/* * drivers/cpufreq/cpufreq_governor.c * * CPUFREQ governors common code * * Copyright (C) 2001 Russell King * (C) 2003 Venkatesh Pallipadi . * (C) 2003 Jun Nakajima * (C) 2009 Alexander Clouter * (c) 2012 Viresh Kumar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include "cpufreq_governor.h" static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data) { if (have_governor_per_policy()) return dbs_data->cdata->attr_group_gov_pol; else return dbs_data->cdata->attr_group_gov_sys; } void dbs_check_cpu(struct dbs_data *dbs_data, int cpu) { struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu); struct od_dbs_tuners *od_tuners = dbs_data->tuners; struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; struct cpufreq_policy *policy = cdbs->shared->policy; unsigned int sampling_rate; unsigned int max_load = 0; unsigned int ignore_nice; unsigned int j; if (dbs_data->cdata->governor == GOV_ONDEMAND) { struct od_cpu_dbs_info_s *od_dbs_info = dbs_data->cdata->get_cpu_dbs_info_s(cpu); /* * Sometimes, the ondemand governor uses an additional * multiplier to give long delays. So apply this multiplier to * the 'sampling_rate', so as to keep the wake-up-from-idle * detection logic a bit conservative. */ sampling_rate = od_tuners->sampling_rate; sampling_rate *= od_dbs_info->rate_mult; ignore_nice = od_tuners->ignore_nice_load; } else { sampling_rate = cs_tuners->sampling_rate; ignore_nice = cs_tuners->ignore_nice_load; } /* Get Absolute Load */ for_each_cpu(j, policy->cpus) { struct cpu_dbs_info *j_cdbs; u64 cur_wall_time, cur_idle_time; unsigned int idle_time, wall_time; unsigned int load; int io_busy = 0; j_cdbs = dbs_data->cdata->get_cpu_cdbs(j); /* * For the purpose of ondemand, waiting for disk IO is * an indication that you're performance critical, and * not that the system is actually idle. So do not add * the iowait time to the cpu idle time. */ if (dbs_data->cdata->governor == GOV_ONDEMAND) io_busy = od_tuners->io_is_busy; cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy); wall_time = (unsigned int) (cur_wall_time - j_cdbs->prev_cpu_wall); j_cdbs->prev_cpu_wall = cur_wall_time; idle_time = (unsigned int) (cur_idle_time - j_cdbs->prev_cpu_idle); j_cdbs->prev_cpu_idle = cur_idle_time; if (ignore_nice) { u64 cur_nice; unsigned long cur_nice_jiffies; cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] - cdbs->prev_cpu_nice; /* * Assumption: nice time between sampling periods will * be less than 2^32 jiffies for 32 bit sys */ cur_nice_jiffies = (unsigned long) cputime64_to_jiffies64(cur_nice); cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; idle_time += jiffies_to_usecs(cur_nice_jiffies); } if (unlikely(!wall_time || wall_time < idle_time)) continue; /* * If the CPU had gone completely idle, and a task just woke up * on this CPU now, it would be unfair to calculate 'load' the * usual way for this elapsed time-window, because it will show * near-zero load, irrespective of how CPU intensive that task * actually is. This is undesirable for latency-sensitive bursty * workloads. * * To avoid this, we reuse the 'load' from the previous * time-window and give this task a chance to start with a * reasonably high CPU frequency. (However, we shouldn't over-do * this copy, lest we get stuck at a high load (high frequency) * for too long, even when the current system load has actually * dropped down. So we perform the copy only once, upon the * first wake-up from idle.) * * Detecting this situation is easy: the governor's deferrable * timer would not have fired during CPU-idle periods. Hence * an unusually large 'wall_time' (as compared to the sampling * rate) indicates this scenario. * * prev_load can be zero in two cases and we must recalculate it * for both cases: * - during long idle intervals * - explicitly set to zero */ if (unlikely(wall_time > (2 * sampling_rate) && j_cdbs->prev_load)) { load = j_cdbs->prev_load; /* * Perform a destructive copy, to ensure that we copy * the previous load only once, upon the first wake-up * from idle. */ j_cdbs->prev_load = 0; } else { load = 100 * (wall_time - idle_time) / wall_time; j_cdbs->prev_load = load; } if (load > max_load) max_load = load; } dbs_data->cdata->gov_check_cpu(cpu, max_load); } EXPORT_SYMBOL_GPL(dbs_check_cpu); static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data, unsigned int delay) { struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu); mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay); } void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy, unsigned int delay, bool all_cpus) { int i; if (!all_cpus) { /* * Use raw_smp_processor_id() to avoid preemptible warnings. * We know that this is only called with all_cpus == false from * works that have been