) (0xb4 + (nr) * 2) /* pwm outputs: pwm1-pwm2 (nr => 0-1, reg => 0-3) */ #define LM93_REG_PWM_CTL(nr, reg) (0xc8 + (reg) + (nr) * 4) #define LM93_PWM_CTL1 0x0 #define LM93_PWM_CTL2 0x1 #define LM93_PWM_CTL3 0x2 #define LM93_PWM_CTL4 0x3 /* GPIO input state */ #define LM93_REG_GPI 0x6b /* vid inputs: vid1-vid2 (nr => 0-1) */ #define LM93_REG_VID(nr) (0x6c + (nr)) /* vccp1 & vccp2: VID relative inputs (nr => 0-1) */ #define LM93_REG_VCCP_LIMIT_OFF(nr) (0xb2 + (nr)) /* temp[1-4]_auto_boost_hyst */ #define LM93_REG_BOOST_HYST_12 0xc0 #define LM93_REG_BOOST_HYST_34 0xc1 #define LM93_REG_BOOST_HYST(nr) (0xc0 + (nr)/2) /* temp[1-4]_auto_pwm_[min|hyst] */ #define LM93_REG_PWM_MIN_HYST_12 0xc3 #define LM93_REG_PWM_MIN_HYST_34 0xc4 #define LM93_REG_PWM_MIN_HYST(nr) (0xc3 + (nr)/2) /* prochot_override & prochot_interval */ #define LM93_REG_PROCHOT_OVERRIDE 0xc6 #define LM93_REG_PROCHOT_INTERVAL 0xc7 /* temp[1-4]_auto_base (nr => 0-3) */ #define LM93_REG_TEMP_BASE(nr) (0xd0 + (nr)) /* temp[1-4]_auto_offsets (step => 0-11) */ #define LM93_REG_TEMP_OFFSET(step) (0xd4 + (step)) /* #PROCHOT & #VRDHOT PWM ramp control */ #define LM93_REG_PWM_RAMP_CTL 0xbf /* miscellaneous */ #define LM93_REG_SFC1 0xbc #define LM93_REG_SFC2 0xbd #define LM93_REG_GPI_VID_CTL 0xbe #define LM93_REG_SF_TACH_TO_PWM 0xe0 /* error masks */ #define LM93_REG_GPI_ERR_MASK 0xec #define LM93_REG_MISC_ERR_MASK 0xed /* LM93 REGISTER VALUES */ #define LM93_MFR_ID 0x73 #define LM93_MFR_ID_PROTOTYPE 0x72 /* LM94 REGISTER VALUES */ #define LM94_MFR_ID_2 0x7a #define LM94_MFR_ID 0x79 #define LM94_MFR_ID_PROTOTYPE 0x78 /* SMBus capabilities */ #define LM93_SMBUS_FUNC_FULL (I2C_FUNC_SMBUS_BYTE_DATA | \ I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_BLOCK_DATA) #define LM93_SMBUS_FUNC_MIN (I2C_FUNC_SMBUS_BYTE_DATA | \ I2C_FUNC_SMBUS_WORD_DATA) /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END }; /* Insmod parameters */ static bool disable_block; module_param(disable_block, bool, 0); MODULE_PARM_DESC(disable_block, "Set to non-zero to disable SMBus block data transactions."); static bool init; module_param(init, bool, 0); MODULE_PARM_DESC(init, "Set to non-zero to force chip initialization."); static int vccp_limit_type[2] = {0, 0}; module_param_array(vccp_limit_type, int, NULL, 0); MODULE_PARM_DESC(vccp_limit_type, "Configures in7 and in8 limit modes."); static int vid_agtl; module_param(vid_agtl, int, 0); MODULE_PARM_DESC(vid_agtl, "Configures VID pin input thresholds."); /* Driver data */ static struct i2c_driver lm93_driver; /* LM93 BLOCK READ COMMANDS */ static const struct { u8 cmd; u8 len; } lm93_block_read_cmds[12] = { { 0xf2, 8 }, { 0xf3, 8 }, { 0xf4, 6 }, { 0xf5, 16 }, { 0xf6, 4 }, { 0xf7, 8 }, { 0xf8, 12 }, { 0xf9, 32 }, { 0xfa, 8 }, { 0xfb, 8 }, { 0xfc, 16 }, { 0xfd, 9 }, }; /* * ALARMS: SYSCTL format described further below * REG: 64 bits in 8 registers, as immediately below */ struct block1_t { u8 host_status_1; u8 host_status_2; u8 host_status_3; u8 host_status_4; u8 p1_prochot_status; u8 p2_prochot_status; u8 gpi_status; u8 fan_status; }; /* * Client-specific data */ struct lm93_data { struct device *hwmon_dev; struct mutex update_lock; unsigned long last_updated; /* In jiffies */ /* client update function */ void (*update)(struct lm93_data *, struct i2c_client *); char valid; /* !=0 if following fields are valid */ /* register values, arranged by block read groups */ struct block1_t block1; /* * temp1 - temp4: unfiltered readings * temp1 - temp2: filtered readings */ u8 block2[6]; /* vin1 - vin16: readings */ u8 block3[16]; /* prochot1 - prochot2: readings */ struct { u8 cur; u8 avg; } block4[2]; /* fan counts 1-4 => 14-bits, LE, *left* justified */ u16 block5[4]; /* block6 has a lot of data we don't need */ struct { u8 min; u8 max; } temp_lim[4]; /* vin1 - vin16: low and high limits */ struct { u8 min; u8 max; } block7[16]; /* fan count limits 1-4 => same format as block5 */ u16 block8[4]; /* pwm control registers (2 pwms, 4 regs) */ u8 block9[2][4]; /* auto/pwm base temp and offset temp registers */ struct { u8 base[4]; u8 offset[12]; } block10; /* master config register */ u8 config; /* VID1 & VID2 => register format, 6-bits, right justified */ u8 vid[2]; /* prochot1 - prochot2: limits */ u8 prochot_max[2]; /* vccp1 & vccp2 (in7 & in8): VID relative limits (register format) */ u8 vccp_limits[2]; /* GPIO input state (register format, i.e. inverted) */ u8 gpi; /* #PROCHOT override (register format) */ u8 prochot_override; /* #PROCHOT intervals (register format) */ u8 prochot_interval; /* Fan Boost Temperatures (register format) */ u8 boost[4]; /* Fan Boost Hysteresis (register format) */ u8 boost_hyst[2]; /* Temperature Zone Min. PWM & Hysteresis (register format) */ u8 auto_pwm_min_hyst[2]; /* #PROCHOT & #VRDHOT PWM Ramp Control */ u8 pwm_ramp_ctl; /* miscellaneous setup regs */ u8 sfc1; u8 sfc2; u8 sf_tach_to_pwm; /* * The two PWM CTL2 registers can read something other than what was * last written for the OVR_DC field (duty cycle override). So, we * save the user-commanded value here. */ u8 pwm_override[2]; }; /* * VID: mV * REG: 6-bits, right justified, *always* using Intel VRM/VRD 10 */ static int LM93_VID_FROM_REG(u8 reg) { return vid_from_reg((reg & 0x3f), 100); } /* min, max, and nominal register values, per channel (u8) */ static const u8 lm93_vin_reg_min[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xae, }; static const u8 lm93_vin_reg_max[16] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa, 0xff, 0xff, 0xff, 0xff, 0xff, 0xd1, }; /* * Values from the datasheet. They're here for documentation only. * static const u8 lm93_vin_reg_nom[16] = { * 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, * 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0x40, 0xc0, * }; */ /* min, max, and nominal voltage readings, per channel (mV)*/ static const unsigned long lm93_vin_val_min[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3000, }; static const unsigned long lm93_vin_val_max[16] = { 1236, 1236, 1236, 1600, 2000, 2000, 1600, 1600, 4400, 6500, 3333, 2625, 1312, 1312, 1236, 3600, }; /* * Values from the datasheet. They're here for documentation only. * static const unsigned long lm93_vin_val_nom[16] = { * 927, 927, 927, 1200, 1500, 1500, 1200, 1200, * 3300, 5000, 2500, 1969, 984, 984, 309, 3300, * }; */ static unsigned LM93_IN_FROM_REG(int nr, u8 reg) { const long uv_max = lm93_vin_val_max[nr] * 1000; const long uv_min = lm93_vin_val_min[nr] * 1000; const long slope = (uv_max - uv_min) / (lm93_vin_reg_max[nr] - lm93_vin_reg_min[nr]); const long intercept = uv_min - slope * lm93_vin_reg_min[nr]; return (slope * reg + intercept + 500) / 1000; } /* * IN: mV, limits determined by channel nr * REG: scaling determined by channel nr */ static u8 LM93_IN_TO_REG(int nr, unsigned val) { /* range limit */ const long mv = clamp_val(val, lm93_vin_val_min[nr], lm93_vin_val_max[nr]); /* try not to lose too much precision here */ const long uv = mv * 1000; const long uv_max = lm93_vin_val_max[nr] * 1000; const long uv_min = lm93_vin_val_min[nr] * 1000; /* convert */ const long slope = (uv_max - uv_min) / (lm93_vin_reg_max[nr] - lm93_vin_reg_min[nr]); const long intercept = uv_min - slope * lm93_vin_reg_min[nr]; u8 result = ((uv - intercept + (slope/2)) / slope); result = clamp_val(result, lm93_vin_reg_min[nr], lm93_vin_reg_max[nr]); return result; } /* vid in mV, upper == 0 indicates low limit, otherwise upper limit */ static unsigned LM93_IN_REL_FROM_REG(u8 reg, int upper, int vid) { const long uv_offset = upper ? (((reg >> 4 & 0x0f) + 1) * 12500) : (((reg >> 0 & 0x0f) + 1) * -25000); const long uv_vid = vid * 1000; return (uv_vid + uv_offset + 5000) / 10000; } #define LM93_IN_MIN_FROM_REG(reg, vid) LM93_IN_REL_FROM_REG((reg), 0, (vid)) #define LM93_IN_MAX_FROM_REG(reg, vid) LM93_IN_REL_FROM_REG((reg), 1, (vid)) /* * vid in mV , upper == 0 indicates low limit, otherwise upper limit * upper also determines which nibble of the register is returned * (the other nibble will be 0x0) */ static u8 LM93_IN_REL_TO_REG(unsigned val, int upper, int vid) { long uv_offset = vid * 1000 - val * 10000; if (upper) { uv_offset = clamp_val(uv_offset, 12500, 200000); return (u8)((uv_offset / 12500 - 1) << 4); } else { uv_offset = clamp_val(uv_offset, -400000, -25000); return (u8)((uv_offset / -25000 - 1) << 0); } } /* * TEMP: 1/1000 degrees C (-128C to +127C) * REG: 1C/bit, two's complement */ static int LM93_TEMP_FROM_REG(u8 reg) { return (s8)reg * 1000; } #define LM93_TEMP_MIN (-128000) #define LM93_TEMP_MAX (127000) /* * TEMP: 1/1000 degrees C (-128C to +127C) * REG: 1C/bit, two's complement */ static u8 LM93_TEMP_TO_REG(long temp) { int ntemp = clamp_val(temp, LM93_TEMP_MIN, LM93_TEMP_MAX); ntemp += (ntemp < 0 ? -500 : 500); return (u8)(ntemp / 1000); } /* Determine 4-bit temperature offset resolution */ static int LM93_TEMP_OFFSET_MODE_FROM_REG(u8 sfc2, int nr) { /* mode: 0 => 1C/bit, nonzero => 0.5C/bit */ return sfc2 & (nr < 2 ? 