/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "amdgpu.h" #include "amdgpu_amdkfd.h" #include "cikd.h" #include "cik_sdma.h" #include "amdgpu_ucode.h" #include "gca/gfx_7_2_d.h" #include "gca/gfx_7_2_enum.h" #include "gca/gfx_7_2_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" #include "gmc/gmc_7_1_d.h" #include "gmc/gmc_7_1_sh_mask.h" #include "cik_structs.h" #define CIK_PIPE_PER_MEC (4) enum { MAX_TRAPID = 8, /* 3 bits in the bitfield. */ MAX_WATCH_ADDRESSES = 4 }; enum { ADDRESS_WATCH_REG_ADDR_HI = 0, ADDRESS_WATCH_REG_ADDR_LO, ADDRESS_WATCH_REG_CNTL, ADDRESS_WATCH_REG_MAX }; /* not defined in the CI/KV reg file */ enum { ADDRESS_WATCH_REG_CNTL_ATC_BIT = 0x10000000UL, ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK = 0x00FFFFFF, ADDRESS_WATCH_REG_ADDLOW_MASK_EXTENSION = 0x03000000, /* extend the mask to 26 bits to match the low address field */ ADDRESS_WATCH_REG_ADDLOW_SHIFT = 6, ADDRESS_WATCH_REG_ADDHIGH_MASK = 0xFFFF }; static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = { mmTCP_WATCH0_ADDR_H, mmTCP_WATCH0_ADDR_L, mmTCP_WATCH0_CNTL, mmTCP_WATCH1_ADDR_H, mmTCP_WATCH1_ADDR_L, mmTCP_WATCH1_CNTL, mmTCP_WATCH2_ADDR_H, mmTCP_WATCH2_ADDR_L, mmTCP_WATCH2_CNTL, mmTCP_WATCH3_ADDR_H, mmTCP_WATCH3_ADDR_L, mmTCP_WATCH3_CNTL }; union TCP_WATCH_CNTL_BITS { struct { uint32_t mask:24; uint32_t vmid:4; uint32_t atc:1; uint32_t mode:2; uint32_t valid:1; } bitfields, bits; uint32_t u32All; signed int i32All; float f32All; }; /* * Register access functions */ static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases); static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid); static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t hpd_size, uint64_t hpd_gpu_addr); static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id); static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr); static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd); static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id); static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id); static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int timeout); static int kgd_address_watch_disable(struct kgd_dev *kgd); static int kgd_address_watch_execute(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo); static int kgd_wave_control_execute(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd); static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset); static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid); static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, uint8_t vmid); static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid); static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type); static const struct kfd2kgd_calls kfd2kgd = { .init_gtt_mem_allocation = alloc_gtt_mem, .free_gtt_mem = free_gtt_mem, .get_vmem_size = get_vmem_size, .get_gpu_clock_counter = get_gpu_clock_counter, .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz, .program_sh_mem_settings = kgd_program_sh_mem_settings, .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping, .init_pipeline = kgd_init_pipeline, .init_interrupts = kgd_init_interrupts, .hqd_load = kgd_hqd_load, .hqd_sdma_load = kgd_hqd_sdma_load, .hqd_is_occupied = kgd_hqd_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_destroy = kgd_hqd_destroy, .hqd_sdma_destroy = kgd_hqd_sdma_destroy, .address_watch_disable = kgd_address_watch_disable, .address_watch_execute = kgd_address_watch_execute, .wave_control_execute = kgd_wave_control_execute, .address_watch_get_offset = kgd_address_watch_get_offset, .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid, .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid, .write_vmid_invalidate_request = write_vmid_invalidate_request, .get_fw_version = get_fw_version }; struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions() { return (struct kfd2kgd_calls *)&kfd2kgd; } static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) { return (struct amdgpu_device *)kgd; } static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe, uint32_t queue, uint32_t vmid) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue); mutex_lock(&adev->srbm_mutex); WREG32(mmSRBM_GFX_CNTL, value); } static void unlock_srbm(struct kgd_dev *kgd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); WREG32(mmSRBM_GFX_CNTL, 0); mutex_unlock(&adev->srbm_mutex); } static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t queue_id) { uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1; uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC); lock_srbm(kgd, mec, pipe, queue_id, 0); } static void release_queue(struct kgd_dev *kgd) { unlock_srbm(kgd); } static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid, uint32_t sh_mem_config, uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases) { struct amdgpu_device *adev = get_amdgpu_device(kgd); lock_srbm(kgd, 0, 0, 0, vmid); WREG32(mmSH_MEM_CONFIG, sh_mem_config); WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base); WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit); WREG32(mmSH_MEM_BASES, sh_mem_bases); unlock_srbm(kgd); } static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid, unsigned int vmid) { struct amdgpu_device *adev = get_amdgpu_device(kgd); /* * We have to assume that there is no outstanding mapping. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because * a mapping is in progress or because a mapping finished and the * SW cleared it. So the protocol is to always wait & clear. */ uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | ATC_VMID0_PASID_MAPPING__VALID_MASK; WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping); while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid))) cpu_relax(); WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid); /* Mapping vmid to pasid also for IH block */ WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping); return 0; } static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id, uint32_t hpd_size, uint64_t hpd_gpu_addr) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1; uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC); lock_srbm(kgd, mec, pipe, 0, 0); WREG32(mmCP_HPD_EOP_BASE_ADDR, lower_32_bits(hpd_gpu_addr >> 8)); WREG32(mmCP_HPD_EOP_BASE_ADDR_HI, upper_32_bits(hpd_gpu_addr >> 8)); WREG32(mmCP_HPD_EOP_VMID, 0); WREG32(mmCP_HPD_EOP_CONTROL, hpd_size); unlock_srbm(kgd); return 0; } static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t mec; uint32_t pipe; mec = (pipe_id / CIK_PIPE_PER_MEC) + 1; pipe = (pipe_id % CIK_PIPE_PER_MEC); lock_srbm(kgd, mec, pipe, 0, 0); WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK | CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK); unlock_srbm(kgd); return 0; } static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m) { uint32_t retval; retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET + m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET; pr_debug("kfd: sdma base address: 0x%x\n", retval); return retval; } static inline struct cik_mqd *get_mqd(void *mqd) { return (struct cik_mqd *)mqd; } static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) { return (struct cik_sdma_rlc_registers *)mqd; } static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, uint32_t queue_id, uint32_t __user *wptr) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t wptr_shadow, is_wptr_shadow_valid; struct cik_mqd *m; m = get_mqd(mqd); is_wptr_shadow_valid = !get_user(wptr_shadow, wptr); acquire_queue(kgd, pipe_id, queue_id); WREG32(mmCP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo); WREG32(mmCP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi); WREG32(mmCP_MQD_CONTROL, m->cp_mqd_control); WREG32(mmCP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo); WREG32(mmCP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi); WREG32(mmCP_HQD_PQ_CONTROL, m->cp_hqd_pq_control); WREG32(mmCP_HQD_IB_CONTROL, m->cp_hqd_ib_control); WREG32(mmCP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo); WREG32(mmCP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi); WREG32(mmCP_HQD_IB_RPTR, m->cp_hqd_ib_rptr); WREG32(mmCP_HQD_PERSISTENT_STATE, m->cp_hqd_persistent_state); WREG32(mmCP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd); WREG32(mmCP_HQD_MSG_TYPE, m->cp_hqd_msg_type); WREG32(mmCP_HQD_ATOMIC0_PREOP_LO, m->cp_hqd_atomic0_preop_lo); WREG32(mmCP_HQD_ATOMIC0_PREOP_HI, m->cp_hqd_atomic0_preop_hi); WREG32(mmCP_HQD_ATOMIC1_PREOP_LO, m->cp_hqd_atomic1_preop_lo); WREG32(mmCP_HQD_ATOMIC1_PREOP_HI, m->cp_hqd_atomic1_preop_hi); WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR, m->cp_hqd_pq_rptr_report_addr_lo); WREG32(mmCP_HQD_PQ_RPTR_REPORT_ADDR_HI, m->cp_hqd_pq_rptr_report_addr_hi); WREG32(mmCP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr); WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR, m->cp_hqd_pq_wptr_poll_addr_lo); WREG32(mmCP_HQD_PQ_WPTR_POLL_ADDR_HI, m->cp_hqd_pq_wptr_poll_addr_hi); WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, m->cp_hqd_pq_doorbell_control); WREG32(mmCP_HQD_VMID, m->cp_hqd_vmid); WREG32(mmCP_HQD_QUANTUM, m->cp_hqd_quantum); WREG32(mmCP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority); WREG32(mmCP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority); WREG32(mmCP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr); if (is_wptr_shadow_valid) WREG32(mmCP_HQD_PQ_WPTR, wptr_shadow); WREG32(mmCP_HQD_ACTIVE, m->cp_hqd_active); release_queue(kgd); return 0; } static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR, m->sdma_rlc_virtual_addr); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI, m->sdma_rlc_rb_base_hi); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO, m->sdma_rlc_rb_rptr_addr_lo); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, m->sdma_rlc_rb_rptr_addr_hi); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, m->sdma_rlc_doorbell); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, m->sdma_rlc_rb_cntl); return 0; } static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t act; bool retval = false; uint32_t low, high; acquire_queue(kgd, pipe_id, queue_id); act = RREG32(mmCP_HQD_ACTIVE); if (act) { low = lower_32_bits(queue_address >> 