/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include "i915_drv.h" #include "intel_guc.h" /** * DOC: GuC Client * * i915_guc_client: * We use the term client to avoid confusion with contexts. A i915_guc_client is * equivalent to GuC object guc_context_desc. This context descriptor is * allocated from a pool of 1024 entries. Kernel driver will allocate doorbell * and workqueue for it. Also the process descriptor (guc_process_desc), which * is mapped to client space. So the client can write Work Item then ring the * doorbell. * * To simplify the implementation, we allocate one gem object that contains all * pages for doorbell, process descriptor and workqueue. * * The Scratch registers: * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes * a value to the action register (SOFT_SCRATCH_0) along with any data. It then * triggers an interrupt on the GuC via another register write (0xC4C8). * Firmware writes a success/fail code back to the action register after * processes the request. The kernel driver polls waiting for this update and * then proceeds. * See host2guc_action() * * Doorbells: * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) * mapped into process space. * * Work Items: * There are several types of work items that the host may place into a * workqueue, each with its own requirements and limitations. Currently only * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which * represents in-order queue. The kernel driver packs ring tail pointer and an * ELSP context descriptor dword into Work Item. * See guc_add_workqueue_item() * */ /* * Read GuC command/status register (SOFT_SCRATCH_0) * Return true if it contains a response rather than a command */ static inline bool host2guc_action_response(struct drm_i915_private *dev_priv, u32 *status) { u32 val = I915_READ(SOFT_SCRATCH(0)); *status = val; return GUC2HOST_IS_RESPONSE(val); } static int host2guc_action(struct intel_guc *guc, u32 *data, u32 len) { struct drm_i915_private *dev_priv = guc_to_i915(guc); u32 status; int i; int ret; if (WARN_ON(len < 1 || len > 15)) return -EINVAL; intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL); spin_lock(&dev_priv->guc.host2guc_lock); dev_priv->guc.action_count += 1; dev_priv->guc.action_cmd = data[0]; for (i = 0; i < len; i++) I915_WRITE(SOFT_SCRATCH(i), data[i]); POSTING_READ(SOFT_SCRATCH(i - 1)); I915_WRITE(HOST2GUC_INTERRUPT, HOST2GUC_TRIGGER); /* No HOST2GUC command should take longer than 10ms */ ret = wait_for_atomic(host2guc_action_response(dev_priv, &status), 10); if (status != GUC2HOST_STATUS_SUCCESS) { /* * Either the GuC explicitly returned an error (which * we convert to -EIO here) or no response at all was * received within the timeout limit (-ETIMEDOUT) */ if (ret != -ETIMEDOUT) ret = -EIO; DRM_ERROR("GUC: host2guc action 0x%X failed. ret=%d " "status=0x%08X response=0x%08X\n", data[0], ret, status, I915_READ(SOFT_SCRATCH(15))); dev_priv->guc.action_fail += 1; dev_priv->guc.action_err = ret; } dev_priv->guc.action_status = status; spin_unlock(&dev_priv->guc.host2guc_lock); intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL); return ret; } /* * Tell the GuC to allocate or deallocate a specific doorbell */ static int host2guc_allocate_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { u32 data[2]; data[0] = HOST2GUC_ACTION_ALLOCATE_DOORBELL; data[1] = client->ctx_index; return host2guc_action(guc, data, 2); } static int host2guc_release_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { u32 data[2]; data[0] = HOST2GUC_ACTION_DEALLOCATE_DOORBELL; data[1] = client->ctx_index; return host2guc_action(guc, data, 2); } static int host2guc_sample_forcewake(struct intel_guc *guc, struct i915_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct drm_device *dev = dev_priv->dev; u32 data[2]; data[0] = HOST2GUC_ACTION_SAMPLE_FORCEWAKE; /* WaRsDisableCoarsePowerGating:skl,bxt */ if (!intel_enable_rc6(dev_priv->dev) || (IS_BROXTON(dev) && (INTEL_REVID(dev) < BXT_REVID_B0)) || (IS_SKL_GT3(dev) && (INTEL_REVID(dev) <= SKL_REVID_E0)) || (IS_SKL_GT4(dev) && (INTEL_REVID(dev) <= SKL_REVID_E0))) data[1] = 0; else /* bit 0 and 1 are for Render