/* * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTC_SECONDS 0x08 #define RTC_SHADOW_SECONDS 0x0c #define RTC_MILLISECONDS 0x10 #define TIMERUS_CNTR_1US 0x10 #define TIMERUS_USEC_CFG 0x14 #define TIMERUS_CNTR_FREEZE 0x4c #define TIMER1_BASE 0x0 #define TIMER2_BASE 0x8 #define TIMER3_BASE 0x50 #define TIMER4_BASE 0x58 #define TIMER_PTV 0x0 #define TIMER_PCR 0x4 static void __iomem *timer_reg_base; static void __iomem *rtc_base; static struct timespec persistent_ts; static u64 persistent_ms, last_persistent_ms; #define timer_writel(value, reg) \ __raw_writel(value, timer_reg_base + (reg)) #define timer_readl(reg) \ __raw_readl(timer_reg_base + (reg)) static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { u32 reg; reg = 0x80000000 | ((cycles > 1) ? (cycles-1) : 0); timer_writel(reg, TIMER3_BASE + TIMER_PTV); return 0; } static void tegra_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { u32 reg; timer_writel(0, TIMER3_BASE + TIMER_PTV); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: reg = 0xC0000000 | ((1000000/HZ)-1); timer_writel(reg, TIMER3_BASE + TIMER_PTV); break; case CLOCK_EVT_MODE_ONESHOT: break; case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device tegra_clockevent = { .name = "timer0", .rating = 300, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_mode = tegra_timer_set_mode, }; static u32 notrace tegra_read_sched_clock(void) { return timer_readl(TIMERUS_CNTR_1US); } /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static u64 tegra_rtc_read_ms(void) { u32 ms = readl(rtc_base + RTC_MILLISECONDS); u32 s = readl(rtc_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } /* * tegra_read_persistent_clock - Return time from a persistent clock. * * Reads the time from a source which isn't disabled during PM, the * 32k sync timer. Convert the cycles elapsed since last read into * nsecs and adds to a monotonically increasing timespec. * Care must be taken that this funciton is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static void tegra_read_persistent_clock(struct timespec *ts) { u64 delta; struct timespec *tsp = &persistent_ts; last_persistent_ms = persistent_ms; persistent_ms = tegra_rtc_read_ms(); delta = persistent_ms - last_persistent_ms; timespec_add_ns(tsp, delta * NSEC_PER_MSEC); *ts = *tsp; } static irqreturn_t tegra_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; timer_writel(1<<30, TIMER3_BASE + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction tegra_timer_irq = { .name = "timer0", .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_TRIGGER_HIGH, .handler = tegra_timer_interrupt, .dev_id = &tegra_clockevent, }; static void __init tegra20_init_timer(struct device_node *np) { struct clk *clk; unsigned long rate; int ret; timer_reg_base = of_iomap(np, 0); if (!timer_reg_base) { pr_err("Can't map timer registers\n"); BUG(); } tegra_timer_irq.irq = irq_of_parse_and_map(np, 2); if (tegra_timer_irq.irq <= 0) { pr_err("Failed to map timer IRQ\n"); BUG(); } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_warn("Unable to get timer clock. Assuming 12Mhz input clock.\n"); rate = 12000000; } else { clk_prepare_enable(clk); rate = clk_get_rate(clk); } of_node_put(np); switch (rate) { case 12000000: timer_writel(0x000b, TIMERUS_USEC_CFG); break; case 13000000: timer_writel(0x000c, TIMERUS_USEC_CFG); break; case 19200000: timer_writel(0x045f, TIMERUS_USEC_CFG); break; case 26000000: timer_writel(0x0019, TIMERUS_USEC_CFG); break; default: WARN(1, "Unknown clock rate"); } setup_sched_clock(tegra_read_sched_clock, 32, 1000000); if (clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, "timer_us", 1000000, 300, 32, clocksource_mmio_readl_up)) { pr_err("Failed to register clocksource\n"); BUG(); } ret = setup_irq(tegra_timer_irq.irq, &tegra_timer_irq); if (ret) { pr_err("Failed to register timer IRQ: %d\n", ret); BUG(); } tegra_clockevent.cpumask = cpu_all_mask; tegra_clockevent.irq = tegra_timer_irq.irq; clockevents_config_and_register(&tegra_clockevent, 1000000, 0x1, 0x1fffffff); } CLOCKSOURCE_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer); static void __init tegra20_init_rtc(struct device_node *np) { struct clk *clk; rtc_base = of_iomap(np, 0); if (!rtc_base) { pr_err("Can't map RTC registers"); BUG(); } /* * rtc registers are used by read_persistent_clock, keep the rtc clock * enabled */ clk = of_clk_get(np, 0); if (IS_ERR(clk)) pr_warn("Unable to get rtc-tegra clock\n"); else clk_prepare_enable(clk); of_node_put(np); register_persistent_clock(NULL, tegra_read_persistent_clock); } CLOCKSOURCE_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc); #ifdef CONFIG_PM static u32 usec_config; void tegra_timer_suspend(void) { usec_config = timer_readl(TIMERUS_USEC_CFG); } void tegra_timer_resume(void) { timer_writel(usec_config, TIMERUS_USEC_CFG); } #endif