/* * Asynchronous RAID-6 recovery calculations ASYNC_TX API. * Copyright(c) 2009 Intel Corporation * * based on raid6recov.c: * Copyright 2002 H. Peter Anvin * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 51 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * */ #include #include #include #include #include #include #include static struct dma_async_tx_descriptor * async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef, size_t len, struct async_submit_ctl *submit) { struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, &dest, 1, srcs, 2, len); struct dma_device *dma = chan ? chan->device : NULL; struct dmaengine_unmap_data *unmap = NULL; const u8 *amul, *bmul; u8 ax, bx; u8 *a, *b, *c; if (dma) unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOIO); if (unmap) { struct device *dev = dma->dev; dma_addr_t pq[2]; struct dma_async_tx_descriptor *tx; enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P; if (submit->flags & ASYNC_TX_FENCE) dma_flags |= DMA_PREP_FENCE; unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE); unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE); unmap->to_cnt = 2; unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL); unmap->bidi_cnt = 1; /* engine only looks at Q, but expects it to follow P */ pq[1] = unmap->addr[2]; unmap->len = len; tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef, len, dma_flags); if (tx) { dma_set_unmap(tx, unmap); async_tx_submit(chan, tx, submit); dmaengine_unmap_put(unmap); return tx; } /* could not get a descriptor, unmap and fall through to * the synchronous path */ dmaengine_unmap_put(unmap); } /* run the operation synchronously */ async_tx_quiesce(&submit->depend_tx); amul = raid6_gfmul[coef[0]]; bmul = raid6_gfmul[coef[1]]; a = page_address(srcs[0]); b = page_address(srcs[1]); c = page_address(dest); while (len--) { ax = amul[*a++]; bx = bmul[*b++]; *c++ = ax ^ bx; } return NULL; } static struct dma_async_tx_descriptor * async_mult(struct page *dest, struct page *src, u8 coef, size_t len, struct async_submit_ctl *submit) { struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, &dest, 1, &src, 1, len); struct dma_device *dma = chan ? chan->device : NULL; struct dmaengine_unmap_data *unmap = NULL; const u8 *qmul; /* Q multiplier table */ u8 *d, *s; if (dma) unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOIO); if (unmap) { dma_addr_t dma_dest[2]; struct device *dev = dma->dev; struct dma_async_tx_descriptor *tx; enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P; if (submit->flags & ASYNC_TX_FENCE) dma_flags |= DMA_PREP_FENCE; unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE); unmap->to_cnt++; unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL); dma_dest[1] = unmap->addr[1]; unmap->bidi_cnt++; unmap->len = len; /* this looks funny, but the engine looks for Q at * dma_dest[1] and ignores dma_dest[0] as a dest * due to DMA_PREP_PQ_DISABLE_P */ tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr, 1, &coef, len, dma_flags); if (tx) { dma_set_unmap(tx, unmap); dmaengine_unmap_put(unmap); async_tx_submit(chan, tx, submit); return tx; } /* could not get a descriptor, unmap and fall through to * the synchronous path */ dmaengine_unmap_put(unmap); } /* no channel available, or failed to allocate a descriptor, so * perform the operation synchronously */ async_tx_quiesce(&submit->depend_tx); qmul = raid6_gfmul[coef]; d = page_address(dest); s = page_address(src); while (len--) *d++ = qmul[*s++]; return NULL; } static struct dma_async_tx_descriptor * __2data_recov_4(int disks, size_t bytes, int faila, int failb, struct page **blocks, struct async_submit_ctl *submit) { struct dma_async_tx_descriptor *tx = NULL; struct page *p, *q, *a, *b; struct page *srcs[2]; unsigned char coef[2]; enum async_tx_flags flags = submit->flags; dma_async_tx_callback cb_fn = submit->cb_fn; void *cb_param = submit->cb_param; void *scribble = submit->scribble; p = blocks[disks-2]; q = blocks[disks-1]; a = blocks[faila]; b = blocks[failb]; /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */ /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ srcs[0] = p; srcs[1] = q; coef[0] = raid6_gfexi[failb-faila]; coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_sum_product(b, srcs, coef, bytes, submit); /* Dy = P+Pxy+Dx */ srcs[0] = p; srcs[1] = b; init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn, cb_param, scribble); tx = async_xor(a, srcs, 0, 2, bytes, submit); return tx; } static struct dma_async_tx_descriptor * __2data_recov_5(int disks, size_t bytes, int faila, int failb, struct page **blocks, struct async_submit_ctl *submit) { struct dma_async_tx_descriptor *tx = NULL; struct page *p, *q, *g, *dp, *dq; struct page *srcs[2]; unsigned char coef[2]; enum async_tx_flags flags = submit->flags; dma_async_tx_callback cb_fn = submit->cb_fn; void *cb_param = submit->cb_param; void *scribble = submit->scribble; int good_srcs, good, i; good_srcs = 0; good = -1; for (i = 0; i < disks-2; i++) { if (blocks[i] == NULL) continue; if (i == faila || i == failb) continue; good = i; good_srcs++; } BUG_ON(good_srcs > 1); p = blocks[disks-2]; q = blocks[disks-1]; g = blocks[good]; /* Compute syndrome with zero for the missing data pages * Use the dead data pages as temporary storage for delta p and * delta q */ dp = blocks[faila]; dq = blocks[failb]; init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_memcpy(dp, g, 0, 0, bytes, submit); init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit); /* compute P + Pxy */ srcs[0] = dp; srcs[1] = p; init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, NULL, NULL, scribble); tx = async_xor(dp, srcs, 0, 2, bytes, submit); /* compute Q + Qxy */ srcs[0] = dq; srcs[1] = q; init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, NULL, NULL, scribble); tx = async_xor(dq, srcs, 0, 2, bytes, submit); /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ srcs[0] = dp; srcs[1] = dq; coef[0] = raid6_gfexi[failb-faila]; coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_sum_product(dq, srcs, coef, bytes, submit); /* Dy = P+Pxy+Dx */ srcs[0] = dp; srcs[1] = dq; init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, cb_param, scribble); tx = async_xor(dp, srcs, 0, 2, bytes, submit); return tx; } static struct dma_async_tx_descriptor * __2data_recov_n(int disks, size_t bytes, int faila, int failb, struct page **blocks, struct async_submit_ctl *submit) { struct dma_async_tx_descriptor *tx = NULL; struct page *p, *q, *dp, *dq; struct page *srcs[2]; unsigned char coef[2]; enum async_tx_flags flags = submit->flags; dma_async_tx_callback cb_fn = submit->cb_fn; void *cb_param = submit->cb_param; void *scribble = submit->scribble; p = blocks[disks-2]; q = blocks[disks-1]; /* Compute syndrome with zero for the missing data pages * Use the dead data pages as temporary storage for * delta p and delta q */ dp = blocks[faila]; blocks[faila] = NULL; blocks[disks-2] = dp; dq = blocks[failb]; blocks[failb] = NULL; blocks[disks-1] = dq; init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_gen_syndrome(blocks, 0, disks, bytes, submit); /* Restore pointer table */ blocks[faila] = dp; blocks[failb] = dq; blocks[disks-2] = p; blocks[disks-1] = q; /* compute P + Pxy */ srcs[0] = dp; srcs[1] = p; init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, NULL, NULL, scribble); tx = async_xor(dp, srcs, 0, 2, bytes, submit); /* compute Q + Qxy */ srcs[0] = dq; srcs[1] = q; init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, NULL, NULL, scribble); tx = async_xor(dq, srcs, 0, 2, bytes, submit); /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ srcs[0] = dp; srcs[1] = dq; coef[0] = raid6_gfexi[failb-faila]; coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_sum_product(dq, srcs, coef, bytes, submit); /* Dy = P+Pxy+Dx */ srcs[0] = dp; srcs[1] = dq; init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, cb_param, scribble); tx = async_xor(dp, srcs, 0, 2, bytes, submit); return tx; } /** * async_raid6_2data_recov - asynchronously calculate two missing data blocks * @disks: number of disks in the RAID-6 array * @bytes: block size * @faila: first failed drive index * @failb: second failed drive index * @blocks: array of source pointers where the last two entries are p and q * @submit: submission/completion modifiers */ struct dma_async_tx_descriptor * async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb, struct page **blocks, struct async_submit_ctl *submit) { void *scribble = submit->scribble; int non_zero_srcs, i; BUG_ON(faila == failb); if (failb < faila) swap(faila, failb); pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes); /* if a dma resource is not available or a scribble buffer is not * available punt