and Media domain separately */ data[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; return host2guc_action(guc, data, ARRAY_SIZE(data)); } /* * Initialise, update, or clear doorbell data shared with the GuC * * These functions modify shared data and so need access to the mapped * client object which contains the page being used for the doorbell */ static void guc_init_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_doorbell_info *doorbell; void *base; base = kmap_atomic(i915_gem_object_get_page(client->client_obj, 0)); doorbell = base + client->doorbell_offset; doorbell->db_status = 1; doorbell->cookie = 0; kunmap_atomic(base); } static int guc_ring_doorbell(struct i915_guc_client *gc) { struct guc_process_desc *desc; union guc_doorbell_qw db_cmp, db_exc, db_ret; union guc_doorbell_qw *db; void *base; int attempt = 2, ret = -EAGAIN; base = kmap_atomic(i915_gem_object_get_page(gc->client_obj, 0)); desc = base + gc->proc_desc_offset; /* Update the tail so it is visible to GuC */ desc->tail = gc->wq_tail; /* current cookie */ db_cmp.db_status = GUC_DOORBELL_ENABLED; db_cmp.cookie = gc->cookie; /* cookie to be updated */ db_exc.db_status = GUC_DOORBELL_ENABLED; db_exc.cookie = gc->cookie + 1; if (db_exc.cookie == 0) db_exc.cookie = 1; /* pointer of current doorbell cacheline */ db = base + gc->doorbell_offset; while (attempt--) { /* lets ring the doorbell */ db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db, db_cmp.value_qw, db_exc.value_qw); /* if the exchange was successfully executed */ if (db_ret.value_qw == db_cmp.value_qw) { /* db was successfully rung */ gc->cookie = db_exc.cookie; ret = 0; break; } /* XXX: doorbell was lost and need to acquire it again */ if (db_ret.db_status == GUC_DOORBELL_DISABLED) break; DRM_ERROR("Cookie mismatch. Expected %d, returned %d\n", db_cmp.cookie, db_ret.cookie); /* update the cookie to newly read cookie from GuC */ db_cmp.cookie = db_ret.cookie; db_exc.cookie = db_ret.cookie + 1; if (db_exc.cookie == 0) db_exc.cookie = 1; } kunmap_atomic(base); return ret; } static void guc_disable_doorbell(struct intel_guc *guc, struct i915_guc_client *client) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct guc_doorbell_info *doorbell; void *base; int drbreg = GEN8_DRBREGL(client->doorbell_id); int value; base = kmap_atomic(i915_gem_object_get_page(client->client_obj, 0)); doorbell = base + client->doorbell_offset; doorbell->db_status = 0; kunmap_atomic(base); I915_WRITE(drbreg, I915_READ(drbreg) & ~GEN8_DRB_VALID); value = I915_READ(drbreg); WARN_ON((value & GEN8_DRB_VALID) != 0); I915_WRITE(GEN8_DRBREGU(client->doorbell_id), 0); I915_WRITE(drbreg, 0); /* XXX: wait for any interrupts */ /* XXX: wait for workqueue to drain */ } /* * Select, assign and relase doorbell cachelines * * These functions track which doorbell cachelines are in use. * The data they manipulate is protected by the host2guc lock. */ static uint32_t select_doorbell_cacheline(struct intel_guc *guc) { const uint32_t cacheline_size = cache_line_size(); uint32_t offset; spin_lock(&guc->host2guc_lock); /* Doorbell uses a single cache line within a page */ offset = offset_in_page(guc->db_cacheline); /* Moving to next cache line to reduce contention */ guc->db_cacheline += cacheline_size; spin_unlock(&guc->host2guc_lock); DRM_DEBUG_DRIVER("selected doorbell cacheline 0x%x, next 0x%x, linesize %u\n", offset, guc->db_cacheline, cacheline_size); return offset; } static uint16_t assign_doorbell(struct intel_guc *guc, uint32_t priority) { /* * The bitmap is split into two halves; the first half is used for * normal priority contexts, the second half for high-priority ones. * Note that logically higher priorities are numerically less than * normal ones, so the test below means "is it high-priority?" */ const bool hi_pri = (priority <= GUC_CTX_PRIORITY_HIGH); const uint16_t half = GUC_MAX_DOORBELLS / 2; const uint16_t start = hi_pri ? half : 0; const uint16_t end = start + half; uint16_t id; spin_lock(&guc->host2guc_lock); id = find_next_zero_bit(guc->doorbell_bitmap, end, start); if (id == end) id = GUC_INVALID_DOORBELL_ID; else bitmap_set(guc->doorbell_bitmap, id, 