0x10 : 0x20); } /* * This function is common to all 4-bit temperature offsets * reg is 4 bits right justified * mode 0 => 1C/bit, mode !0 => 0.5C/bit */ static int LM93_TEMP_OFFSET_FROM_REG(u8 reg, int mode) { return (reg & 0x0f) * (mode ? 5 : 10); } #define LM93_TEMP_OFFSET_MIN (0) #define LM93_TEMP_OFFSET_MAX0 (150) #define LM93_TEMP_OFFSET_MAX1 (75) /* * This function is common to all 4-bit temperature offsets * returns 4 bits right justified * mode 0 => 1C/bit, mode !0 => 0.5C/bit */ static u8 LM93_TEMP_OFFSET_TO_REG(int off, int mode) { int factor = mode ? 5 : 10; off = clamp_val(off, LM93_TEMP_OFFSET_MIN, mode ? LM93_TEMP_OFFSET_MAX1 : LM93_TEMP_OFFSET_MAX0); return (u8)((off + factor/2) / factor); } /* 0 <= nr <= 3 */ static int LM93_TEMP_AUTO_OFFSET_FROM_REG(u8 reg, int nr, int mode) { /* temp1-temp2 (nr=0,1) use lower nibble */ if (nr < 2) return LM93_TEMP_OFFSET_FROM_REG(reg & 0x0f, mode); /* temp3-temp4 (nr=2,3) use upper nibble */ else return LM93_TEMP_OFFSET_FROM_REG(reg >> 4 & 0x0f, mode); } /* * TEMP: 1/10 degrees C (0C to +15C (mode 0) or +7.5C (mode non-zero)) * REG: 1.0C/bit (mode 0) or 0.5C/bit (mode non-zero) * 0 <= nr <= 3 */ static u8 LM93_TEMP_AUTO_OFFSET_TO_REG(u8 old, int off, int nr, int mode) { u8 new = LM93_TEMP_OFFSET_TO_REG(off, mode); /* temp1-temp2 (nr=0,1) use lower nibble */ if (nr < 2) return (old & 0xf0) | (new & 0x0f); /* temp3-temp4 (nr=2,3) use upper nibble */ else return (new << 4 & 0xf0) | (old & 0x0f); } static int LM93_AUTO_BOOST_HYST_FROM_REGS(struct lm93_data *data, int nr, int mode) { u8 reg; switch (nr) { case 0: reg = data->boost_hyst[0] & 0x0f; break; case 1: reg = data->boost_hyst[0] >> 4 & 0x0f; break; case 2: reg = data->boost_hyst[1] & 0x0f; break; case 3: default: reg = data->boost_hyst[1] >> 4 & 0x0f; break; } return LM93_TEMP_FROM_REG(data->boost[nr]) - LM93_TEMP_OFFSET_FROM_REG(reg, mode); } static u8 LM93_AUTO_BOOST_HYST_TO_REG(struct lm93_data *data, long hyst, int nr, int mode) { u8 reg = LM93_TEMP_OFFSET_TO_REG( (LM93_TEMP_FROM_REG(data->boost[nr]) - hyst), mode); switch (nr) { case 0: reg = (data->boost_hyst[0] & 0xf0) | (reg & 0x0f); break; case 1: reg = (reg << 4 & 0xf0) | (data->boost_hyst[0] & 0x0f); break; case 2: reg = (data->boost_hyst[1] & 0xf0) | (reg & 0x0f); break; case 3: default: reg = (reg << 4 & 0xf0) | (data->boost_hyst[1] & 0x0f); break; } return reg; } /* * PWM: 0-255 per sensors documentation * REG: 0-13 as mapped below... right justified */ enum pwm_freq { LM93_PWM_MAP_HI_FREQ, LM93_PWM_MAP_LO_FREQ }; static int lm93_pwm_map[2][16] = { { 0x00, /* 0.00% */ 0x40, /* 25.00% */ 0x50, /* 31.25% */ 0x60, /* 37.50% */ 0x70, /* 43.75% */ 0x80, /* 50.00% */ 0x90, /* 56.25% */ 0xa0, /* 62.50% */ 0xb0, /* 68.75% */ 0xc0, /* 75.00% */ 0xd0, /* 81.25% */ 0xe0, /* 87.50% */ 0xf0, /* 93.75% */ 0xff, /* 100.00% */ 0xff, 0xff, /* 14, 15 are reserved and should never occur */ }, { 0x00, /* 0.00% */ 0x40, /* 25.00% */ 0x49, /* 28.57% */ 0x52, /* 32.14% */ 0x5b, /* 35.71% */ 0x64, /* 39.29% */ 0x6d, /* 42.86% */ 0x76, /* 46.43% */ 0x80, /* 50.00% */ 0x89, /* 53.57% */ 0x92, /* 57.14% */ 0xb6, /* 71.43% */ 0xdb, /* 85.71% */ 0xff, /* 100.00% */ 0xff, 0xff, /* 14, 15 are reserved and should never occur */ }, }; static int LM93_PWM_FROM_REG(u8 reg, enum pwm_freq freq) { return lm93_pwm_map[freq][reg & 0x0f]; } /* round up to nearest match */ static u8 LM93_PWM_TO_REG(int pwm, enum pwm_freq freq) { int i; for (i = 0; i < 13; i++) if (pwm <= lm93_pwm_map[freq][i]) break; /* can fall through with i==13 */ return (u8)i; } static int LM93_FAN_FROM_REG(u16 regs) { const u16 count = le16_to_cpu(regs) >> 2; return count == 0 ? -1 : count == 0x3fff ? 0 : 1350000 / count; } /* * RPM: (82.5 to 1350000) * REG: 14-bits, LE, *left* justified */ static u16 LM93_FAN_TO_REG(long rpm) { u16 count, regs; if (rpm == 0) { count = 0x3fff; } else { rpm = clamp_val(rpm, 1, 1000000); count = clamp_val((1350000 + rpm) / rpm, 1, 0x3ffe); } regs = count << 2; return cpu_to_le16(regs); } /* * PWM FREQ: HZ * REG: 0-7 as mapped below */ static int lm93_pwm_freq_map[8] = { 22500, 96, 84, 72, 60, 48, 36, 12 }; static int LM93_PWM_FREQ_FROM_REG(u8 reg) { return lm93_pwm_freq_map[reg & 0x07]; } /* round up to nearest match */ static u8 LM93_PWM_FREQ_TO_REG(int freq) { int i; for (i = 7; i > 0; i--) if (freq <= lm93_pwm_freq_map[i]) break; /* can fall through with i==0 */ return (u8)i; } /* * TIME: 1/100 seconds * REG: 0-7 as mapped below */ static int lm93_spinup_time_map[8] = { 0, 10, 25, 40, 70, 100, 200, 400, }; static int LM93_SPINUP_TIME_FROM_REG(u8 reg) { return lm93_spinup_time_map[reg >> 5 & 0x07]; } /* round up to nearest match */ static u8 LM93_SPINUP_TIME_TO_REG(int time) { int i; for (i = 0; i < 7; i++) if (time <= lm93_spinup_time_map[i]) break; /* can fall through with i==8 */ return (u8)i; } #define LM93_RAMP_MIN 0 #define LM93_RAMP_MAX 75 static int LM93_RAMP_FROM_REG(u8 reg) { return (reg & 0x0f) * 5; } /* * RAMP: 1/100 seconds * REG: 50mS/bit 4-bits right justified */ static u8 LM93_RAMP_TO_REG(int ramp) { ramp = clamp_val(ramp, LM93_RAMP_MIN, LM93_RAMP_MAX); return (u8)((ramp + 2) / 5); } /* * PROCHOT: 0-255, 0 => 0%, 255 => > 96.6% * REG: (same) */ static u8 LM93_PROCHOT_TO_REG(long prochot) { prochot = clamp_val(prochot, 0, 255); return (u8)prochot; } /* * PROCHOT-INTERVAL: 73 - 37200 (1/100 seconds) * REG: 0-9 as mapped below */ static int lm93_interval_map[10] = { 73, 146, 290, 580, 1170, 2330, 4660, 9320, 18600, 37200, }; static int LM93_INTERVAL_FROM_REG(u8 reg) { return lm93_interval_map[reg & 0x0f]; } /* round up to nearest match */ static u8 LM93_INTERVAL_TO_REG(long interval) { int i; for (i = 0; i < 9; i++) if (interval <= lm93_interval_map[i]) break; /* can fall through with i==9 */ return (u8)i; } /* * GPIO: 0-255, GPIO0 is LSB * REG: inverted */ static unsigned LM93_GPI_FROM_REG(u8 reg) { return ~reg & 0xff; } /* * alarm bitmask definitions * The LM93 has nearly 64 bits of error status... I've pared that down to * what I think is a useful subset in order to fit it into 32 bits. * * Especially note that the #VRD_HOT alarms are missing because we provide * that information as values in another sysfs file. * * If libsensors is extended to support 64 bit values, this could be revisited. */ #define LM93_ALARM_IN1 0x00000001 #define LM93_ALARM_IN2 0x00000002 #define LM93_ALARM_IN3 0x00000004 #define LM93_ALARM_IN4 0x00000008 #define LM93_ALARM_IN5 0x00000010 #define LM93_ALARM_IN6 0x00000020 #define LM93_ALARM_IN7 0x00000040 #define LM93_ALARM_IN8 0x00000080 #define LM93_ALARM_IN9 0x00000100 #define LM93_ALARM_IN10 0x00000200 #define LM93_ALARM_IN11 0x00000400 #define LM93_ALARM_IN12 0x00000800 #define LM93_ALARM_IN13 0x00001000 #define LM93_ALARM_IN14 0x00002000 #define LM93_ALARM_IN15 0x00004000 #define LM93_ALARM_IN16 0x00008000 #define LM93_ALARM_FAN1 0x00010000 #define LM93_ALARM_FAN2 0x00020000 #define LM93_ALARM_FAN3 0x00040000 #define LM93_ALARM_FAN4 0x00080000 #define LM93_ALARM_PH1_ERR 0x00100000 #define LM93_ALARM_PH2_ERR 0x00200000 #define LM93_ALARM_SCSI1_ERR 0x00400000 #define LM93_ALARM_SCSI2_ERR 0x00800000 #define LM93_ALARM_DVDDP1_ERR 0x01000000 #define LM93_ALARM_DVDDP2_ERR 0x02000000 #define LM93_ALARM_D1_ERR 0x04000000 #define LM93_ALARM_D2_ERR 0x08000000 #define LM93_ALARM_TEMP1 0x10000000 #define LM93_ALARM_TEMP2 0x20000000 #define LM93_ALARM_TEMP3 0x40000000 static unsigned LM93_ALARMS_FROM_REG(struct block1_t b1) { unsigned result; result = b1.host_status_2 & 0x3f; if (vccp_limit_type[0]) result |= (b1.host_status_4 & 0x10) << 2; else result |= b1.host_status_2 & 0x40; if (vccp_limit_type[1]) result |= (b1.host_status_4 & 0x20) << 2; else result |= b1.host_status_2 & 0x80; result |= b1.host_status_3 << 8; result |= (b1.fan_status & 0x0f) << 16; result |= (b1.p1_prochot_status & 0x80) << 13; result |= (b1.p2_prochot_status & 0x80) << 14; result |= (b1.host_status_4 & 0xfc) << 20; result |= (b1.host_status_1 & 0x07) << 28; return result; } #define MAX_RETRIES 5 static u8 lm93_read_byte(struct i2c_client *client, u8 reg) { int value, i; /* retry in case of read errors */ for (i = 1; i <= MAX_RETRIES; i++) { value = i2c_smbus_read_byte_data(client, reg); if (value >= 0) { return value; } else { dev_warn(&client->dev, "lm93: read byte data failed, address 0x%02x.