/* * Functions related to io context handling */ #include #include #include #include #include #include /* for max_pfn/max_low_pfn */ #include #include "blk.h" /* * For io context allocations */ static struct kmem_cache *iocontext_cachep; /** * get_io_context - increment reference count to io_context * @ioc: io_context to get * * Increment reference count to @ioc. */ void get_io_context(struct io_context *ioc) { BUG_ON(atomic_long_read(&ioc->refcount) <= 0); atomic_long_inc(&ioc->refcount); } EXPORT_SYMBOL(get_io_context); /* * Releasing ioc may nest into another put_io_context() leading to nested * fast path release. As the ioc's can't be the same, this is okay but * makes lockdep whine. Keep track of nesting and use it as subclass. */ #ifdef CONFIG_LOCKDEP #define ioc_release_depth(q) ((q) ? (q)->ioc_release_depth : 0) #define ioc_release_depth_inc(q) (q)->ioc_release_depth++ #define ioc_release_depth_dec(q) (q)->ioc_release_depth-- #else #define ioc_release_depth(q) 0 #define ioc_release_depth_inc(q) do { } while (0) #define ioc_release_depth_dec(q) do { } while (0) #endif static void icq_free_icq_rcu(struct rcu_head *head) { struct io_cq *icq = container_of(head, struct io_cq, __rcu_head); kmem_cache_free(icq->__rcu_icq_cache, icq); } /* * Exit and free an icq. Called with both ioc and q locked. */ static void ioc_exit_icq(struct io_cq *icq) { struct io_context *ioc = icq->ioc; struct request_queue *q = icq->q; struct elevator_type *et = q->elevator->type; lockdep_assert_held(&ioc->lock); lockdep_assert_held(q->queue_lock); radix_tree_delete(&ioc->icq_tree, icq->q->id); hlist_del_init(&icq->ioc_node); list_del_init(&icq->q_node); /* * Both setting lookup hint to and clearing it from @icq are done * under queue_lock. If it's not pointing to @icq now, it never * will. Hint assignment itself can race safely. */ if (rcu_dereference_raw(ioc->icq_hint) == icq) rcu_assign_pointer(ioc->icq_hint, NULL); if (et->ops.elevator_exit_icq_fn) { ioc_release_depth_inc(q); et->ops.elevator_exit_icq_fn(icq); ioc_release_depth_dec(q); } /* * @icq->q might have gone away by the time RCU callback runs * making it impossible to determine icq_cache. Record it in @icq. */ icq->__rcu_icq_cache = et->icq_cache; call_rcu(&icq->__rcu_head, icq_free_icq_rcu); } /* * Slow path for ioc release in put_io_context(). Performs double-lock * dancing to unlink all icq's and then frees ioc. */ static void ioc_release_fn(struct work_struct *work) { struct io_context *ioc = container_of(work, struct io_context, release_work); struct request_queue *last_q = NULL; spin_lock_irq(&ioc->lock); while (!hlist_empty(&ioc->icq_list)) { struct io_cq *icq = hlist_entry(ioc->icq_list.first, struct io_cq, ioc_node); struct request_queue *this_q = icq->q; if (this_q != last_q) { /* * Need to switch to @this_q. Once we release * @ioc->lock, it can go away along with @cic. * Hold on to it. */ __blk_get_queue(this_q); /* * blk_put_queue() might sleep thanks to kobject * idiocy. Always release both locks, put and * restart. */ if (last_q) { spin_unlock(last_q->queue_lock); spin_unlock_irq(&ioc->lock); blk_put_queue(last_q); } else { spin_unlock_irq(&ioc->lock); } last_q = this_q; spin_lock_irq(this_q->queue_lock); spin_lock(&ioc->lock); continue; } ioc_exit_icq(icq); } if (last_q) { spin_unlock(last_q->queue_lock); spin_unlock_irq(&ioc->lock); blk_put_queue(last_q); } else { spin_unlock_irq(&ioc->lock); } kmem_cache_free(iocontext_cachep, ioc); } /** * put_io_context - put a reference of io_context * @ioc: io_context to put * @locked_q: request_queue the caller is holding queue_lock of (hint) * * Decrement reference count of @ioc and release it if the count reaches * zero. If the caller is holding queue_lock of a queue, it can indicate * that with @locked_q. This is an optimization hint and the caller is * allowed to pass in %NULL even when it's holding a queue_lock. */ void put_io_context(struct io_context *ioc, struct request_queue *locked_q) { struct request_queue *last_q = locked_q; unsigned long flags; if (ioc == NULL) return; BUG_ON(atomic_long_read(&ioc->refcount) <= 0); if (locked_q) lockdep_assert_held(locked_q->queue_lock); if (!atomic_long_dec_and_test(&ioc->refcount)) return; /* * Destroy @ioc. This is a bit messy because icq's are chained * from both ioc and queue, and ioc->lock nests inside