1); spin_unlock(&guc->host2guc_lock); DRM_DEBUG_DRIVER("assigned %s priority doorbell id 0x%x\n", hi_pri ? "high" : "normal", id); return id; } static void release_doorbell(struct intel_guc *guc, uint16_t id) { spin_lock(&guc->host2guc_lock); bitmap_clear(guc->doorbell_bitmap, id, 1); spin_unlock(&guc->host2guc_lock); } /* * Initialise the process descriptor shared with the GuC firmware. */ static void guc_init_proc_desc(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_process_desc *desc; void *base; base = kmap_atomic(i915_gem_object_get_page(client->client_obj, 0)); desc = base + client->proc_desc_offset; memset(desc, 0, sizeof(*desc)); /* * XXX: pDoorbell and WQVBaseAddress are pointers in process address * space for ring3 clients (set them as in mmap_ioctl) or kernel * space for kernel clients (map on demand instead? May make debug * easier to have it mapped). */ desc->wq_base_addr = 0; desc->db_base_addr = 0; desc->context_id = client->ctx_index; desc->wq_size_bytes = client->wq_size; desc->wq_status = WQ_STATUS_ACTIVE; desc->priority = client->priority; kunmap_atomic(base); } /* * Initialise/clear the context descriptor shared with the GuC firmware. * * This descriptor tells the GuC where (in GGTT space) to find the important * data structures relating to this client (doorbell, process descriptor, * write queue, etc). */ static void guc_init_ctx_desc(struct intel_guc *guc, struct i915_guc_client *client) { struct intel_context *ctx = client->owner; struct guc_context_desc desc; struct sg_table *sg; int i; memset(&desc, 0, sizeof(desc)); desc.attribute = GUC_CTX_DESC_ATTR_ACTIVE | GUC_CTX_DESC_ATTR_KERNEL; desc.context_id = client->ctx_index; desc.priority = client->priority; desc.db_id = client->doorbell_id; for (i = 0; i < I915_NUM_RINGS; i++) { struct guc_execlist_context *lrc = &desc.lrc[i]; struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf; struct intel_engine_cs *ring; struct drm_i915_gem_object *obj; uint64_t ctx_desc; /* TODO: We have a design issue to be solved here. Only when we * receive the first batch, we know which engine is used by the * user. But here GuC expects the lrc and ring to be pinned. It * is not an issue for default context, which is the only one * for now who owns a GuC client. But for future owner of GuC * client, need to make sure lrc is pinned prior to enter here. */ obj = ctx->engine[i].state; if (!obj) break; /* XXX: continue? */ ring = ringbuf->ring; ctx_desc = intel_lr_context_descriptor(ctx, ring); lrc->context_desc = (u32)ctx_desc; /* The state page is after PPHWSP */ lrc->ring_lcra = i915_gem_obj_ggtt_offset(obj) + LRC_STATE_PN * PAGE_SIZE; lrc->context_id = (client->ctx_index << GUC_ELC_CTXID_OFFSET) | (ring->id << GUC_ELC_ENGINE_OFFSET); obj = ringbuf->obj; lrc->ring_begin = i915_gem_obj_ggtt_offset(obj); lrc->ring_end = lrc->ring_begin + obj->base.size - 1; lrc->ring_next_free_location = lrc->ring_begin; lrc->ring_current_tail_pointer_value = 0; desc.engines_used |= (1 << ring->id); } WARN_ON(desc.engines_used == 0); /* * The CPU address is only needed at certain points, so kmap_atomic on * demand instead of storing it in the ctx descriptor. * XXX: May make debug easier to have it mapped */ desc.db_trigger_cpu = 0; desc.db_trigger_uk = client->doorbell_offset + i915_gem_obj_ggtt_offset(client->client_obj); desc.db_trigger_phy = client->doorbell_offset + sg_dma_address(client->client_obj->pages->sgl); desc.process_desc = client->proc_desc_offset + i915_gem_obj_ggtt_offset(client->client_obj); desc.wq_addr = client->wq_offset + i915_gem_obj_ggtt_offset(client->client_obj); desc.wq_size = client->wq_size; /* * XXX: Take LRCs from an existing intel_context if this is not an * IsKMDCreatedContext client */ desc.desc_private = (uintptr_t)client; /* Pool context is pinned already */ sg = guc->ctx_pool_obj->pages; sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), sizeof(desc) * client->ctx_index); } static void guc_fini_ctx_desc(struct intel_guc *guc, struct i915_guc_client *client) { struct guc_context_desc desc; struct sg_table *sg; memset(&desc, 0, sizeof(desc)); sg = guc->ctx_pool_obj->pages; sg_pcopy_from_buffer(sg->sgl, sg->nents, &desc, sizeof(desc), sizeof(desc) * client->ctx_index); } /* Get valid workqueue item and return it back to offset */ static int guc_get_workqueue_space(struct i915_guc_client *gc, u32 *offset) { struct guc_process_desc *desc; void *base; u32 size = sizeof(struct guc_wq_item); int ret = 0, timeout_counter = 200; base = kmap_atomic(i915_gem_object_get_page(gc->client_obj, 0)); desc = base + gc->proc_desc_offset; while (timeout_counter-- > 0) { ret = wait_for_atomic(CIRC_SPACE(gc->wq_tail, desc->head, gc->wq_size) >= size, 1); if (!ret) { *offset = gc->wq_tail; /* advance the tail for next workqueue item */ gc->wq_tail += size; gc->wq_tail &= gc->wq_size - 1; /* this will break the loop */ timeout_counter = 0; } }; kunmap_atomic(base); return ret; } static int guc_add_workqueue_item(struct i915_guc_client *gc, struct drm_i915_gem_request *rq) { enum intel_ring_id ring_id = rq->ring->id; struct guc_wq_item *wqi; void *base; u32 tail, wq_len, wq_off = 0; int ret; ret = guc_get_workqueue_space(gc, &wq_off); if (ret) return ret; /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we * should not have the case where structure wqi is across page, neither * wrapped to the beginning. This simplifies the implementation below. * * XXX: if not the case, we need save data to a temp wqi and copy it to * workqueue buffer dw by dw. */ WARN_ON(sizeof(struct guc_wq_item) != 16); WARN_ON(wq_off & 3); /* wq starts from the page after doorbell / process_desc */ base = kmap_atomic(i915_gem_object_get_page(gc->client_obj, (wq_off + GUC_DB_SIZE) >> PAGE_SHIFT)); wq_off &= PAGE_SIZE - 1; wqi = (struct guc_wq_item *)((char *)base + wq_off); /* len does not include the header */ wq_len = sizeof(struct guc_wq_item) / sizeof(u32) - 1; wqi->header = WQ_TYPE_INORDER | (wq_len << WQ_LEN_SHIFT) | (ring_id << WQ_TARGET_SHIFT) | WQ_NO_WCFLUSH_WAIT; /* The GuC wants only the low-order word of the context descriptor */ wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, rq->ring); /* The GuC firmware wants the tail index in QWords, not bytes */ tail = rq->ringbuf->tail >> 3; wqi->ring_tail = tail << WQ_RING_TAIL_SHIFT; wqi->fence_id = 0; /*XXX: what fence to be here */ kunmap_atomic(base); return 0; } #define CTX_RING_BUFFER_START 0x08 /* Update the ringbuffer pointer in a saved context image */ static void lr_context_update(struct drm_i915_gem_request *rq) { enum intel_ring_id ring_id = rq->ring->id; struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring_id].state; struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj; struct page *page; uint32_t *reg_state; BUG_ON(!ctx_obj); WARN_ON(!i915_gem_obj_is_pinned(ctx_obj)); WARN_ON(!i915_gem_obj_is_pinned(rb_obj)); page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN); reg_state = kmap_atomic(page); reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj); kunmap_atomic(reg_state); } /** * i915_guc_submit() - Submit commands through GuC * @client: the guc client where commands will go through * @ctx: LRC where commands come from * @ring: HW engine that will excute the commands * * Return: 0 if succeed */ int i915_guc_submit(struct i915_guc_client *client, struct drm_i915_gem_request *rq) { struct intel_guc *guc = client->guc; enum intel_ring_id ring_id = rq->ring->id; unsigned long flags; int q_ret, b_ret; /* Need this because of the deferred pin ctx and ring */ /* Shall we move this right after ring is pinned? */ lr_context_update(rq); spin_lock_irqsave(&client->wq_lock, flags); q_ret = guc_add_workqueue_item(client, rq); if (q_ret == 0) b_ret = guc_ring_doorbell(client); client->submissions[ring_id] += 1; if (q_ret) { client->q_fail += 1; client->retcode = q_ret; } else if (b_ret) { client->b_fail += 1; client->retcode = q_ret = b_ret; } else { client->retcode = 0; } spin_unlock_irqrestore(&client->wq_lock, flags); spin_lock(&guc->host2guc_lock); guc->submissions[ring_id] += 1; guc->last_seqno[ring_id] = rq->seqno; spin_unlock(&guc->host2guc_lock); return q_ret; } /* * Everything below here is concerned with setup & teardown, and is * therefore not part of the somewhat time-critical batch-submission * path of