\n", reg); mdelay(i + 3); } } /* what to return in case of error? */ dev_err(&client->dev, "lm93: All read byte retries failed!!\n"); return 0; } static int lm93_write_byte(struct i2c_client *client, u8 reg, u8 value) { int result; /* how to handle write errors? */ result = i2c_smbus_write_byte_data(client, reg, value); if (result < 0) dev_warn(&client->dev, "lm93: write byte data failed, 0x%02x at address 0x%02x.\n", value, reg); return result; } static u16 lm93_read_word(struct i2c_client *client, u8 reg) { int value, i; /* retry in case of read errors */ for (i = 1; i <= MAX_RETRIES; i++) { value = i2c_smbus_read_word_data(client, reg); if (value >= 0) { return value; } else { dev_warn(&client->dev, "lm93: read word data failed, address 0x%02x.\n", reg); mdelay(i + 3); } } /* what to return in case of error? */ dev_err(&client->dev, "lm93: All read word retries failed!!\n"); return 0; } static int lm93_write_word(struct i2c_client *client, u8 reg, u16 value) { int result; /* how to handle write errors? */ result = i2c_smbus_write_word_data(client, reg, value); if (result < 0) dev_warn(&client->dev, "lm93: write word data failed, 0x%04x at address 0x%02x.\n", value, reg); return result; } static u8 lm93_block_buffer[I2C_SMBUS_BLOCK_MAX]; /* * read block data into values, retry if not expected length * fbn => index to lm93_block_read_cmds table * (Fixed Block Number - section 14.5.2 of LM93 datasheet) */ static void lm93_read_block(struct i2c_client *client, u8 fbn, u8 *values) { int i, result = 0; for (i = 1; i <= MAX_RETRIES; i++) { result = i2c_smbus_read_block_data(client, lm93_block_read_cmds[fbn].cmd, lm93_block_buffer); if (result == lm93_block_read_cmds[fbn].len) { break; } else { dev_warn(&client->dev, "lm93: block read data failed, command 0x%02x.\n", lm93_block_read_cmds[fbn].cmd); mdelay(i + 3); } } if (result == lm93_block_read_cmds[fbn].len) { memcpy(values, lm93_block_buffer, lm93_block_read_cmds[fbn].len); } else { /* what to do in case of error? */ } } static struct lm93_data *lm93_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); const unsigned long interval = HZ + (HZ / 2); mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + interval) || !data->valid) { data->update(data, client); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } /* update routine for data that has no corresponding SMBus block command */ static void lm93_update_client_common(struct lm93_data *data, struct i2c_client *client) { int i; u8 *ptr; /* temp1 - temp4: limits */ for (i = 0; i < 4; i++) { data->temp_lim[i].min = lm93_read_byte(client, LM93_REG_TEMP_MIN(i)); data->temp_lim[i].max = lm93_read_byte(client, LM93_REG_TEMP_MAX(i)); } /* config register */ data->config = lm93_read_byte(client, LM93_REG_CONFIG); /* vid1 - vid2: values */ for (i = 0; i < 2; i++) data->vid[i] = lm93_read_byte(client, LM93_REG_VID(i)); /* prochot1 - prochot2: limits */ for (i = 0; i < 2; i++) data->prochot_max[i] = lm93_read_byte(client, LM93_REG_PROCHOT_MAX(i)); /* vccp1 - vccp2: VID relative limits */ for (i = 0; i < 2; i++) data->vccp_limits[i] = lm93_read_byte(client, LM93_REG_VCCP_LIMIT_OFF(i)); /* GPIO input state */ data->gpi = lm93_read_byte(client, LM93_REG_GPI); /* #PROCHOT override state */ data->prochot_override = lm93_read_byte(client, LM93_REG_PROCHOT_OVERRIDE); /* #PROCHOT intervals */ data->prochot_interval = lm93_read_byte(client, LM93_REG_PROCHOT_INTERVAL); /* Fan Boost Temperature registers */ for (i = 0; i < 4; i++) data->boost[i] = lm93_read_byte(client, LM93_REG_BOOST(i)); /* Fan Boost Temperature Hyst. registers */ data->boost_hyst[0] = lm93_read_byte(client, LM93_REG_BOOST_HYST_12); data->boost_hyst[1] = lm93_read_byte(client, LM93_REG_BOOST_HYST_34); /* Temperature Zone Min. PWM & Hysteresis registers */ data->auto_pwm_min_hyst[0] = lm93_read_byte(client, LM93_REG_PWM_MIN_HYST_12); data->auto_pwm_min_hyst[1] = lm93_read_byte(client, LM93_REG_PWM_MIN_HYST_34); /* #PROCHOT & #VRDHOT PWM Ramp Control register */ data->pwm_ramp_ctl = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL); /* misc setup registers */ data->sfc1 = lm93_read_byte(client, LM93_REG_SFC1); data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2); data->sf_tach_to_pwm = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM); /* write back alarm values to clear */ for (i = 0, ptr = (u8 *)(&data->block1); i < 8; i++) lm93_write_byte(client, LM93_REG_HOST_ERROR_1 + i, *(ptr + i)); } /* update routine which uses SMBus block data commands */ static void lm93_update_client_full(struct lm93_data *data, struct i2c_client *client) { dev_dbg(&client->dev, "starting device update (block data enabled)\n"); /* in1 - in16: values & limits */ lm93_read_block(client, 3, (u8 *)(data->block3)); lm93_read_block(client, 7, (u8 *)(data->block7)); /* temp1 - temp4: values */ lm93_read_block(client, 2, (u8 *)(data->block2)); /* prochot1 - prochot2: values */ lm93_read_block(client, 4, (u8 *)(data->block4)); /* fan1 - fan4: values & limits */ lm93_read_block(client, 5, (u8 *)(data->block5)); lm93_read_block(client, 8, (u8 *)(data->block8)); /* pmw control registers */ lm93_read_block(client, 9, (u8 *)(data->block9)); /* alarm values */ lm93_read_block(client, 1, (u8 *)(&data->block1)); /* auto/pwm registers */ lm93_read_block(client, 10, (u8 *)(&data->block10)); lm93_update_client_common(data, client); } /* update routine which uses SMBus byte/word data commands only */ static void lm93_update_client_min(struct lm93_data *data, struct i2c_client *client) { int i, j; u8 *ptr; dev_dbg(&client->dev, "starting device update (block data disabled)\n"); /* in1 - in16: values & limits */ for (i = 0; i < 16; i++) { data->block3[i] = lm93_read_byte(client, LM93_REG_IN(i)); data->block7[i].min = lm93_read_byte(client, LM93_REG_IN_MIN(i)); data->block7[i].max = lm93_read_byte(client, LM93_REG_IN_MAX(i)); } /* temp1 - temp4: values */ for (i = 0; i < 4; i++) { data->block2[i] = lm93_read_byte(client, LM93_REG_TEMP(i)); } /* prochot1 - prochot2: values */ for (i = 0; i < 2; i++) { data->block4[i].cur = lm93_read_byte(client, LM93_REG_PROCHOT_CUR(i)); data->block4[i].avg = lm93_read_byte(client, LM93_REG_PROCHOT_AVG(i)); } /* fan1 - fan4: values & limits */ for (i = 0; i < 4; i++) { data->block5[i] = lm93_read_word(client, LM93_REG_FAN(i)); data->block8[i] = lm93_read_word(client, LM93_REG_FAN_MIN(i)); } /* pwm control registers */ for (i = 0; i < 2; i++) { for (j = 0; j < 4; j++) { data->block9[i][j] = lm93_read_byte(client, LM93_REG_PWM_CTL(i, j)); } } /* alarm values */ for (i = 0, ptr = (u8 *)(&data->block1); i < 8; i++) { *(ptr + i) = lm93_read_byte(client, LM93_REG_HOST_ERROR_1 + i); } /* auto/pwm (base temp) registers */ for (i = 0; i < 4; i++) { data->block10.base[i] = lm93_read_byte(client, LM93_REG_TEMP_BASE(i)); } /* auto/pwm (offset temp) registers */ for (i = 0; i < 12; i++) { data->block10.offset[i] = lm93_read_byte(client, LM93_REG_TEMP_OFFSET(i)); } lm93_update_client_common(data, client); } /* following are the sysfs callback functions */ static ssize_t show_in(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_IN_FROM_REG(nr, data->block3[nr])); } static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in, NULL, 0); static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in, NULL, 1); static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in, NULL, 2); static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in, NULL, 3); static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in, NULL, 4); static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in, NULL, 5); static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_in, NULL, 6); static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, show_in, NULL, 