/* * acpi-cpufreq.c - ACPI Processor P-States Driver * * Copyright (C) 2001, 2002 Andy Grover * Copyright (C) 2001, 2002 Paul Diefenbaugh * Copyright (C) 2002 - 2004 Dominik Brodowski * Copyright (C) 2006 Denis Sadykov * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); MODULE_DESCRIPTION("ACPI Processor P-States Driver"); MODULE_LICENSE("GPL"); #define PFX "acpi-cpufreq: " enum { UNDEFINED_CAPABLE = 0, SYSTEM_INTEL_MSR_CAPABLE, SYSTEM_AMD_MSR_CAPABLE, SYSTEM_IO_CAPABLE, }; #define INTEL_MSR_RANGE (0xffff) #define AMD_MSR_RANGE (0x7) #define MSR_K7_HWCR_CPB_DIS (1ULL << 25) struct acpi_cpufreq_data { struct acpi_processor_performance *acpi_data; struct cpufreq_frequency_table *freq_table; unsigned int resume; unsigned int cpu_feature; cpumask_var_t freqdomain_cpus; }; static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data); /* acpi_perf_data is a pointer to percpu data. */ static struct acpi_processor_performance __percpu *acpi_perf_data; static struct cpufreq_driver acpi_cpufreq_driver; static unsigned int acpi_pstate_strict; static struct msr __percpu *msrs; static bool boost_state(unsigned int cpu) { u32 lo, hi; u64 msr; switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_INTEL: rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi); msr = lo | ((u64)hi << 32); return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE); case X86_VENDOR_AMD: rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi); msr = lo | ((u64)hi << 32); return !(msr & MSR_K7_HWCR_CPB_DIS); } return false; } static void boost_set_msrs(bool enable, const struct cpumask *cpumask) { u32 cpu; u32 msr_addr; u64 msr_mask; switch (boot_cpu_data.x86_vendor) { case X86_VENDOR_INTEL: msr_addr = MSR_IA32_MISC_ENABLE; msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE; break; case X86_VENDOR_AMD: msr_addr = MSR_K7_HWCR; msr_mask = MSR_K7_HWCR_CPB_DIS; break; default: return; } rdmsr_on_cpus(cpumask, msr_addr, msrs); for_each_cpu(cpu, cpumask) { struct msr *reg = per_cpu_ptr(msrs, cpu); if (enable) reg->q &= ~msr_mask; else reg->q |= msr_mask; } wrmsr_on_cpus(cpumask, msr_addr, msrs); } static int _store_boost(int val) { get_online_cpus(); boost_set_msrs(val, cpu_online_mask); put_online_cpus(); pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis"); return 0; } static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) { struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); return cpufreq_show_cpus(data->freqdomain_cpus, buf); } cpufreq_freq_attr_ro(freqdomain_cpus); #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB static ssize_t store_boost(const char *buf, size_t count) { int ret; unsigned long val = 0; if (!acpi_cpufreq_driver.boost_supported) return -EINVAL; ret = kstrtoul(buf, 10, &val); if (ret || (val > 1)) return -EINVAL; _store_boost((int) val); return count; } static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf, size_t count) { return store_boost(buf, count); } static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf) { return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled); } cpufreq_freq_attr_rw(cpb); #endif static int check_est_cpu(unsigned int cpuid) { struct cpuinfo_x86 *cpu = &cpu_data(cpuid); return cpu_has(cpu, X86_FEATURE_EST); } static int check_amd_hwpstate_cpu(unsigned int cpuid) { struct cpuinfo_x86 *cpu = &cpu_data(cpuid); return cpu_has(cpu, X86_FEATURE_HW_PSTATE); } static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data) { struct acpi_processor_performance *perf; int i; perf = data->acpi_data; for (i = 0; i < perf->state_count; i++) { if (value == perf->states[i].status) return data->freq_table[i].frequency; } return 0; } static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data) { struct cpufreq_frequency_table *pos; struct acpi_processor_performance *perf; if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) msr &= AMD_MSR_RANGE; else msr &= INTEL_MSR_RANGE; perf = data->acpi_data; cpufreq_for_each_entry(pos, data->freq_table) if (msr == perf->states[pos->driver_data].status) return pos->frequency; return data->freq_table[0].frequency; } static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data) { switch (data->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: case SYSTEM_AMD_MSR_CAPABLE: return extract_msr(val, data); case SYSTEM_IO_CAPABLE: return extract_io(val, data); default: return 0; } } struct msr_addr { u32 reg; }; struct io_addr { u16 port; u8 bit_width; }; struct drv_cmd { unsigned int type; const struct cpumask *mask; union { struct msr_addr msr; struct io_addr io; } addr; u32 val; }; /* Called via smp_call_function_single(), on the target CPU */ static void do_drv_read(void *_cmd) { struct drv_cmd *cmd = _cmd; u32 h; switch (cmd->type) { case SYSTEM_INTEL_MSR_CAPABLE: case SYSTEM_AMD_MSR_CAPABLE: rdmsr(cmd->addr.msr.reg, cmd->val, h); break; case SYSTEM_IO_CAPABLE: acpi_os_read_port((acpi_io_address)cmd->addr.io.port, &cmd->val, (u32)cmd->addr.io.bit_width); break; default: break; } } /* Called via smp_call_function_many(), on the target CPUs */ static void do_drv_write(void *_cmd) { struct drv_cmd *cmd = _cmd; u32 lo, hi; switch (cmd->type) { case SYSTEM_INTEL_MSR_CAPABLE: rdmsr(cmd->addr.msr.reg, lo, hi); lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE); wrmsr(cmd->addr.msr.reg, lo, hi); break; case SYSTEM_AMD_MSR_CAPABLE: wrmsr(cmd->addr.msr.reg, cmd->val, 0); break; case SYSTEM_IO_CAPABLE: acpi_os_write_port((acpi_io_address)cmd->addr.io.port, cmd->val, (u32)cmd->addr.io.bit_width); break; default: break; } } static void drv_read(struct drv_cmd *cmd) { int err; cmd->val = 0; err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1); WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */ } static void drv_write(struct drv_cmd *cmd) { int this_cpu; this_cpu = get_cpu(); if (cpumask_test_cpu(this_cpu, cmd->mask)) do_drv_write(cmd); smp_call_function_many(cmd->mask, do_drv_write, cmd, 1); put_cpu(); } static u32 get_cur_val(const struct cpumask *mask) { struct acpi_processor_performance *perf; struct drv_cmd cmd; if (unlikely(cpumask_empty(mask))) return 0; switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.addr.msr.reg = MSR_IA32_PERF_CTL; break; case SYSTEM_AMD_MSR_CAPABLE: cmd.type = SYSTEM_AMD_MSR_CAPABLE; cmd.addr.msr.reg = MSR_AMD_PERF_CTL; break; case SYSTEM_IO_CAPABLE: cmd.type = SYSTEM_IO_CAPABLE; perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data; cmd.addr.io.port = perf->control_register.address; cmd.addr.io.bit_width = perf->control_register.bit_width; break; default: return 0; } cmd.mask = mask; drv_read(&cmd); pr_debug("get_cur_val = %u\n", cmd.val); return cmd.val; } static unsigned int get_cur_freq_on_cpu(unsigned int cpu) { struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu); unsigned int freq; unsigned int cached_freq; pr_debug("get_cur_freq_on_cpu (%d)\n", cpu); if (unlikely(data == NULL || data->acpi_data == NULL || data->freq_table == NULL)) { return 0; } cached_freq = data->freq_table[data->acpi_data->state].frequency; freq = extract_freq(get_cur_val(cpumask_of(cpu)), data); if (freq != cached_freq) { /* * The dreaded BIOS frequency change behind our back. * Force set the frequency on next target call. */ data->resume = 1; } pr_debug("cur freq = %u\n", freq); return freq; } static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq, struct acpi_cpufreq_data *data) { unsigned int cur_freq; unsigned int i; for (i = 0; i < 100; i++) { cur_freq = extract_freq(get_cur_val(mask), data); if (cur_freq == freq) return 1; udelay(10); } return 0; } static int acpi_cpufreq_target(struct cpufreq_policy *policy, unsigned int index) { struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); struct acpi_processor_performance *perf; struct drv_cmd cmd; unsigned int next_perf_state = 0; /* Index into perf table */ int result = 0; if (unlikely(data == NULL || data->acpi_data == NULL || data->freq_table == NULL)) { return -ENODEV; } perf = data->acpi_data; next_perf_state = data->freq_table[index].driver_data; if (perf->state == next_perf_state) { if (unlikely(data->resume)) { pr_debug("Called after resume, resetting to P%d\n", next_perf_state); data->resume = 0; } else { pr_debug("Already at target state (P%d)\n", next_perf_state); goto out; } } switch (data->cpu_feature) { case SYSTEM_INTEL_MSR_CAPABLE: cmd.type = SYSTEM_INTEL_MSR_CAPABLE; cmd.addr.msr.reg = MSR_IA32_PERF_CTL; cmd.val = (u32) perf->states[next_perf_state].control; break; case SYSTEM_AMD_MSR_CAPABLE: cmd.type = SYSTEM_AMD_MSR_CAPABLE; cmd.addr.msr.reg = MSR_AMD_PERF_CTL; cmd.val = (u32) perf->states[next_perf_state].control; break; case SYSTEM_IO_CAPABLE: cmd.type = SYSTEM_IO_CAPABLE; cmd.addr.io.port = perf->control_register.address; cmd.addr.io.bit_width = perf->control_register.bit_width; cmd.val = (u32) perf->states[next_perf_state].control; break; default: result = -ENODEV; goto out; } /* cpufreq holds the hotplug lock, so we are safe from here on */ if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY) cmd.mask = policy->cpus; else cmd.mask = cpumask_of(policy->cpu); drv_write(&cmd); if (acpi_pstate_strict) { if (!check_freqs(cmd.mask, data->freq_table[index].frequency, data)) { pr_debug("acpi_cpufreq_target failed (%d)\n", policy->cpu); result = -EAGAIN; } } if (!result) perf->state = next_perf_state; out: return result; } static unsigned long acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu) { struct acpi_processor_performance *perf = data->acpi_data; if (cpu_khz) { /* search the closest match to cpu_khz */ unsigned int i; unsigned long freq; unsigned long freqn = perf->states[0].core_frequency * 1000; for (i = 0; i < (perf->state_count-1); i++) { freq = freqn; freqn = perf->states[i+1].core_frequency * 1000; if ((2 * cpu_khz) > (freqn + freq)) { perf->state = i; return freq; } } perf->state = perf->state_count-1; return freqn; } else { /* assume CPU is at P0... */ perf->state = 0; return perf->states[0].core_frequency * 1000; } } static void free_acpi_perf_data(void) { unsigned int i; /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */ for_each_possible_cpu(i) free_cpumask_var(per_cpu_ptr(acpi_perf_data, i) ->shared_cpu_map); free_percpu(acpi_perf_data); } static int boost_notify(struct notifier_block *nb, unsigned long action, void *hcpu) { unsigned cpu = (long)hcpu; const struct cpumask *cpumask; cpumask = get_cpu_mask(cpu); /* * Clear the boost-disable bit on the CPU_DOWN path so that * this cpu cannot block the remaining ones from boosting. On * the CPU_UP path we simply keep the boost-disable flag in * sync with the current global state. */ switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: boost_set_msrs(1, cpumask); break; default: break; } return NOTIFY_OK; } static struct notifier_block boost_nb = { .notifier_call = boost_notify, }; /* * acpi_cpufreq_early_init - initialize ACPI P-States library * * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c) * in order to determine correct frequency and voltage pairings. We can * do _PDC and _PSD and find out the processor dependency for the * actual init that will happen later... */ static int __init acpi_cpufreq_early_init(void) { unsigned int i; pr_debug("acpi_cpufreq_early_init\n"); acpi_perf_data = alloc_percpu(struct acpi_processor_performance); if (!acpi_perf_data) { pr_debug("Memory allocation error for acpi_perf_data.\n"); return -ENOMEM; } for_each_possible_cpu(i) { if (!zalloc_cpumask_var_node( &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map, GFP_KERNEL, cpu_to_node(i))) { /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */ free_acpi_perf_data(); return -ENOMEM; } } /* Do initialization in ACPI core */ acpi_processor_preregister_performance(acpi_perf_data); return 0; } #ifdef CONFIG_SMP /* * Some BIOSes do SW_ANY coordination internally, either set it up in hw * or do it in BIOS firmware and won't inform about it to OS. If not * detected, this has a side effect of making CPU run at a different speed * than OS intended it to run at. Detect it and handle it cleanly. */ static int bios_with_sw_any_bug; static int sw_any_bug_found(const struct dmi_system_id *d) { bios_with_sw_any_bug = 1; return 0; } static const struct dmi_system_id sw_any_bug_dmi_table[] = { { .callback = sw_any_bug_found, .ident = "Supermicro Server X6DLP", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"), DMI_MATCH(DMI_BIOS_VERSION, "080010"), DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"), }, }, { } }; static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c) { /* Intel Xeon Processor 7100 Series Specification Update * http://www.intel.com/Assets/PDF/specupdate/314554.pdf * AL30: A Machine Check Exception (MCE) Occurring during an * Enhanced Intel SpeedStep Technology Ratio Change May Cause * Both Processor Cores to Lock Up. */ if (c->x86_vendor == X86_VENDOR_INTEL) { if ((c->x86 == 15) && (c->x86_model == 6) && (c->x86_mask == 8)) { printk(KERN_INFO "acpi-cpufreq: Intel(R) " "Xeon(R) 7100 Errata AL30, processors may " "lock up on frequency changes: disabling " "acpi-cpufreq.