/* * Copyright 1993-2003 NVIDIA, Corporation * Copyright 2007-2009 Stuart Bennett * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "drmP.h" #include "nouveau_drv.h" #include "nouveau_hw.h" /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ struct nv_fifo_info { int lwm; int burst; }; struct nv_sim_state { int pclk_khz; int mclk_khz; int nvclk_khz; int bpp; int mem_page_miss; int mem_latency; int memory_type; int memory_width; int two_heads; }; static void nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) { int pagemiss, cas, width, bpp; int nvclks, mclks, pclks, crtpagemiss; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq; int us_m, us_n, us_p, crtc_drain_rate; int cpm_us, us_crt, clwm; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width >> 6; bpp = arb->bpp; cbs = 128; pclks = 2; nvclks = 10; mclks = 13 + cas; mclk_extra = 3; found = 0; while (!found) { found = 1; mclk_loop = mclks + mclk_extra; us_m = mclk_loop * 1000 * 1000 / mclk_freq; us_n = nvclks * 1000 * 1000 / nvclk_freq; us_p = nvclks * 1000 * 1000 / pclk_freq; crtc_drain_rate = pclk_freq * bpp / 8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1 && m1 > 0) || clwm > 519) { found = !mclk_extra; mclk_extra--; } if (clwm < 384) clwm = 384; fifo->lwm = clwm; fifo->burst = cbs; } } static void nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb) { int fill_rate, drain_rate; int pclks, nvclks, mclks, xclks; int pclk_freq, nvclk_freq, mclk_freq; int fill_lat, extra_lat; int max_burst_o, max_burst_l; int fifo_len, min_lwm, max_lwm; const int burst_lat = 80; /* Maximum allowable latency due * to the CRTC FIFO burst. (ns) */ pclk_freq = arb->pclk_khz; nvclk_freq = arb->nvclk_khz; mclk_freq = arb->mclk_khz; fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */ drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */ fifo_len = arb->two_heads ? 1536 : 1024; /* B */ /* Fixed FIFO refill latency. */ pclks = 4; /* lwm detect. */ nvclks = 3 /* lwm -> sync. */ + 2 /* fbi bus cycles (1 req + 1 busy) */ + 1 /* 2 edge sync. may be very close to edge so * just put one. */ + 1 /* fbi_d_rdv_n */ + 1 /* Fbi_d_rdata */ + 1; /* crtfifo load */ mclks = 1 /* 2 edge sync. may be very close to edge so * just put one. */ + 1 /* arb_hp_req */ + 5 /* tiling pipeline */ + 2 /* latency fifo */ + 2 /* memory request to fbio block */ + 7; /* data returned from fbio block */ /* Need to accumulate 256 bits for read */ mclks += (arb->memory_type == 0 ? 2 : 1) * arb->memory_width / 32; fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */ + nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */ + pclks * 1000 * 1000 / pclk_freq; /* pclk latency */ /* Conditional FIFO refill latency. */ xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to * the overlay. */ + 2 * arb->mem_page_miss /* Extra pagemiss latency. */ + (arb->bpp == 32 ? 8 : 4); /* Margin of error. */ extra_lat = xclks * 1000 * 1000 / mclk_freq; if (arb->two_heads) /* Account for another CRTC. */ extra_lat += fill_lat + extra_lat + burst_lat; /* FIFO burst */ /* Max burst not leading to overflows. */ max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000)) * (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000); fifo->burst = min(max_burst_o, 1024); /* Max burst value with an acceptable latency. */ max_burst_l = burst_lat * fill_rate / (1000 * 1000); fifo->burst = min(max_burst_l, fifo->burst); fifo->burst = rounddown_pow_of_two(fifo->burst); /* FIFO low watermark */ min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1; max_lwm = fifo_len - fifo->burst + fill_lat * drain_rate / (1000 * 1000) + fifo->burst * drain_rate / fill_rate; fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */ } static void nv04_update_arb(struct drm_device *dev, int VClk, int bpp, int *burst, int *lwm) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nv_fifo_info fifo_data; struct nv_sim_state sim_data; int MClk = nouveau_hw_get_clock(dev, MPLL); int NVClk = nouveau_hw_get_clock(dev, NVPLL); uint32_t cfg1 = nvReadFB(dev, NV_PFB_CFG1); sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; sim_data.bpp = bpp; sim_data.two_heads = nv_two_heads(dev); if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ || (dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) { uint32_t type; pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type); sim_data.memory_type = (type >> 12) & 1; sim_data.memory_width = 64; sim_data.mem_latency = 3; sim_data.mem_page_miss = 10; } else { sim_data.memory_type = nvReadFB(dev, NV_PFB_CFG0) & 0x1; sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64; sim_data.mem_latency = cfg1 & 0xf; sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1); } if (dev_priv->card_type == NV_04) nv04_calc_arb(&fifo_data, &sim_data); else nv10_calc_arb(&fifo_data, &sim_data); *burst = ilog2(fifo_data.burst >> 4); *lwm = fifo_data.lwm >> 3; } static void nv30_update_arb(int *burst, int *lwm) { unsigned int fifo_size, burst_size, graphics_lwm; fifo_size = 2048; burst_size = 512; graphics_lwm = fifo_size - burst_size; *burst = ilog2(burst_size >> 5); *lwm = graphics_lwm >> 3; } void nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm) { struct drm_nouveau_private *dev_priv = dev->dev_private; if (dev_priv->card_type < NV_30) nv04_update_arb(dev, vclk, bpp, burst, lwm); else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ || (dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) { *burst = 128; *lwm = 0x0480; } else nv30_update_arb(burst, lwm); } static int getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk, struct nouveau_pll_vals *bestpv) { /* Find M, N and P for a single stage PLL * * Note that some bioses (NV3x) have lookup tables of precomputed MNP * values, but we're too lazy to use those atm * * "clk" parameter in kHz * returns calculated clock */ struct drm_nouveau_private *dev_priv = dev->dev_private; int cv = dev_priv->vbios->chip_version; int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq; int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m; int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n; int minU = pll_lim->vco1.min_inputfreq; int maxU = pll_lim->vco1.max_inputfreq; int minP = pll_lim->max_p ? pll_lim->min_p : 0; int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p; int crystal = pll_lim->refclk; int M, N, thisP, P; int clkP, calcclk; int delta, bestdelta = INT_MAX; int bestclk = 0; /* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */ /* possibly correlated with introduction of 27MHz crystal */ if (dev_priv->card_type < NV_50) { if (cv < 0x17 || cv == 0x1a || cv == 0x20) { if (clk > 250000) maxM = 6; if (clk > 340000) maxM = 2; } else if (cv < 0x40) { if (clk > 150000) maxM = 6; if (clk > 200000) maxM = 4; if (clk > 340000) maxM = 2; } } P = pll_lim->max_p ? maxP : (1 << maxP); if ((clk * P) < minvco) { minvco = clk * maxP; maxvco = minvco * 2; } if (clk + clk/200 > maxvco) /* +0.5% */ maxvco = clk + clk/200; /* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */ for (thisP = minP; thisP <= maxP; thisP++) { P = pll_lim->max_p ? thisP : (1 << thisP); clkP = clk * P; if (clkP < minvco) continue; if (clkP > maxvco) return bestclk; for (M = minM; M <= maxM; M++) { if (crystal/M < minU) return bestclk; if (crystal/M > maxU) continue; /* add crystal/2 to round better */ N = (clkP * M + crystal/2) / crystal; if (N < minN) continue; if (N > maxN) break; /* more rounding additions */ calcclk = ((N * crystal + P/2) / P + M/2) / M; delta = abs(calcclk - clk); /* we do an exhaustive search rather than terminating * on an optimality condition... */ if (delta < bestdelta) { bestdelta = delta; bestclk = calcclk; bestpv->N1 = N; bestpv->M1 = M; bestpv->log2P = thisP; if (delta == 0) /* except this one */ return bestclk; } } } return bestclk; } static int getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk, struct nouveau_pll_vals *bestpv) { /* Find M, N and P for a two stage PLL * * Note that some bioses (NV30+) have lookup tables of precomputed MNP * values, but we're too lazy to use those atm * * "clk" parameter in kHz * returns calculated clock */ struct drm_nouveau_private *dev_priv = dev->dev_private; int chip_version = dev_priv->vbios->chip_version; int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq; int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq; int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq; int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq; int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m; int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n; int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m; int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n; int maxlog2P = pll_lim->max_usable_log2p; int crystal = pll_lim->refclk; bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2); int M1, N1, M2, N2, log2P; int clkP, calcclk1, calcclk2, calcclkout; int delta, bestdelta = INT_MAX; int bestclk = 0; int vco2 = (maxvco2 - maxvco2/200) / 2; for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++) ; clkP = clk << log2P; if (maxvco2 < clk + clk/200) /* +0.5% */ maxvco2 = clk + clk/200; for (M1 = minM1; M1 <= maxM1; M1++) { if (crystal/M1 < minU1) return bestclk; if (crystal/M1 > maxU1) continue; for (N1 = minN1; N1 <= maxN1; N1++) { calcclk1 = crystal * N1 / M1; if (calcclk1 < minvco1) continue; if (calcclk1 > maxvco1) break; for (M2 = minM2; M2 <= maxM2; M2++) { if (calcclk1/M2 < minU2) break; if (calcclk1/M2 > maxU2) continue; /* add calcclk1/2 to round better */ N2 = (clkP * M2 + calcclk1/2) / calcclk1; if (N2 < minN2) continue; if (N2 > maxN2) break; if (!fixedgain2) { if (chip_version < 0x60) if (N2/M2 < 4 || N2/M2 > 10) continue; calcclk2 = calcclk1 * N2 / M2; if (calcclk2 < minvco2) break; if (calcclk2 > maxvco2) continue; } else calcclk2 = calcclk1; calcclkout = calcclk2 >> log2P; delta = abs(calcclkout - clk); /* we do an exhaustive search rather than terminating * on an optimality condition... */ if (delta < bestdelta) { bestdelta = delta; bestclk = calcclkout; bestpv->N1 = N1; bestpv->M1 = M1; bestpv->N2 = N2; bestpv->M2 = M2; bestpv->log2P = log2P; if (delta == 0) /* except this one */ return bestclk; } } } } return bestclk; } int nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk, struct nouveau_pll_vals *pv) { int outclk; if (!pll_lim->vco2.maxfreq) outclk = getMNP_single(dev, pll_lim, clk, pv); else outclk = getMNP_double(dev, pll_lim, clk, pv); if (!outclk) NV_ERROR(dev, "Could not find a compatible set of PLL values\n"); return outclk; }