7); static SENSOR_DEVICE_ATTR(in9_input, S_IRUGO, show_in, NULL, 8); static SENSOR_DEVICE_ATTR(in10_input, S_IRUGO, show_in, NULL, 9); static SENSOR_DEVICE_ATTR(in11_input, S_IRUGO, show_in, NULL, 10); static SENSOR_DEVICE_ATTR(in12_input, S_IRUGO, show_in, NULL, 11); static SENSOR_DEVICE_ATTR(in13_input, S_IRUGO, show_in, NULL, 12); static SENSOR_DEVICE_ATTR(in14_input, S_IRUGO, show_in, NULL, 13); static SENSOR_DEVICE_ATTR(in15_input, S_IRUGO, show_in, NULL, 14); static SENSOR_DEVICE_ATTR(in16_input, S_IRUGO, show_in, NULL, 15); static ssize_t show_in_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); int vccp = nr - 6; long rc, vid; if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) { vid = LM93_VID_FROM_REG(data->vid[vccp]); rc = LM93_IN_MIN_FROM_REG(data->vccp_limits[vccp], vid); } else { rc = LM93_IN_FROM_REG(nr, data->block7[nr].min); } return sprintf(buf, "%ld\n", rc); } static ssize_t store_in_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); int vccp = nr - 6; long vid; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) { vid = LM93_VID_FROM_REG(data->vid[vccp]); data->vccp_limits[vccp] = (data->vccp_limits[vccp] & 0xf0) | LM93_IN_REL_TO_REG(val, 0, vid); lm93_write_byte(client, LM93_REG_VCCP_LIMIT_OFF(vccp), data->vccp_limits[vccp]); } else { data->block7[nr].min = LM93_IN_TO_REG(nr, val); lm93_write_byte(client, LM93_REG_IN_MIN(nr), data->block7[nr].min); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0); static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1); static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2); static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3); static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4); static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5); static SENSOR_DEVICE_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6); static SENSOR_DEVICE_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7); static SENSOR_DEVICE_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8); static SENSOR_DEVICE_ATTR(in10_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9); static SENSOR_DEVICE_ATTR(in11_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 10); static SENSOR_DEVICE_ATTR(in12_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 11); static SENSOR_DEVICE_ATTR(in13_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 12); static SENSOR_DEVICE_ATTR(in14_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 13); static SENSOR_DEVICE_ATTR(in15_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 14); static SENSOR_DEVICE_ATTR(in16_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 15); static ssize_t show_in_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); int vccp = nr - 6; long rc, vid; if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) { vid = LM93_VID_FROM_REG(data->vid[vccp]); rc = LM93_IN_MAX_FROM_REG(data->vccp_limits[vccp], vid); } else { rc = LM93_IN_FROM_REG(nr, data->block7[nr].max); } return sprintf(buf, "%ld\n", rc); } static ssize_t store_in_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); int vccp = nr - 6; long vid; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if ((nr == 6 || nr == 7) && vccp_limit_type[vccp]) { vid = LM93_VID_FROM_REG(data->vid[vccp]); data->vccp_limits[vccp] = (data->vccp_limits[vccp] & 0x0f) | LM93_IN_REL_TO_REG(val, 1, vid); lm93_write_byte(client, LM93_REG_VCCP_LIMIT_OFF(vccp), data->vccp_limits[vccp]); } else { data->block7[nr].max = LM93_IN_TO_REG(nr, val); lm93_write_byte(client, LM93_REG_IN_MAX(nr), data->block7[nr].max); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0); static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1); static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2); static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3); static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4); static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5); static SENSOR_DEVICE_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6); static SENSOR_DEVICE_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7); static SENSOR_DEVICE_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8); static SENSOR_DEVICE_ATTR(in10_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9); static SENSOR_DEVICE_ATTR(in11_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 10); static SENSOR_DEVICE_ATTR(in12_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 11); static SENSOR_DEVICE_ATTR(in13_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 12); static SENSOR_DEVICE_ATTR(in14_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 13); static SENSOR_DEVICE_ATTR(in15_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 14); static SENSOR_DEVICE_ATTR(in16_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 15); static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->block2[nr])); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, show_temp, NULL, 2); static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->temp_lim[nr].min)); } static ssize_t store_temp_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_lim[nr].min = LM93_TEMP_TO_REG(val); lm93_write_byte(client, LM93_REG_TEMP_MIN(nr), data->temp_lim[nr].min); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp_min, store_temp_min, 0); static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp_min, store_temp_min, 1); static SENSOR_DEVICE_ATTR(temp3_min, S_IWUSR | S_IRUGO, show_temp_min, store_temp_min, 2); static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->temp_lim[nr].max)); } static ssize_t store_temp_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp_lim[nr].max = LM93_TEMP_TO_REG(val); lm93_write_byte(client, LM93_REG_TEMP_MAX(nr), data->temp_lim[nr].max); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_max, store_temp_max, 0); static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp_max, store_temp_max, 1); static SENSOR_DEVICE_ATTR(temp3_max, S_IWUSR | S_IRUGO, show_temp_max, store_temp_max, 2); static ssize_t show_temp_auto_base(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->block10.base[nr])); } static ssize_t store_temp_auto_base(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->block10.base[nr] = LM93_TEMP_TO_REG(val); lm93_write_byte(client, LM93_REG_TEMP_BASE(nr), data->block10.base[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_auto_base, S_IWUSR | S_IRUGO, show_temp_auto_base, store_temp_auto_base, 0); static SENSOR_DEVICE_ATTR(temp2_auto_base, S_IWUSR | S_IRUGO, show_temp_auto_base, store_temp_auto_base, 1); static SENSOR_DEVICE_ATTR(temp3_auto_base, S_IWUSR | S_IRUGO, show_temp_auto_base, store_temp_auto_base, 2); static ssize_t show_temp_auto_boost(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_TEMP_FROM_REG(data->boost[nr])); } static ssize_t store_temp_auto_boost(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->boost[nr] = LM93_TEMP_TO_REG(val); lm93_write_byte(client, LM93_REG_BOOST(nr), data->boost[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_auto_boost, S_IWUSR | S_IRUGO, show_temp_auto_boost, store_temp_auto_boost, 0); static SENSOR_DEVICE_ATTR(temp2_auto_boost, S_IWUSR | S_IRUGO, show_temp_auto_boost, store_temp_auto_boost, 1); static SENSOR_DEVICE_ATTR(temp3_auto_boost, S_IWUSR | S_IRUGO, show_temp_auto_boost, store_temp_auto_boost, 2); static ssize_t show_temp_auto_boost_hyst(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr); return sprintf(buf, "%d\n", LM93_AUTO_BOOST_HYST_FROM_REGS(data, nr, mode)); } static ssize_t store_temp_auto_boost_hyst(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* force 0.5C/bit mode */ data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2); data->sfc2 |= ((nr < 2) ? 