queued with *_work_on() functions and * those works are canceled during CPU_DOWN_PREPARE so they * can't possibly run on any other CPU. */ __gov_queue_work(raw_smp_processor_id(), dbs_data, delay); } else { for_each_cpu(i, policy->cpus) __gov_queue_work(i, dbs_data, delay); } } EXPORT_SYMBOL_GPL(gov_queue_work); static inline void gov_cancel_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy) { struct cpu_dbs_info *cdbs; int i; for_each_cpu(i, policy->cpus) { cdbs = dbs_data->cdata->get_cpu_cdbs(i); cancel_delayed_work_sync(&cdbs->dwork); } } /* Will return if we need to evaluate cpu load again or not */ static bool need_load_eval(struct cpu_common_dbs_info *shared, unsigned int sampling_rate) { if (policy_is_shared(shared->policy)) { ktime_t time_now = ktime_get(); s64 delta_us = ktime_us_delta(time_now, shared->time_stamp); /* Do nothing if we recently have sampled */ if (delta_us < (s64)(sampling_rate / 2)) return false; else shared->time_stamp = time_now; } return true; } static void dbs_timer(struct work_struct *work) { struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info, dwork.work); struct cpu_common_dbs_info *shared = cdbs->shared; struct cpufreq_policy *policy; struct dbs_data *dbs_data; unsigned int sampling_rate, delay; bool modify_all = true; mutex_lock(&shared->timer_mutex); policy = shared->policy; /* * Governor might already be disabled and there is no point continuing * with the work-handler. */ if (!policy) goto unlock; dbs_data = policy->governor_data; if (dbs_data->cdata->governor == GOV_CONSERVATIVE) { struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; sampling_rate = cs_tuners->sampling_rate; } else { struct od_dbs_tuners *od_tuners = dbs_data->tuners; sampling_rate = od_tuners->sampling_rate; } if (!need_load_eval(cdbs->shared, sampling_rate)) modify_all = false; delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all); gov_queue_work(dbs_data, policy, delay, modify_all); unlock: mutex_unlock(&shared->timer_mutex); } static void set_sampling_rate(struct dbs_data *dbs_data, unsigned int sampling_rate) { if (dbs_data->cdata->governor == GOV_CONSERVATIVE) { struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; cs_tuners->sampling_rate = sampling_rate; } else { struct od_dbs_tuners *od_tuners = dbs_data->tuners; od_tuners->sampling_rate = sampling_rate; } } static int alloc_common_dbs_info(struct cpufreq_policy *policy, struct common_dbs_data *cdata) { struct cpu_common_dbs_info *shared; int j; /* Allocate memory for the common information for policy->cpus */ shared = kzalloc(sizeof(*shared), GFP_KERNEL); if (!shared) return -ENOMEM; /* Set shared for all CPUs, online+offline */ for_each_cpu(j, policy->related_cpus) cdata->get_cpu_cdbs(j)->shared = shared; return 0; } static void free_common_dbs_info(struct cpufreq_policy *policy, struct common_dbs_data *cdata) { struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu); struct cpu_common_dbs_info *shared = cdbs->shared; int j; for_each_cpu(j, policy->cpus) cdata->get_cpu_cdbs(j)->shared = NULL; kfree(shared); } static int cpufreq_governor_init(struct cpufreq_policy *policy, struct dbs_data *dbs_data, struct common_dbs_data *cdata) { unsigned int latency; int ret; /* State should be equivalent to EXIT */ if (policy->governor_data) return -EBUSY; if (dbs_data) { if (WARN_ON(have_governor_per_policy())) return -EINVAL; ret = alloc_common_dbs_info(policy, cdata); if (ret) return ret; dbs_data->usage_count++; policy->governor_data = dbs_data; return 0; } dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); if (!dbs_data) return -ENOMEM; ret = alloc_common_dbs_info(policy, cdata); if (ret) goto free_dbs_data; dbs_data->cdata = cdata; dbs_data->usage_count = 1; ret = cdata->init(dbs_data, !policy->governor->initialized); if (ret) goto free_common_dbs_info; /* policy latency is in ns. Convert it to us first */ latency = policy->cpuinfo.transition_latency / 1000; if (latency == 0) latency = 1; /* Bring kernel and HW constraints together */ dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, MIN_LATENCY_MULTIPLIER * latency); set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate, latency * LATENCY_MULTIPLIER)); if (!have_governor_per_policy()) cdata->gdbs_data = dbs_data; policy->governor_data = dbs_data; ret = sysfs_create_group(get_governor_parent_kobj(policy), get_sysfs_attr(dbs_data)); if (ret) goto reset_gdbs_data; return 0; reset_gdbs_data: policy->governor_data = NULL; if (!have_governor_per_policy()) cdata->gdbs_data = NULL; cdata->exit(dbs_data, !policy->governor->initialized); free_common_dbs_info: free_common_dbs_info(policy, cdata); free_dbs_data: kfree(dbs_data); return ret; } static int cpufreq_governor_exit(struct cpufreq_policy *policy, struct dbs_data *dbs_data) { struct common_dbs_data *cdata = dbs_data->cdata; struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu); /* State should be equivalent to INIT */ if (!cdbs->shared || cdbs->shared->policy) return -EBUSY; if (!