i915_guc_submit() above. */ /** * gem_allocate_guc_obj() - Allocate gem object for GuC usage * @dev: drm device * @size: size of object * * This is a wrapper to create a gem obj. In order to use it inside GuC, the * object needs to be pinned lifetime. Also we must pin it to gtt space other * than [0, GUC_WOPCM_TOP) because this range is reserved inside GuC. * * Return: A drm_i915_gem_object if successful, otherwise NULL. */ static struct drm_i915_gem_object *gem_allocate_guc_obj(struct drm_device *dev, u32 size) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; obj = i915_gem_alloc_object(dev, size); if (!obj) return NULL; if (i915_gem_object_get_pages(obj)) { drm_gem_object_unreference(&obj->base); return NULL; } if (i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_OFFSET_BIAS | GUC_WOPCM_TOP)) { drm_gem_object_unreference(&obj->base); return NULL; } /* Invalidate GuC TLB to let GuC take the latest updates to GTT. */ I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); return obj; } /** * gem_release_guc_obj() - Release gem object allocated for GuC usage * @obj: gem obj to be released */ static void gem_release_guc_obj(struct drm_i915_gem_object *obj) { if (!obj) return; if (i915_gem_obj_is_pinned(obj)) i915_gem_object_ggtt_unpin(obj); drm_gem_object_unreference(&obj->base); } static void guc_client_free(struct drm_device *dev, struct i915_guc_client *client) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; if (!client) return; if (client->doorbell_id != GUC_INVALID_DOORBELL_ID) { /* * First disable the doorbell, then tell the GuC we've * finished with it, finally deallocate it in our bitmap */ guc_disable_doorbell(guc, client); host2guc_release_doorbell(guc, client); release_doorbell(guc, client->doorbell_id); } /* * XXX: wait for any outstanding submissions before freeing memory. * Be sure to drop any locks */ gem_release_guc_obj(client->client_obj); if (client->ctx_index != GUC_INVALID_CTX_ID) { guc_fini_ctx_desc(guc, client); ida_simple_remove(&guc->ctx_ids, client->ctx_index); } kfree(client); } /** * guc_client_alloc() - Allocate an i915_guc_client * @dev: drm device * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW * The kernel client to replace ExecList submission is created with * NORMAL priority. Priority of a client for scheduler can be HIGH, * while a preemption context can use CRITICAL. * @ctx the context to own the client (we use the default render context) * * Return: An i915_guc_client object if success. */ static struct i915_guc_client *guc_client_alloc(struct drm_device *dev, uint32_t priority, struct intel_context *ctx) { struct i915_guc_client *client; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; struct drm_i915_gem_object *obj; client = kzalloc(sizeof(*client), GFP_KERNEL); if (!client) return NULL; client->doorbell_id = GUC_INVALID_DOORBELL_ID; client->priority = priority; client->owner = ctx; client->guc = guc; client->ctx_index = (uint32_t)ida_simple_get(&guc->ctx_ids, 0, GUC_MAX_GPU_CONTEXTS, GFP_KERNEL); if (client->ctx_index >= GUC_MAX_GPU_CONTEXTS) { client->ctx_index = GUC_INVALID_CTX_ID; goto err; } /* The first page is doorbell/proc_desc. Two followed pages are wq. */ obj = gem_allocate_guc_obj(dev, GUC_DB_SIZE + GUC_WQ_SIZE); if (!obj) goto err; client->client_obj = obj; client->wq_offset = GUC_DB_SIZE; client->wq_size = GUC_WQ_SIZE; spin_lock_init(&client->wq_lock); client->doorbell_offset = select_doorbell_cacheline(guc); /* * Since the doorbell only requires a single cacheline, we can save * space by putting the application process descriptor in the same * page. Use the half of the page that doesn't include the doorbell. */ if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) client->proc_desc_offset = 0; else client->proc_desc_offset = (GUC_DB_SIZE / 2); client->doorbell_id = assign_doorbell(guc, client->priority); if (client->doorbell_id == GUC_INVALID_DOORBELL_ID) /* XXX: evict a doorbell instead */ goto err; guc_init_proc_desc(guc, client); guc_init_ctx_desc(guc, client); guc_init_doorbell(guc, client); /* XXX: Any cache flushes needed? General domain mgmt calls? */ if (host2guc_allocate_doorbell(guc, client)) goto err; DRM_DEBUG_DRIVER("new priority %u client %p: ctx_index %u db_id %u\n", priority, client, client->ctx_index, client->doorbell_id); return client; err: DRM_ERROR("FAILED to create priority %u GuC client!