\n"); return -ENODEV; } } return 0; } #endif static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy) { unsigned int i; unsigned int valid_states = 0; unsigned int cpu = policy->cpu; struct acpi_cpufreq_data *data; unsigned int result = 0; struct cpuinfo_x86 *c = &cpu_data(policy->cpu); struct acpi_processor_performance *perf; #ifdef CONFIG_SMP static int blacklisted; #endif pr_debug("acpi_cpufreq_cpu_init\n"); #ifdef CONFIG_SMP if (blacklisted) return blacklisted; blacklisted = acpi_cpufreq_blacklist(c); if (blacklisted) return blacklisted; #endif data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) { result = -ENOMEM; goto err_free; } data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu); per_cpu(acfreq_data, cpu) = data; if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; result = acpi_processor_register_performance(data->acpi_data, cpu); if (result) goto err_free_mask; perf = data->acpi_data; policy->shared_type = perf->shared_type; /* * Will let policy->cpus know about dependency only when software * coordination is required. */ if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL || policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) { cpumask_copy(policy->cpus, perf->shared_cpu_map); } cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map); #ifdef CONFIG_SMP dmi_check_system(sw_any_bug_dmi_table); if (bios_with_sw_any_bug && !policy_is_shared(policy)) { policy->shared_type = CPUFREQ_SHARED_TYPE_ALL; cpumask_copy(policy->cpus, cpu_core_mask(cpu)); } if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) { cpumask_clear(policy->cpus); cpumask_set_cpu(cpu, policy->cpus); cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu)); policy->shared_type = CPUFREQ_SHARED_TYPE_HW; pr_info_once(PFX "overriding BIOS provided _PSD data\n"); } #endif /* capability check */ if (perf->state_count <= 1) { pr_debug("No P-States\n"); result = -ENODEV; goto err_unreg; } if (perf->control_register.space_id != perf->status_register.space_id) { result = -ENODEV; goto err_unreg; } switch (perf->control_register.space_id) { case ACPI_ADR_SPACE_SYSTEM_IO: if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 == 0xf) { pr_debug("AMD K8 systems must use native drivers.\n"); result = -ENODEV; goto err_unreg; } pr_debug("SYSTEM IO addr space\n"); data->cpu_feature = SYSTEM_IO_CAPABLE; break; case ACPI_ADR_SPACE_FIXED_HARDWARE: pr_debug("HARDWARE addr space\n"); if (check_est_cpu(cpu)) { data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE; break; } if (check_amd_hwpstate_cpu(cpu)) { data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE; break; } result = -ENODEV; goto err_unreg; default: pr_debug("Unknown addr space %d\n", (u32) (perf->control_register.space_id)); result = -ENODEV; goto err_unreg; } data->freq_table = kzalloc(sizeof(*data->freq_table) * (perf->state_count+1), GFP_KERNEL); if (!data->freq_table) { result = -ENOMEM; goto err_unreg; } /* detect transition latency */ policy->cpuinfo.transition_latency = 0; for (i = 0; i < perf->state_count; i++) { if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000; } /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */ if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE && policy->cpuinfo.transition_latency > 20 * 1000) { policy->cpuinfo.transition_latency = 20 * 1000; printk_once(KERN_INFO "P-state transition latency capped at 20 uS\n"); } /* table init */ for (i = 0; i < perf->state_count; i++) { if (i > 0 && perf->states[i].core_frequency >= data->freq_table[valid_states-1].frequency / 1000) continue; data->freq_table[valid_states].driver_data = i; data->freq_table[valid_states].frequency = perf->states[i].core_frequency * 1000; valid_states++; } data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END; perf->state = 0; result = cpufreq_table_validate_and_show(policy, data->freq_table); if (result) goto err_freqfree; if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq) printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n"); switch (perf->control_register.space_id) { case ACPI_ADR_SPACE_SYSTEM_IO: /* * The core will not set policy->cur, because * cpufreq_driver->get is NULL, so we need to set it here. * However, we have to guess it, because the current speed is * unknown and not detectable via IO ports. */ policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); break; case ACPI_ADR_SPACE_FIXED_HARDWARE: acpi_cpufreq_driver.get = get_cur_freq_on_cpu; break; default: break; } /* notify BIOS that we exist */ acpi_processor_notify_smm(THIS_MODULE); pr_debug("CPU%u - ACPI performance management activated.