0x10 : 0x20); lm93_write_byte(client, LM93_REG_SFC2, data->sfc2); data->boost_hyst[nr/2] = LM93_AUTO_BOOST_HYST_TO_REG(data, val, nr, 1); lm93_write_byte(client, LM93_REG_BOOST_HYST(nr), data->boost_hyst[nr/2]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_auto_boost_hyst, S_IWUSR | S_IRUGO, show_temp_auto_boost_hyst, store_temp_auto_boost_hyst, 0); static SENSOR_DEVICE_ATTR(temp2_auto_boost_hyst, S_IWUSR | S_IRUGO, show_temp_auto_boost_hyst, store_temp_auto_boost_hyst, 1); static SENSOR_DEVICE_ATTR(temp3_auto_boost_hyst, S_IWUSR | S_IRUGO, show_temp_auto_boost_hyst, store_temp_auto_boost_hyst, 2); static ssize_t show_temp_auto_offset(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *s_attr = to_sensor_dev_attr_2(attr); int nr = s_attr->index; int ofs = s_attr->nr; struct lm93_data *data = lm93_update_device(dev); int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr); return sprintf(buf, "%d\n", LM93_TEMP_AUTO_OFFSET_FROM_REG(data->block10.offset[ofs], nr, mode)); } static ssize_t store_temp_auto_offset(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *s_attr = to_sensor_dev_attr_2(attr); int nr = s_attr->index; int ofs = s_attr->nr; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* force 0.5C/bit mode */ data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2); data->sfc2 |= ((nr < 2) ? 0x10 : 0x20); lm93_write_byte(client, LM93_REG_SFC2, data->sfc2); data->block10.offset[ofs] = LM93_TEMP_AUTO_OFFSET_TO_REG( data->block10.offset[ofs], val, nr, 1); lm93_write_byte(client, LM93_REG_TEMP_OFFSET(ofs), data->block10.offset[ofs]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_2(temp1_auto_offset1, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 0, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset2, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 1, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset3, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 2, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset4, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 3, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset5, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 4, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset6, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 5, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset7, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 6, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset8, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 7, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset9, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 8, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset10, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 9, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset11, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 10, 0); static SENSOR_DEVICE_ATTR_2(temp1_auto_offset12, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 11, 0); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset1, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 0, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset2, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 1, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset3, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 2, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset4, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 3, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset5, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 4, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset6, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 5, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset7, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 6, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset8, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 7, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset9, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 8, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset10, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 9, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset11, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 10, 1); static SENSOR_DEVICE_ATTR_2(temp2_auto_offset12, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 11, 1); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset1, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 0, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset2, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 1, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset3, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 2, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset4, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 3, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset5, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 4, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset6, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 5, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset7, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 6, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset8, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 7, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset9, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 8, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset10, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 9, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset11, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 10, 2); static SENSOR_DEVICE_ATTR_2(temp3_auto_offset12, S_IWUSR | S_IRUGO, show_temp_auto_offset, store_temp_auto_offset, 11, 2); static ssize_t show_temp_auto_pwm_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; u8 reg, ctl4; struct lm93_data *data = lm93_update_device(dev); reg = data->auto_pwm_min_hyst[nr/2] >> 4 & 0x0f; ctl4 = data->block9[nr][LM93_PWM_CTL4]; return sprintf(buf, "%d\n", LM93_PWM_FROM_REG(reg, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ)); } static ssize_t store_temp_auto_pwm_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 reg, ctl4; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); reg = lm93_read_byte(client, LM93_REG_PWM_MIN_HYST(nr)); ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4)); reg = (reg & 0x0f) | LM93_PWM_TO_REG(val, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ) << 4; data->auto_pwm_min_hyst[nr/2] = reg; lm93_write_byte(client, LM93_REG_PWM_MIN_HYST(nr), reg); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_auto_pwm_min, S_IWUSR | S_IRUGO, show_temp_auto_pwm_min, store_temp_auto_pwm_min, 0); static SENSOR_DEVICE_ATTR(temp2_auto_pwm_min, S_IWUSR | S_IRUGO, show_temp_auto_pwm_min, store_temp_auto_pwm_min, 1); static SENSOR_DEVICE_ATTR(temp3_auto_pwm_min, S_IWUSR | S_IRUGO, show_temp_auto_pwm_min, store_temp_auto_pwm_min, 2); static ssize_t show_temp_auto_offset_hyst(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); int mode = LM93_TEMP_OFFSET_MODE_FROM_REG(data->sfc2, nr); return sprintf(buf, "%d\n", LM93_TEMP_OFFSET_FROM_REG( data->auto_pwm_min_hyst[nr / 2], mode)); } static ssize_t store_temp_auto_offset_hyst(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* force 0.5C/bit mode */ data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2); data->sfc2 |= ((nr < 2) ? 0x10 : 0x20); lm93_write_byte(client, LM93_REG_SFC2, data->sfc2); reg = data->auto_pwm_min_hyst[nr/2]; reg = (reg & 0xf0) | (LM93_TEMP_OFFSET_TO_REG(val, 1) & 0x0f); data->auto_pwm_min_hyst[nr/2] = reg; lm93_write_byte(client, LM93_REG_PWM_MIN_HYST(nr), reg); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(temp1_auto_offset_hyst, S_IWUSR | S_IRUGO, show_temp_auto_offset_hyst, store_temp_auto_offset_hyst, 0); static SENSOR_DEVICE_ATTR(temp2_auto_offset_hyst, S_IWUSR | S_IRUGO, show_temp_auto_offset_hyst, store_temp_auto_offset_hyst, 1); static SENSOR_DEVICE_ATTR(temp3_auto_offset_hyst, S_IWUSR | S_IRUGO, show_temp_auto_offset_hyst, store_temp_auto_offset_hyst, 2); static ssize_t show_fan_input(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *s_attr = to_sensor_dev_attr(attr); int nr = s_attr->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_FAN_FROM_REG(data->block5[nr])); } static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0); static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1); static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, show_fan_input, NULL, 2); static SENSOR_DEVICE_ATTR(fan4_input, S_IRUGO, show_fan_input, NULL, 3); static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_FAN_FROM_REG(data->block8[nr])); } static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->block8[nr] = LM93_FAN_TO_REG(val); lm93_write_word(client, LM93_REG_FAN_MIN(nr), data->block8[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 0); static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 