to the synchronous path. In the 'dma not * available' case be sure to use the scribble buffer to * preserve the content of 'blocks' as the caller intended. */ if (!async_dma_find_channel(DMA_PQ) || !scribble) { void **ptrs = scribble ? scribble : (void **) blocks; async_tx_quiesce(&submit->depend_tx); for (i = 0; i < disks; i++) if (blocks[i] == NULL) ptrs[i] = (void *) raid6_empty_zero_page; else ptrs[i] = page_address(blocks[i]); raid6_2data_recov(disks, bytes, faila, failb, ptrs); async_tx_sync_epilog(submit); return NULL; } non_zero_srcs = 0; for (i = 0; i < disks-2 && non_zero_srcs < 4; i++) if (blocks[i]) non_zero_srcs++; switch (non_zero_srcs) { case 0: case 1: /* There must be at least 2 sources - the failed devices. */ BUG(); case 2: /* dma devices do not uniformly understand a zero source pq * operation (in contrast to the synchronous case), so * explicitly handle the special case of a 4 disk array with * both data disks missing. */ return __2data_recov_4(disks, bytes, faila, failb, blocks, submit); case 3: /* dma devices do not uniformly understand a single * source pq operation (in contrast to the synchronous * case), so explicitly handle the special case of a 5 disk * array with 2 of 3 data disks missing. */ return __2data_recov_5(disks, bytes, faila, failb, blocks, submit); default: return __2data_recov_n(disks, bytes, faila, failb, blocks, submit); } } EXPORT_SYMBOL_GPL(async_raid6_2data_recov); /** * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block * @disks: number of disks in the RAID-6 array * @bytes: block size * @faila: failed drive index * @blocks: array of source pointers where the last two entries are p and q * @submit: submission/completion modifiers */ struct dma_async_tx_descriptor * async_raid6_datap_recov(int disks, size_t bytes, int faila, struct page **blocks, struct async_submit_ctl *submit) { struct dma_async_tx_descriptor *tx = NULL; struct page *p, *q, *dq; u8 coef; enum async_tx_flags flags = submit->flags; dma_async_tx_callback cb_fn = submit->cb_fn; void *cb_param = submit->cb_param; void *scribble = submit->scribble; int good_srcs, good, i; struct page *srcs[2]; pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes); /* if a dma resource is not available or a scribble buffer is not * available punt to the synchronous path. In the 'dma not * available' case be sure to use the scribble buffer to * preserve the content of 'blocks' as the caller intended. */ if (!async_dma_find_channel(DMA_PQ) || !scribble) { void **ptrs = scribble ? scribble : (void **) blocks; async_tx_quiesce(&submit->depend_tx); for (i = 0; i < disks; i++) if (blocks[i] == NULL) ptrs[i] = (void*)raid6_empty_zero_page; else ptrs[i] = page_address(blocks[i]); raid6_datap_recov(disks, bytes, faila, ptrs); async_tx_sync_epilog(submit); return NULL; } good_srcs = 0; good = -1; for (i = 0; i < disks-2; i++) { if (i == faila) continue; if (blocks[i]) { good = i; good_srcs++; if (good_srcs > 1) break; } } BUG_ON(good_srcs == 0); p = blocks[disks-2]; q = blocks[disks-1]; /* Compute syndrome with zero for the missing data page * Use the dead data page as temporary storage for delta q */ dq = blocks[faila]; blocks[faila] = NULL; blocks[disks-1] = dq; /* in the 4-disk case we only need to perform a single source * multiplication with the one good data block. */ if (good_srcs == 1) { struct page *g = blocks[good]; init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_memcpy(p, g, 0, 0, bytes, submit); init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit); } else { init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_gen_syndrome(blocks, 0, disks, bytes, submit); } /* Restore pointer table */ blocks[faila] = dq; blocks[disks-1] = q; /* calculate g^{-faila} */ coef = raid6_gfinv[raid6_gfexp[faila]]; srcs[0] = dq; srcs[1] = q; init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, NULL, NULL, scribble); tx = async_xor(dq, srcs, 0, 2, bytes, submit); init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); tx = async_mult(dq, dq, coef, bytes, submit); srcs[0] = p; srcs[1] = dq; init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, cb_param, scribble); tx = async_xor(p, srcs, 0, 2, bytes, submit); return tx; } EXPORT_SYMBOL_GPL(async_raid6_datap_recov); MODULE_AUTHOR("Dan Williams "); MODULE_DESCRIPTION("asynchronous RAID-6 recovery api"); MODULE_LICENSE("GPL");