\n", cpu); for (i = 0; i < perf->state_count; i++) pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n", (i == perf->state ? '*' : ' '), i, (u32) perf->states[i].core_frequency, (u32) perf->states[i].power, (u32) perf->states[i].transition_latency); /* * the first call to ->target() should result in us actually * writing something to the appropriate registers. */ data->resume = 1; return result; err_freqfree: kfree(data->freq_table); err_unreg: acpi_processor_unregister_performance(perf, cpu); err_free_mask: free_cpumask_var(data->freqdomain_cpus); err_free: kfree(data); per_cpu(acfreq_data, cpu) = NULL; return result; } static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); pr_debug("acpi_cpufreq_cpu_exit\n"); if (data) { per_cpu(acfreq_data, policy->cpu) = NULL; acpi_processor_unregister_performance(data->acpi_data, policy->cpu); free_cpumask_var(data->freqdomain_cpus); kfree(data->freq_table); kfree(data); } return 0; } static int acpi_cpufreq_resume(struct cpufreq_policy *policy) { struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu); pr_debug("acpi_cpufreq_resume\n"); data->resume = 1; return 0; } static struct freq_attr *acpi_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, &freqdomain_cpus, NULL, /* this is a placeholder for cpb, do not remove */ NULL, }; static struct cpufreq_driver acpi_cpufreq_driver = { .verify = cpufreq_generic_frequency_table_verify, .target_index = acpi_cpufreq_target, .bios_limit = acpi_processor_get_bios_limit, .init = acpi_cpufreq_cpu_init, .exit = acpi_cpufreq_cpu_exit, .resume = acpi_cpufreq_resume, .name = "acpi-cpufreq", .attr = acpi_cpufreq_attr, .set_boost = _store_boost, }; static void __init acpi_cpufreq_boost_init(void) { if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) { msrs = msrs_alloc(); if (!msrs) return; acpi_cpufreq_driver.boost_supported = true; acpi_cpufreq_driver.boost_enabled = boost_state(0); cpu_notifier_register_begin(); /* Force all MSRs to the same value */ boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpu_online_mask); __register_cpu_notifier(&boost_nb); cpu_notifier_register_done(); } } static void acpi_cpufreq_boost_exit(void) { if (msrs) { unregister_cpu_notifier(&boost_nb); msrs_free(msrs); msrs = NULL; } } static int __init acpi_cpufreq_init(void) { int ret; if (acpi_disabled) return -ENODEV; /* don't keep reloading if cpufreq_driver exists */ if (cpufreq_get_current_driver()) return -EEXIST; pr_debug("acpi_cpufreq_init\n"); ret = acpi_cpufreq_early_init(); if (ret) return ret; #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB /* this is a sysfs file with a strange name and an even stranger * semantic - per CPU instantiation, but system global effect. * Lets enable it only on AMD CPUs for compatibility reasons and * only if configured. This is considered legacy code, which * will probably be removed at some point in the future. */ if (check_amd_hwpstate_cpu(0)) { struct freq_attr **iter; pr_debug("adding sysfs entry for cpb\n"); for (iter = acpi_cpufreq_attr; *iter != NULL; iter++) ; /* make sure there is a terminator behind it */ if (iter[1] == NULL) *iter = &cpb; } #endif acpi_cpufreq_boost_init(); ret = cpufreq_register_driver(&acpi_cpufreq_driver); if (ret) { free_acpi_perf_data(); acpi_cpufreq_boost_exit(); } return ret; } static void __exit acpi_cpufreq_exit(void) { pr_debug("acpi_cpufreq_exit\n"); acpi_cpufreq_boost_exit(); cpufreq_unregister_driver(&acpi_cpufreq_driver); free_acpi_perf_data(); } module_param(acpi_pstate_strict, uint, 0644); MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are " "performed during frequency changes."); late_initcall(acpi_cpufreq_init); module_exit(acpi_cpufreq_exit); static const struct x86_cpu_id acpi_cpufreq_ids[] = { X86_FEATURE_MATCH(X86_FEATURE_ACPI), X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE), {} }; MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids); static const struct acpi_device_id processor_device_ids[] = { {ACPI_PROCESSOR_OBJECT_HID, }, {ACPI_PROCESSOR_DEVICE_HID, }, {}, }; MODULE_DEVICE_TABLE(acpi, processor_device_ids); MODULE_ALIAS("acpi");