1); static SENSOR_DEVICE_ATTR(fan3_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 2); static SENSOR_DEVICE_ATTR(fan4_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 3); /* * some tedious bit-twiddling here to deal with the register format: * * data->sf_tach_to_pwm: (tach to pwm mapping bits) * * bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * T4:P2 T4:P1 T3:P2 T3:P1 T2:P2 T2:P1 T1:P2 T1:P1 * * data->sfc2: (enable bits) * * bit | 3 | 2 | 1 | 0 * T4 T3 T2 T1 */ static ssize_t show_fan_smart_tach(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); long rc = 0; int mapping; /* extract the relevant mapping */ mapping = (data->sf_tach_to_pwm >> (nr * 2)) & 0x03; /* if there's a mapping and it's enabled */ if (mapping && ((data->sfc2 >> nr) & 0x01)) rc = mapping; return sprintf(buf, "%ld\n", rc); } /* * helper function - must grab data->update_lock before calling * fan is 0-3, indicating fan1-fan4 */ static void lm93_write_fan_smart_tach(struct i2c_client *client, struct lm93_data *data, int fan, long value) { /* insert the new mapping and write it out */ data->sf_tach_to_pwm = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM); data->sf_tach_to_pwm &= ~(0x3 << fan * 2); data->sf_tach_to_pwm |= value << fan * 2; lm93_write_byte(client, LM93_REG_SF_TACH_TO_PWM, data->sf_tach_to_pwm); /* insert the enable bit and write it out */ data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2); if (value) data->sfc2 |= 1 << fan; else data->sfc2 &= ~(1 << fan); lm93_write_byte(client, LM93_REG_SFC2, data->sfc2); } static ssize_t store_fan_smart_tach(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); /* sanity test, ignore the write otherwise */ if (val <= 2) { /* can't enable if pwm freq is 22.5KHz */ if (val) { u8 ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(val - 1, LM93_PWM_CTL4)); if ((ctl4 & 0x07) == 0) val = 0; } lm93_write_fan_smart_tach(client, data, nr, val); } mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(fan1_smart_tach, S_IWUSR | S_IRUGO, show_fan_smart_tach, store_fan_smart_tach, 0); static SENSOR_DEVICE_ATTR(fan2_smart_tach, S_IWUSR | S_IRUGO, show_fan_smart_tach, store_fan_smart_tach, 1); static SENSOR_DEVICE_ATTR(fan3_smart_tach, S_IWUSR | S_IRUGO, show_fan_smart_tach, store_fan_smart_tach, 2); static SENSOR_DEVICE_ATTR(fan4_smart_tach, S_IWUSR | S_IRUGO, show_fan_smart_tach, store_fan_smart_tach, 3); static ssize_t show_pwm(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); u8 ctl2, ctl4; long rc; ctl2 = data->block9[nr][LM93_PWM_CTL2]; ctl4 = data->block9[nr][LM93_PWM_CTL4]; if (ctl2 & 0x01) /* show user commanded value if enabled */ rc = data->pwm_override[nr]; else /* show present h/w value if manual pwm disabled */ rc = LM93_PWM_FROM_REG(ctl2 >> 4, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ); return sprintf(buf, "%ld\n", rc); } static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ctl2, ctl4; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ctl2 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2)); ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4)); ctl2 = (ctl2 & 0x0f) | LM93_PWM_TO_REG(val, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ) << 4; /* save user commanded value */ data->pwm_override[nr] = LM93_PWM_FROM_REG(ctl2 >> 4, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ); lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2), ctl2); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0); static SENSOR_DEVICE_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1); static ssize_t show_pwm_enable(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); u8 ctl2; long rc; ctl2 = data->block9[nr][LM93_PWM_CTL2]; if (ctl2 & 0x01) /* manual override enabled ? */ rc = ((ctl2 & 0xF0) == 0xF0) ? 0 : 1; else rc = 2; return sprintf(buf, "%ld\n", rc); } static ssize_t store_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ctl2; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ctl2 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2)); switch (val) { case 0: ctl2 |= 0xF1; /* enable manual override, set PWM to max */ break; case 1: ctl2 |= 0x01; /* enable manual override */ break; case 2: ctl2 &= ~0x01; /* disable manual override */ break; default: mutex_unlock(&data->update_lock); return -EINVAL; } lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL2), ctl2); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable, store_pwm_enable, 0); static SENSOR_DEVICE_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable, store_pwm_enable, 1); static ssize_t show_pwm_freq(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); u8 ctl4; ctl4 = data->block9[nr][LM93_PWM_CTL4]; return sprintf(buf, "%d\n", LM93_PWM_FREQ_FROM_REG(ctl4)); } /* * helper function - must grab data->update_lock before calling * pwm is 0-1, indicating pwm1-pwm2 * this disables smart tach for all tach channels bound to the given pwm */ static void lm93_disable_fan_smart_tach(struct i2c_client *client, struct lm93_data *data, int pwm) { int mapping = lm93_read_byte(client, LM93_REG_SF_TACH_TO_PWM); int mask; /* collapse the mapping into a mask of enable bits */ mapping = (mapping >> pwm) & 0x55; mask = mapping & 0x01; mask |= (mapping & 0x04) >> 1; mask |= (mapping & 0x10) >> 2; mask |= (mapping & 0x40) >> 3; /* disable smart tach according to the mask */ data->sfc2 = lm93_read_byte(client, LM93_REG_SFC2); data->sfc2 &= ~mask; lm93_write_byte(client, LM93_REG_SFC2, data->sfc2); } static ssize_t store_pwm_freq(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ctl4; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4)); ctl4 = (ctl4 & 0xf8) | LM93_PWM_FREQ_TO_REG(val); data->block9[nr][LM93_PWM_CTL4] = ctl4; /* ctl4 == 0 -> 22.5KHz -> disable smart tach */ if (!ctl4) lm93_disable_fan_smart_tach(client, data, nr); lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4), ctl4); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_freq, S_IWUSR | S_IRUGO, show_pwm_freq, store_pwm_freq, 0); static SENSOR_DEVICE_ATTR(pwm2_freq, S_IWUSR | S_IRUGO, show_pwm_freq, store_pwm_freq, 1); static ssize_t show_pwm_auto_channels(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", data->block9[nr][LM93_PWM_CTL1]); } static ssize_t store_pwm_auto_channels(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->block9[nr][LM93_PWM_CTL1] = clamp_val(val, 0, 255); lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL1), data->block9[nr][LM93_PWM_CTL1]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_auto_channels, S_IWUSR | S_IRUGO, show_pwm_auto_channels, store_pwm_auto_channels, 0); static SENSOR_DEVICE_ATTR(pwm2_auto_channels, S_IWUSR | S_IRUGO, show_pwm_auto_channels, store_pwm_auto_channels, 1); static ssize_t show_pwm_auto_spinup_min(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); u8 ctl3, ctl4; ctl3 = data->block9[nr][LM93_PWM_CTL3]; ctl4 = data->block9[nr][LM93_PWM_CTL4]; return sprintf(buf, "%d\n", LM93_PWM_FROM_REG(ctl3 & 0x0f, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ)); } static ssize_t store_pwm_auto_spinup_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ctl3, ctl4; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ctl3 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3)); ctl4 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL4)); ctl3 = (ctl3 & 0xf0) | LM93_PWM_TO_REG(val, (ctl4 & 0x07) ? LM93_PWM_MAP_LO_FREQ : LM93_PWM_MAP_HI_FREQ); data->block9[nr][LM93_PWM_CTL3] = ctl3; lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3), ctl3); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_auto_spinup_min, S_IWUSR | S_IRUGO, show_pwm_auto_spinup_min, store_pwm_auto_spinup_min, 0); static SENSOR_DEVICE_ATTR(pwm2_auto_spinup_min, S_IWUSR | S_IRUGO, show_pwm_auto_spinup_min, store_pwm_auto_spinup_min, 1); static ssize_t show_pwm_auto_spinup_time(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_SPINUP_TIME_FROM_REG( data->block9[nr][LM93_PWM_CTL3])); } static ssize_t store_pwm_auto_spinup_time(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ctl3; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ctl3 = lm93_read_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3)); ctl3 = (ctl3 & 0x1f) | (LM93_SPINUP_TIME_TO_REG(val) << 5 & 