/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_bios.h" #include "nouveau_pm.h" static u32 read_clk(struct drm_device *, int, bool); static u32 read_pll(struct drm_device *, int, u32); static u32 read_vco(struct drm_device *dev, int clk) { u32 sctl = nv_rd32(dev, 0x4120 + (clk * 4)); if ((sctl & 0x00000030) != 0x00000030) return read_pll(dev, 0x41, 0x00e820); return read_pll(dev, 0x42, 0x00e8a0); } static u32 read_clk(struct drm_device *dev, int clk, bool ignore_en) { u32 sctl, sdiv, sclk; /* refclk for the 0xe8xx plls always 27KHz */ if (clk >= 0x40) return 27000; sctl = nv_rd32(dev, 0x4120 + (clk * 4)); if (!ignore_en && !(sctl & 0x00000100)) return 0; switch (sctl & 0x00003000) { case 0x00000000: return 27000; case 0x00002000: if (sctl & 0x00000040) return 108000; return 100000; case 0x00003000: sclk = read_vco(dev, clk); sdiv = ((sctl & 0x003f0000) >> 16) + 2; return (sclk * 2) / sdiv; default: return 0; } } static u32 read_pll(struct drm_device *dev, int clk, u32 pll) { u32 ctrl = nv_rd32(dev, pll + 0); u32 sclk, P = 1, N = 1, M = 1; if (!(ctrl & 0x00000008)) { u32 coef = nv_rd32(dev, pll + 4); M = (coef & 0x000000ff) >> 0; N = (coef & 0x0000ff00) >> 8; P = (coef & 0x003f0000) >> 16; /* not post-divider on these.. */ if ((pll & 0x00ff00) == 0x00e800) P = 1; sclk = read_clk(dev, 0x00 + clk, false); } else { sclk = read_clk(dev, 0x10 + clk, false); } return sclk * N / (M * P); } struct creg { u32 clk; u32 pll; }; static int calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg) { struct pll_lims limits; u32 oclk, sclk, sdiv; int P, N, M, diff; int ret; reg->pll = 0; reg->clk = 0; if (!khz) { NV_DEBUG(dev, "no clock for 0x%04x/0x%02x\n", pll, clk); return 0; } switch (khz) { case 27000: reg->clk = 0x00000100; return khz; case 100000: reg->clk = 0x00002100; return khz; case 108000: reg->clk = 0x00002140; return khz; default: sclk = read_vco(dev, clk); sdiv = min((sclk * 2) / (khz - 2999), (u32)65); /* if the clock has a PLL attached, and we can get a within * [-2, 3) MHz of a divider, we'll disable the PLL and use * the divider instead. * * divider can go as low as 2, limited here because NVIDIA * and the VBIOS on my NVA8 seem to prefer using the PLL * for 810MHz - is there a good reason? */ if (sdiv > 4) { oclk = (sclk * 2) / sdiv; diff = khz - oclk; if (!pll || (diff >= -2000 && diff < 3000)) { reg->clk = (((sdiv - 2) << 16) | 0x00003100); return oclk; } } if (!pll) { NV_ERROR(dev, "bad freq %02x: %d %d\n", clk, khz, sclk); return -ERANGE; } break; } ret = get_pll_limits(dev, pll, &limits); if (ret) return ret; limits.refclk = read_clk(dev, clk - 0x10, true); if (!limits.refclk) return -EINVAL; ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P); if (ret >= 0) { reg->clk = nv_rd32(dev, 0x4120 + (clk * 4)); reg->pll = (P << 16) | (N << 8) | M; } return ret; } static void prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg) { const u32 src0 = 0x004120 + (clk * 4); const u32 src1 = 0x004160 + (clk * 4); const u32 ctrl = pll + 0; const u32 coef = pll + 4; u32 cntl; if (!reg->clk && !reg->pll) { NV_DEBUG(dev, "no clock for %02x\n", clk); return; } cntl = nv_rd32(dev, ctrl) & 0xfffffff2; if (reg->pll) { nv_mask(dev, src0, 0x00000101, 0x00000101); nv_wr32(dev, coef, reg->pll); nv_wr32(dev, ctrl, cntl | 0x00000015); nv_mask(dev, src1, 0x00000100, 0x00000000); nv_mask(dev, src1, 0x00000001, 0x00000000); } else { nv_mask(dev, src1, 0x003f3141, 0x00000101 | reg->clk); nv_wr32(dev, ctrl, cntl | 0x0000001d); nv_mask(dev, ctrl, 0x00000001, 0x00000000); nv_mask(dev, src0, 0x00000100, 0x00000000); nv_mask(dev, src0, 0x00000001, 0x00000000); } } static void prog_clk(struct drm_device *dev, int clk, struct creg *reg) { if (!reg->clk) { NV_DEBUG(dev, "no clock for %02x\n", clk); return; } nv_mask(dev, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk); } int nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl) { perflvl->core = read_pll(dev, 0x00, 0x4200); perflvl->shader = read_pll(dev, 0x01, 0x4220); perflvl->memory = read_pll(dev, 0x02, 0x4000); perflvl->unka0 = read_clk(dev, 0x20, false); perflvl->vdec = read_clk(dev, 0x21, false); perflvl->daemon = read_clk(dev, 0x25, false); perflvl->copy = perflvl->core; return 0; } struct nva3_pm_state { struct creg nclk; struct creg sclk; struct creg mclk; struct creg vdec; struct creg unka0; }; void * nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl) { struct nva3_pm_state *info; int ret; info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return ERR_PTR(-ENOMEM); ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk); if (ret < 0) goto out; ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk); if (ret < 0) goto out; ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk); if (ret < 0) goto out; ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0); if (ret < 0) goto out; ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec); if (ret < 0) goto out; out: if (ret < 0) { kfree(info); info = ERR_PTR(ret); } return info; } static bool nva3_pm_grcp_idle(void *data) { struct drm_device *dev = data; if (!(nv_rd32(dev, 0x400304) & 0x00000001)) return true; if (nv_rd32(dev, 0x400308) == 0x0050001c) return true; return false; } void nva3_pm_clocks_set(struct drm_device *dev, void *pre_state) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nva3_pm_state *info = pre_state; unsigned long flags; /* prevent any new grctx switches from starting */ spin_lock_irqsave(&dev_priv->context_switch_lock, flags); nv_wr32(dev, 0x400324, 0x00000000); nv_wr32(dev, 0x400328, 0x0050001c); /* wait flag 0x1c */ /* wait for any pending grctx switches to complete */ if (!nv_wait_cb(dev, nva3_pm_grcp_idle, dev)) { NV_ERROR(dev, "pm: ctxprog didn't go idle\n"); goto cleanup; } /* freeze PFIFO */ nv_mask(dev, 0x002504, 0x00000001, 0x00000001); if (!nv_wait(dev, 0x002504, 0x00000010, 0x00000010)) { NV_ERROR(dev, "pm: fifo didn't go idle\n"); goto cleanup; } prog_pll(dev, 0x00, 0x004200, &info->nclk); prog_pll(dev, 0x01, 0x004220, &info->sclk); prog_clk(dev, 0x20, &info->unka0); prog_clk(dev, 0x21, &info->vdec); nv_wr32(dev, 0x100210, 0); nv_wr32(dev, 0x1002dc, 1); nv_wr32(dev, 0x004018, 0x00001000); prog_pll(dev, 0x02, 0x004000, &info->mclk); if (nv_rd32(dev, 0x4000) & 0x00000008) nv_wr32(dev, 0x004018, 0x1000d000); else nv_wr32(dev, 0x004018, 0x10005000); nv_wr32(dev, 0x1002dc, 0); nv_wr32(dev, 0x100210, 0x80000000); cleanup: /* unfreeze PFIFO */ nv_mask(dev, 0x002504, 0x00000001, 0x00000000); /* restore ctxprog to normal */ nv_wr32(dev, 0x400324, 0x00000000); nv_wr32(dev, 0x400328, 0x0070009c); /* set flag 0x1c */ /* unblock it if necessary */ if (nv_rd32(dev, 0x400308) == 0x0050001c) nv_mask(dev, 0x400824, 0x10000000, 0x10000000); spin_unlock_irqrestore(&dev_priv->context_switch_lock, flags); kfree(info); }