8); high = upper_32_bits(queue_address >> 8); if (low == RREG32(mmCP_HQD_PQ_BASE) && high == RREG32(mmCP_HQD_PQ_BASE_HI)) retval = true; } release_queue(kgd); return retval; } static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; uint32_t sdma_rlc_rb_cntl; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK) return true; return false; } static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t temp; acquire_queue(kgd, pipe_id, queue_id); WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, 0); WREG32(mmCP_HQD_DEQUEUE_REQUEST, reset_type); while (true) { temp = RREG32(mmCP_HQD_ACTIVE); if (temp & CP_HQD_ACTIVE__ACTIVE_MASK) break; if (timeout == 0) { pr_err("kfd: cp queue preemption time out (%dms)\n", temp); release_queue(kgd); return -ETIME; } msleep(20); timeout -= 20; } release_queue(kgd); return 0; } static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, unsigned int timeout) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct cik_sdma_rlc_registers *m; uint32_t sdma_base_addr; uint32_t temp; m = get_sdma_mqd(mqd); sdma_base_addr = get_sdma_base_addr(m); temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL); temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK; WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp); while (true) { temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT) break; if (timeout == 0) return -ETIME; msleep(20); timeout -= 20; } WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0); return 0; } static int kgd_address_watch_disable(struct kgd_dev *kgd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); union TCP_WATCH_CNTL_BITS cntl; unsigned int i; cntl.u32All = 0; cntl.bitfields.valid = 0; cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK; cntl.bitfields.atc = 1; /* Turning off this address until we set all the registers */ for (i = 0; i < MAX_WATCH_ADDRESSES; i++) WREG32(watchRegs[i * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_CNTL], cntl.u32All); return 0; } static int kgd_address_watch_execute(struct kgd_dev *kgd, unsigned int watch_point_id, uint32_t cntl_val, uint32_t addr_hi, uint32_t addr_lo) { struct amdgpu_device *adev = get_amdgpu_device(kgd); union TCP_WATCH_CNTL_BITS cntl; cntl.u32All = cntl_val; /* Turning off this watch point until we set all the registers */ cntl.bitfields.valid = 0; WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_CNTL], cntl.u32All); WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_ADDR_HI], addr_hi); WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_ADDR_LO], addr_lo); /* Enable the watch point */ cntl.bitfields.valid = 1; WREG32(watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + ADDRESS_WATCH_REG_CNTL], cntl.u32All); return 0; } static int kgd_wave_control_execute(struct kgd_dev *kgd, uint32_t gfx_index_val, uint32_t sq_cmd) { struct amdgpu_device *adev = get_amdgpu_device(kgd); uint32_t data; mutex_lock(&adev->grbm_idx_mutex); WREG32(mmGRBM_GFX_INDEX, gfx_index_val); WREG32(mmSQ_CMD, sq_cmd); /* Restore the GRBM_GFX_INDEX register */ data = GRBM_GFX_INDEX__INSTANCE_BROADCAST_WRITES_MASK | GRBM_GFX_INDEX__SH_BROADCAST_WRITES_MASK | GRBM_GFX_INDEX__SE_BROADCAST_WRITES_MASK; WREG32(mmGRBM_GFX_INDEX, data); mutex_unlock(&adev->grbm_idx_mutex); return 0; } static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd, unsigned int watch_point_id, unsigned int reg_offset) { return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset]; } static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid) { uint32_t reg; struct amdgpu_device *adev = (struct amdgpu_device *) kgd; reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK; } static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd, uint8_t vmid) { uint32_t reg; struct amdgpu_device *adev = (struct amdgpu_device *) kgd; reg = RREG32(mmATC_VMID0_PASID_MAPPING + vmid); return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK; } static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; WREG32(mmVM_INVALIDATE_REQUEST, 1 << vmid); } static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type) { struct amdgpu_device *adev = (struct amdgpu_device *) kgd; const union amdgpu_firmware_header *hdr; BUG_ON(kgd == NULL); switch (type) { case KGD_ENGINE_PFP: hdr = (const union amdgpu_firmware_header *) adev->gfx.pfp_fw->data; break; case KGD_ENGINE_ME: hdr = (const union amdgpu_firmware_header *) adev->gfx.me_fw->data; break; case KGD_ENGINE_CE: hdr = (const union amdgpu_firmware_header *) adev->gfx.ce_fw->data; break; case KGD_ENGINE_MEC1: hdr = (const union amdgpu_firmware_header *) adev->gfx.mec_fw->data; break; case KGD_ENGINE_MEC2: hdr = (const union amdgpu_firmware_header *) adev->gfx.mec2_fw->data; break; case KGD_ENGINE_RLC: hdr = (const union amdgpu_firmware_header *) adev->gfx.rlc_fw->data; break; case KGD_ENGINE_SDMA1: hdr = (const union amdgpu_firmware_header *) adev->sdma[0].fw->data; break; case KGD_ENGINE_SDMA2: hdr = (const union amdgpu_firmware_header *) adev->sdma[1].fw->data; break; default: return 0; } if (hdr == NULL) return 0; /* Only 12 bit in use*/ return hdr->common.ucode_version; }