\n", priority); guc_client_free(dev, client); return NULL; } static void guc_create_log(struct intel_guc *guc) { struct drm_i915_private *dev_priv = guc_to_i915(guc); struct drm_i915_gem_object *obj; unsigned long offset; uint32_t size, flags; if (i915.guc_log_level < GUC_LOG_VERBOSITY_MIN) return; if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX) i915.guc_log_level = GUC_LOG_VERBOSITY_MAX; /* The first page is to save log buffer state. Allocate one * extra page for others in case for overlap */ size = (1 + GUC_LOG_DPC_PAGES + 1 + GUC_LOG_ISR_PAGES + 1 + GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT; obj = guc->log_obj; if (!obj) { obj = gem_allocate_guc_obj(dev_priv->dev, size); if (!obj) { /* logging will be off */ i915.guc_log_level = -1; return; } guc->log_obj = obj; } /* each allocated unit is a page */ flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL | (GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) | (GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) | (GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT); offset = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT; /* in pages */ guc->log_flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags; } /* * Set up the memory resources to be shared with the GuC. At this point, * we require just one object that can be mapped through the GGTT. */ int i915_guc_submission_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; const size_t ctxsize = sizeof(struct guc_context_desc); const size_t poolsize = GUC_MAX_GPU_CONTEXTS * ctxsize; const size_t gemsize = round_up(poolsize, PAGE_SIZE); struct intel_guc *guc = &dev_priv->guc; if (!i915.enable_guc_submission) return 0; /* not enabled */ if (guc->ctx_pool_obj) return 0; /* already allocated */ guc->ctx_pool_obj = gem_allocate_guc_obj(dev_priv->dev, gemsize); if (!guc->ctx_pool_obj) return -ENOMEM; spin_lock_init(&dev_priv->guc.host2guc_lock); ida_init(&guc->ctx_ids); guc_create_log(guc); return 0; } int i915_guc_submission_enable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; struct intel_context *ctx = dev_priv->ring[RCS].default_context; struct i915_guc_client *client; /* client for execbuf submission */ client = guc_client_alloc(dev, GUC_CTX_PRIORITY_KMD_NORMAL, ctx); if (!client) { DRM_ERROR("Failed to create execbuf guc_client\n"); return -ENOMEM; } guc->execbuf_client = client; host2guc_sample_forcewake(guc, client); return 0; } void i915_guc_submission_disable(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; guc_client_free(dev, guc->execbuf_client); guc->execbuf_client = NULL; } void i915_guc_submission_fini(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; gem_release_guc_obj(dev_priv->guc.log_obj); guc->log_obj = NULL; if (guc->ctx_pool_obj) ida_destroy(&guc->ctx_ids); gem_release_guc_obj(guc->ctx_pool_obj); guc->ctx_pool_obj = NULL; } /** * intel_guc_suspend() - notify GuC entering suspend state * @dev: drm device */ int intel_guc_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; struct intel_context *ctx; u32 data[3]; if (!i915.enable_guc_submission) return 0; ctx = dev_priv->ring[RCS].default_context; data[0] = HOST2GUC_ACTION_ENTER_S_STATE; /* any value greater than GUC_POWER_D0 */ data[1] = GUC_POWER_D1; /* first page is shared data with GuC */ data[2] = i915_gem_obj_ggtt_offset(ctx->engine[RCS].state); return host2guc_action(guc, data, ARRAY_SIZE(data)); } /** * intel_guc_resume() - notify GuC resuming from suspend state * @dev: drm device */ int intel_guc_resume(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_guc *guc = &dev_priv->guc; struct intel_context *ctx; u32 data[3]; if (!i915.enable_guc_submission) return 0; ctx = dev_priv->ring[RCS].default_context; data[0] = HOST2GUC_ACTION_EXIT_S_STATE; data[1] = GUC_POWER_D0; /* first page is shared data with GuC */ data[2] = i915_gem_obj_ggtt_offset(ctx->engine[RCS].state); return host2guc_action(guc, data, ARRAY_SIZE(data)); }