--dbs_data->usage_count) { sysfs_remove_group(get_governor_parent_kobj(policy), get_sysfs_attr(dbs_data)); policy->governor_data = NULL; if (!have_governor_per_policy()) cdata->gdbs_data = NULL; cdata->exit(dbs_data, policy->governor->initialized == 1); kfree(dbs_data); } else { policy->governor_data = NULL; } free_common_dbs_info(policy, cdata); return 0; } static int cpufreq_governor_start(struct cpufreq_policy *policy, struct dbs_data *dbs_data) { struct common_dbs_data *cdata = dbs_data->cdata; unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu; struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu); struct cpu_common_dbs_info *shared = cdbs->shared; int io_busy = 0; if (!policy->cur) return -EINVAL; /* State should be equivalent to INIT */ if (!shared || shared->policy) return -EBUSY; if (cdata->governor == GOV_CONSERVATIVE) { struct cs_dbs_tuners *cs_tuners = dbs_data->tuners; sampling_rate = cs_tuners->sampling_rate; ignore_nice = cs_tuners->ignore_nice_load; } else { struct od_dbs_tuners *od_tuners = dbs_data->tuners; sampling_rate = od_tuners->sampling_rate; ignore_nice = od_tuners->ignore_nice_load; io_busy = od_tuners->io_is_busy; } shared->policy = policy; shared->time_stamp = ktime_get(); mutex_init(&shared->timer_mutex); for_each_cpu(j, policy->cpus) { struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j); unsigned int prev_load; j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy); prev_load = (unsigned int)(j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle); j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall; if (ignore_nice) j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer); } if (cdata->governor == GOV_CONSERVATIVE) { struct cs_cpu_dbs_info_s *cs_dbs_info = cdata->get_cpu_dbs_info_s(cpu); cs_dbs_info->down_skip = 0; cs_dbs_info->requested_freq = policy->cur; } else { struct od_ops *od_ops = cdata->gov_ops; struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu); od_dbs_info->rate_mult = 1; od_dbs_info->sample_type = OD_NORMAL_SAMPLE; od_ops->powersave_bias_init_cpu(cpu); } gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate), true); return 0; } static int cpufreq_governor_stop(struct cpufreq_policy *policy, struct dbs_data *dbs_data) { struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu); struct cpu_common_dbs_info *shared = cdbs->shared; /* State should be equivalent to START */ if (!shared || !shared->policy) return -EBUSY; /* * Work-handler must see this updated, as it should not proceed any * further after governor is disabled. And so timer_mutex is taken while * updating this value. */ mutex_lock(&shared->timer_mutex); shared->policy = NULL; mutex_unlock(&shared->timer_mutex); gov_cancel_work(dbs_data, policy); mutex_destroy(&shared->timer_mutex); return 0; } static int cpufreq_governor_limits(struct cpufreq_policy *policy, struct dbs_data *dbs_data) { struct common_dbs_data *cdata = dbs_data->cdata; unsigned int cpu = policy->cpu; struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu); /* State should be equivalent to START */ if (!cdbs->shared || !cdbs->shared->policy) return -EBUSY; mutex_lock(&cdbs->shared->timer_mutex); if (policy->max < cdbs->shared->policy->cur) __cpufreq_driver_target(cdbs->shared->policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > cdbs->shared->policy->cur) __cpufreq_driver_target(cdbs->shared->policy, policy->min, CPUFREQ_RELATION_L); dbs_check_cpu(dbs_data, cpu); mutex_unlock(&cdbs->shared->timer_mutex); return 0; } int cpufreq_governor_dbs(struct cpufreq_policy *policy, struct common_dbs_data *cdata, unsigned int event) { struct dbs_data *dbs_data; int ret; /* Lock governor to block concurrent initialization of governor */ mutex_lock(&cdata->mutex); if (have_governor_per_policy()) dbs_data = policy->governor_data; else dbs_data = cdata->gdbs_data; if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) { ret = -EINVAL; goto unlock; } switch (event) { case CPUFREQ_GOV_POLICY_INIT: ret = cpufreq_governor_init(policy, dbs_data, cdata); break; case CPUFREQ_GOV_POLICY_EXIT: ret = cpufreq_governor_exit(policy, dbs_data); break; case CPUFREQ_GOV_START: ret = cpufreq_governor_start(policy, dbs_data); break; case CPUFREQ_GOV_STOP: ret = cpufreq_governor_stop(policy, dbs_data); break; case CPUFREQ_GOV_LIMITS: ret = cpufreq_governor_limits(policy, dbs_data); break; default: ret = -EINVAL; } unlock: mutex_unlock(&cdata->mutex); return ret; } EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);