0xe0); data->block9[nr][LM93_PWM_CTL3] = ctl3; lm93_write_byte(client, LM93_REG_PWM_CTL(nr, LM93_PWM_CTL3), ctl3); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(pwm1_auto_spinup_time, S_IWUSR | S_IRUGO, show_pwm_auto_spinup_time, store_pwm_auto_spinup_time, 0); static SENSOR_DEVICE_ATTR(pwm2_auto_spinup_time, S_IWUSR | S_IRUGO, show_pwm_auto_spinup_time, store_pwm_auto_spinup_time, 1); static ssize_t show_pwm_auto_prochot_ramp(struct device *dev, struct device_attribute *attr, char *buf) { struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_RAMP_FROM_REG(data->pwm_ramp_ctl >> 4 & 0x0f)); } static ssize_t store_pwm_auto_prochot_ramp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ramp; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ramp = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL); ramp = (ramp & 0x0f) | (LM93_RAMP_TO_REG(val) << 4 & 0xf0); lm93_write_byte(client, LM93_REG_PWM_RAMP_CTL, ramp); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(pwm_auto_prochot_ramp, S_IRUGO | S_IWUSR, show_pwm_auto_prochot_ramp, store_pwm_auto_prochot_ramp); static ssize_t show_pwm_auto_vrdhot_ramp(struct device *dev, struct device_attribute *attr, char *buf) { struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_RAMP_FROM_REG(data->pwm_ramp_ctl & 0x0f)); } static ssize_t store_pwm_auto_vrdhot_ramp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 ramp; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); ramp = lm93_read_byte(client, LM93_REG_PWM_RAMP_CTL); ramp = (ramp & 0xf0) | (LM93_RAMP_TO_REG(val) & 0x0f); lm93_write_byte(client, LM93_REG_PWM_RAMP_CTL, ramp); mutex_unlock(&data->update_lock); return 0; } static DEVICE_ATTR(pwm_auto_vrdhot_ramp, S_IRUGO | S_IWUSR, show_pwm_auto_vrdhot_ramp, store_pwm_auto_vrdhot_ramp); static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_VID_FROM_REG(data->vid[nr])); } static SENSOR_DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL, 0); static SENSOR_DEVICE_ATTR(cpu1_vid, S_IRUGO, show_vid, NULL, 1); static ssize_t show_prochot(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", data->block4[nr].cur); } static SENSOR_DEVICE_ATTR(prochot1, S_IRUGO, show_prochot, NULL, 0); static SENSOR_DEVICE_ATTR(prochot2, S_IRUGO, show_prochot, NULL, 1); static ssize_t show_prochot_avg(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", data->block4[nr].avg); } static SENSOR_DEVICE_ATTR(prochot1_avg, S_IRUGO, show_prochot_avg, NULL, 0); static SENSOR_DEVICE_ATTR(prochot2_avg, S_IRUGO, show_prochot_avg, NULL, 1); static ssize_t show_prochot_max(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", data->prochot_max[nr]); } static ssize_t store_prochot_max(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->prochot_max[nr] = LM93_PROCHOT_TO_REG(val); lm93_write_byte(client, LM93_REG_PROCHOT_MAX(nr), data->prochot_max[nr]); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(prochot1_max, S_IWUSR | S_IRUGO, show_prochot_max, store_prochot_max, 0); static SENSOR_DEVICE_ATTR(prochot2_max, S_IWUSR | S_IRUGO, show_prochot_max, store_prochot_max, 1); static const u8 prochot_override_mask[] = { 0x80, 0x40 }; static ssize_t show_prochot_override(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", (data->prochot_override & prochot_override_mask[nr]) ? 1 : 0); } static ssize_t store_prochot_override(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (val) data->prochot_override |= prochot_override_mask[nr]; else data->prochot_override &= (~prochot_override_mask[nr]); lm93_write_byte(client, LM93_REG_PROCHOT_OVERRIDE, data->prochot_override); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(prochot1_override, S_IWUSR | S_IRUGO, show_prochot_override, store_prochot_override, 0); static SENSOR_DEVICE_ATTR(prochot2_override, S_IWUSR | S_IRUGO, show_prochot_override, store_prochot_override, 1); static ssize_t show_prochot_interval(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); u8 tmp; if (nr == 1) tmp = (data->prochot_interval & 0xf0) >> 4; else tmp = data->prochot_interval & 0x0f; return sprintf(buf, "%d\n", LM93_INTERVAL_FROM_REG(tmp)); } static ssize_t store_prochot_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = (to_sensor_dev_attr(attr))->index; struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); u8 tmp; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); tmp = lm93_read_byte(client, LM93_REG_PROCHOT_INTERVAL); if (nr == 1) tmp = (tmp & 0x0f) | (LM93_INTERVAL_TO_REG(val) << 4); else tmp = (tmp & 0xf0) | LM93_INTERVAL_TO_REG(val); data->prochot_interval = tmp; lm93_write_byte(client, LM93_REG_PROCHOT_INTERVAL, tmp); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR(prochot1_interval, S_IWUSR | S_IRUGO, show_prochot_interval, store_prochot_interval, 0); static SENSOR_DEVICE_ATTR(prochot2_interval, S_IWUSR | S_IRUGO, show_prochot_interval, store_prochot_interval, 1); static ssize_t show_prochot_override_duty_cycle(struct device *dev, struct device_attribute *attr, char *buf) { struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", data->prochot_override & 0x0f); } static ssize_t store_prochot_override_duty_cycle(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->prochot_override = (data->prochot_override & 0xf0) | clamp_val(val, 0, 15); lm93_write_byte(client, LM93_REG_PROCHOT_OVERRIDE, data->prochot_override); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(prochot_override_duty_cycle, S_IRUGO | S_IWUSR, show_prochot_override_duty_cycle, store_prochot_override_duty_cycle); static ssize_t show_prochot_short(struct device *dev, struct device_attribute *attr, char *buf) { struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", (data->config & 0x10) ? 1 : 0); } static ssize_t store_prochot_short(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm93_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); if (val) data->config |= 0x10; else data->config &= ~0x10; lm93_write_byte(client, LM93_REG_CONFIG, data->config); mutex_unlock(&data->update_lock); return count; } static DEVICE_ATTR(prochot_short, S_IRUGO | S_IWUSR, show_prochot_short, store_prochot_short); static ssize_t show_vrdhot(struct device *dev, struct device_attribute *attr, char *buf) { int nr = (to_sensor_dev_attr(attr))->index; struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", data->block1.host_status_1 & (1 << (nr + 4)) ? 1 : 0); } static SENSOR_DEVICE_ATTR(vrdhot1, S_IRUGO, show_vrdhot, NULL, 0); static SENSOR_DEVICE_ATTR(vrdhot2, S_IRUGO, show_vrdhot, NULL, 1); static ssize_t show_gpio(struct device *dev, struct device_attribute *attr, char *buf) { struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_GPI_FROM_REG(data->gpi)); } static DEVICE_ATTR(gpio, S_IRUGO, show_gpio, NULL); static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf) { struct lm93_data *data = lm93_update_device(dev); return sprintf(buf, "%d\n", LM93_ALARMS_FROM_REG(data->block1)); } static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static struct attribute *lm93_attrs[] = { &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in8_input.dev_attr.attr, &sensor_dev_attr_in9_input.dev_attr.attr, &sensor_dev_attr_in10_input.dev_attr.attr, &sensor_dev_attr_in11_input.dev_attr.attr, &sensor_dev_attr_in12_input.dev_attr.attr, &sensor_dev_attr_in13_input.dev_attr.attr, &sensor_dev_attr_in14_input.dev_attr.attr, &sensor_dev_attr_in15_input.dev_attr.attr, &sensor_dev_attr_in16_input.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in8_min.dev_attr.attr, &sensor_dev_attr_in9_min.dev_attr.attr, &sensor_dev_attr_in10_min.dev_attr.attr, &sensor_dev_attr_in11_min.dev_attr.attr, &sensor_dev_attr_in12_min.dev_attr.attr, &sensor_dev_attr_in13_min.dev_attr.attr, &sensor_dev_attr_in14_min.dev_attr.attr, &sensor_dev_attr_in15_min.dev_attr.attr, &sensor_dev_attr_in16_min.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in8_max.dev_attr.attr, &sensor_dev_attr_in9_max.dev_attr.attr, &sensor_dev_attr_in10_max.dev_attr.attr, &sensor_dev_attr_in11_max.dev_attr.attr, &sensor_dev_attr_in12_max.dev_attr.attr, &sensor_dev_attr_in13_max.dev_attr.attr, &sensor_dev_attr_in14_max.dev_attr.attr, &sensor_dev_attr_in15_max.dev_attr.attr, &sensor_dev_attr_in16_max.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_auto_base.dev_attr.attr, &sensor_dev_attr_temp2_auto_base.dev_attr.attr, &sensor_dev_attr_temp3_auto_base.dev_attr.attr, &sensor_dev_attr_temp1_auto_boost.dev_attr.attr, &sensor_dev_attr_temp2_auto_boost.dev_attr.attr, &sensor_dev_attr_temp3_auto_boost.dev_attr.attr, &sensor_dev_attr_temp1_auto_boost_hyst.dev_attr.attr, &sensor_dev_attr_temp2_auto_boost_hyst.dev_attr.attr, &sensor_dev_attr_temp3_auto_boost_hyst.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset1.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset2.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset3.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset4.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset5.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset6.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset7.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset8.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset9.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset10.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset11.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset12.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset1.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset2.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset3.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset4.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset5.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset6.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset7.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset8.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset9.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset10.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset11.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset12.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset1.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset2.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset3.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset4.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset5.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset6.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset7.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset8.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset9.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset10.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset11.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset12.dev_attr.attr, &sensor_dev_attr_temp1_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_temp2_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_temp3_auto_pwm_min.dev_attr.attr, &sensor_dev_attr_temp1_auto_offset_hyst.dev_attr.attr, &sensor_dev_attr_temp2_auto_offset_hyst.dev_attr.attr, &sensor_dev_attr_temp3_auto_offset_hyst.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan1_smart_tach.dev_attr.attr, &sensor_dev_attr_fan2_smart_tach.dev_attr.attr, &sensor_dev_attr_fan3_smart_tach.dev_attr.attr, &sensor_dev_attr_fan4_smart_tach.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm1_freq.dev_attr.attr, &sensor_dev_attr_pwm2_freq.dev_attr.attr, &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr, &sensor_dev_attr_pwm1_auto_spinup_min.dev_attr.attr, &sensor_dev_attr_pwm2_auto_spinup_min.dev_attr.attr, &sensor_dev_attr_pwm1_auto_spinup_time.dev_attr.attr, &sensor_dev_attr_pwm2_auto_spinup_time.dev_attr.attr, &dev_attr_pwm_auto_prochot_ramp.attr, &dev_attr_pwm_auto_vrdhot_ramp.attr, &sensor_dev_attr_cpu0_vid.dev_attr.attr, &sensor_dev_attr_cpu1_vid.dev_attr.attr, &sensor_dev_attr_prochot1.dev_attr.attr, &sensor_dev_attr_prochot2.dev_attr.attr, &sensor_dev_attr_prochot1_avg.dev_attr.attr, &sensor_dev_attr_prochot2_avg.dev_attr.attr, &sensor_dev_attr_prochot1_max.dev_attr.attr, &sensor_dev_attr_prochot2_max.dev_attr.attr, &sensor_dev_attr_prochot1_override.dev_attr.attr, &sensor_dev_attr_prochot2_override.dev_attr.attr, &sensor_dev_attr_prochot1_interval.dev_attr.attr, &sensor_dev_attr_prochot2_interval.dev_attr.attr, &dev_attr_prochot_override_duty_cycle.attr, &dev_attr_prochot_short.attr, &sensor_dev_attr_vrdhot1.dev_attr.attr, &sensor_dev_attr_vrdhot2.dev_attr.attr, &dev_attr_gpio.attr, &dev_attr_alarms.attr, NULL }; static struct attribute_group lm93_attr_grp = { .attrs = lm93_attrs, }; static void lm93_init_client(struct i2c_client *client) { int i; u8 reg; /* configure VID pin input thresholds */ reg = lm93_read_byte(client, LM93_REG_GPI_VID_CTL); lm93_write_byte(client, LM93_REG_GPI_VID_CTL, reg | (vid_agtl ? 0x03 : 0x00)); if (init) { /* enable #ALERT pin */ reg = lm93_read_byte(client, LM93_REG_CONFIG); lm93_write_byte(client, LM93_REG_CONFIG, reg | 0x08); /* enable ASF mode for BMC status registers */ reg = lm93_read_byte(client, LM93_REG_STATUS_CONTROL); lm93_write_byte(client, LM93_REG_STATUS_CONTROL, reg | 0x02); /* set sleep state to S0 */ lm93_write_byte(client, LM93_REG_SLEEP_CONTROL, 0); /* unmask #VRDHOT and dynamic VCCP (if nec) error events */ reg = lm93_read_byte(client, LM93_REG_MISC_ERR_MASK); reg &= ~0x03; reg &= ~(vccp_limit_type[0] ? 0x10 : 0); reg &= ~(vccp_limit_type[1] ? 0x20 : 0); lm93_write_byte(client, LM93_REG_MISC_ERR_MASK, reg); } /* start monitoring */ reg = lm93_read_byte(client, LM93_REG_CONFIG); lm93_write_byte(client, LM93_REG_CONFIG, reg | 0x01); /* spin until ready */ for (i = 0; i < 20; i++) { msleep(10); if ((lm93_read_byte(client, LM93_REG_CONFIG) & 0x80) == 0x80) return; } dev_warn(&client->dev, "timed out waiting for sensor chip to signal ready!\n"); } /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm93_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int mfr, ver; const char *name; if (!i2c_check_functionality(adapter, LM93_SMBUS_FUNC_MIN)) return -ENODEV; /* detection */ mfr = lm93_read_byte(client, LM93_REG_MFR_ID); if (mfr != 0x01) { dev_dbg(&adapter->dev, "detect failed, bad manufacturer id 0x%02x!\n", mfr); return -ENODEV; } ver = lm93_read_byte(client, LM93_REG_VER); switch (ver) { case LM93_MFR_ID: case LM93_MFR_ID_PROTOTYPE: name = "lm93"; break; case LM94_MFR_ID_2: case LM94_MFR_ID: case LM94_MFR_ID_PROTOTYPE: name = "lm94"; break; default: dev_dbg(&adapter->dev, "detect failed, bad version id 0x%02x!\n", ver); return -ENODEV; } strlcpy(info->type, name, I2C_NAME_SIZE); dev_dbg(&adapter->dev, "loading %s at %d, 0x%02x\n", client->name, i2c_adapter_id(client->adapter), client->addr); return 0; } static int lm93_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct lm93_data *data; int err, func; void (*update)(struct lm93_data *, struct i2c_client *); /* choose update routine based on bus capabilities */ func = i2c_get_functionality(client->adapter); if (((LM93_SMBUS_FUNC_FULL & func) == LM93_SMBUS_FUNC_FULL) && (!disable_block)) { dev_dbg(&client->dev, "using SMBus block data transactions\n"); update = lm93_update_client_full; } else if ((LM93_SMBUS_FUNC_MIN & func) == LM93_SMBUS_FUNC_MIN) { dev_dbg(&client->dev, "disabled SMBus block data transactions\n"); update = lm93_update_client_min; } else { dev_dbg(&client->dev, "detect failed, smbus byte and/or word data not supported!\n"); return -ENODEV; } data = devm_kzalloc(&client->dev, sizeof(struct lm93_data), GFP_KERNEL); if (!data) { dev_dbg(&client->dev, "out of memory!\n"); return -ENOMEM; } i2c_set_clientdata(client, data); /* housekeeping */ data->valid = 0; data->update = update; mutex_init(&data->update_lock); /* initialize the chip */ lm93_init_client(client); err = sysfs_create_group(&client->dev.kobj, &lm93_attr_grp); if (err) return err; /* Register hwmon driver class */ data->hwmon_dev = hwmon_device_register(&client->dev); if (!IS_ERR(data->hwmon_dev)) return 0; err = PTR_ERR(data->hwmon_dev); dev_err(&client->dev, "error registering hwmon device.\n"); sysfs_remove_group(&client->dev.kobj, &lm93_attr_grp); return err; } static int lm93_remove(struct i2c_client *client) { struct lm93_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &lm93_attr_grp); return 0; } static const struct i2c_device_id lm93_id[] = { { "lm93", 0 }, { "lm94", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, lm93_id); static struct i2c_driver lm93_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm93", }, .probe = lm93_probe, .remove = lm93_remove, .id_table = lm93_id, .detect = lm93_detect, .address_list = normal_i2c, }; module_i2c_driver(lm93_driver); MODULE_AUTHOR("Mark M. Hoffman , " "Hans J. Koch "); MODULE_DESCRIPTION("LM93 driver"); MODULE_LICENSE("GPL");