queue_lock. * The inner ioc->lock should be held to walk our icq_list and then * for each icq the outer matching queue_lock should be grabbed. * ie. We need to do reverse-order double lock dancing. * * Another twist is that we are often called with one of the * matching queue_locks held as indicated by @locked_q, which * prevents performing double-lock dance for other queues. * * So, we do it in two stages. The fast path uses the queue_lock * the caller is holding and, if other queues need to be accessed, * uses trylock to avoid introducing locking dependency. This can * handle most cases, especially if @ioc was performing IO on only * single device. * * If trylock doesn't cut it, we defer to @ioc->release_work which * can do all the double-locking dancing. */ spin_lock_irqsave_nested(&ioc->lock, flags, ioc_release_depth(locked_q)); while (!hlist_empty(&ioc->icq_list)) { struct io_cq *icq = hlist_entry(ioc->icq_list.first, struct io_cq, ioc_node); struct request_queue *this_q = icq->q; if (this_q != last_q) { if (last_q && last_q != locked_q) spin_unlock(last_q->queue_lock); last_q = NULL; /* spin_trylock() always successes in UP case */ if (this_q != locked_q && !spin_trylock(this_q->queue_lock)) break; last_q = this_q; continue; } ioc_exit_icq(icq); } if (last_q && last_q != locked_q) spin_unlock(last_q->queue_lock); spin_unlock_irqrestore(&ioc->lock, flags); /* if no icq is left, we're done; otherwise, kick release_work */ if (hlist_empty(&ioc->icq_list)) kmem_cache_free(iocontext_cachep, ioc); else schedule_work(&ioc->release_work); } EXPORT_SYMBOL(put_io_context); /* Called by the exiting task */ void exit_io_context(struct task_struct *task) { struct io_context *ioc; task_lock(task); ioc = task->io_context; task->io_context = NULL; task_unlock(task); atomic_dec(&ioc->nr_tasks); put_io_context(ioc, NULL); } /** * ioc_clear_queue - break any ioc association with the specified queue * @q: request_queue being cleared * * Walk @q->icq_list and exit all io_cq's. Must be called with @q locked. */ void ioc_clear_queue(struct request_queue *q) { lockdep_assert_held(q->queue_lock); while (!list_empty(&q->icq_list)) { struct io_cq *icq = list_entry(q->icq_list.next, struct io_cq, q_node); struct io_context *ioc = icq->ioc; spin_lock(&ioc->lock); ioc_exit_icq(icq); spin_unlock(&ioc->lock); } } void create_io_context_slowpath(struct task_struct *task, gfp_t gfp_flags, int node) { struct io_context *ioc; ioc = kmem_cache_alloc_node(iocontext_cachep, gfp_flags | __GFP_ZERO, node); if (unlikely(!ioc)) return; /* initialize */ atomic_long_set(&ioc->refcount, 1); atomic_set(&ioc->nr_tasks, 1); spin_lock_init(&ioc->lock); INIT_RADIX_TREE(&ioc->icq_tree, GFP_ATOMIC | __GFP_HIGH); INIT_HLIST_HEAD(&ioc->icq_list); INIT_WORK(&ioc->release_work, ioc_release_fn); /* * Try to install. ioc shouldn't be installed if someone else * already did or @task, which isn't %current, is exiting. Note * that we need to allow ioc creation on exiting %current as exit * path may issue IOs from e.g. exit_files(). The exit path is * responsible for not issuing IO after exit_io_context(). */ task_lock(task); if (!task->io_context && (task == current || !(task->flags & PF_EXITING))) task->io_context = ioc; else kmem_cache_free(iocontext_cachep, ioc); task_unlock(task); } /** * get_task_io_context - get io_context of a task * @task: task of interest * @gfp_flags: allocation flags, used if allocation is necessary * @node: allocation node, used if allocation is necessary * * Return io_context of @task. If it doesn't exist, it is created with * @gfp_flags and @node. The returned io_context has its reference count * incremented. * * This function always goes through task_lock() and it's better to use * %current->io_context + get_io_context() for %current. */ struct io_context *get_task_io_context(struct task_struct *task, gfp_t gfp_flags, int node) { struct io_context *ioc; might_sleep_if(gfp_flags & __GFP_WAIT); do { task_lock(task); ioc = task->io_context; if (likely(ioc)) { get_io_context(ioc); task_unlock(task); return ioc; } task_unlock(task); } while (create_io_context(task, gfp_flags, node)); return NULL; } EXPORT_SYMBOL(get_task_io_context); /** * ioc_lookup_icq - lookup io_cq from ioc * @ioc: the associated io_context * @q: the associated request_queue * * Look up io_cq associated with @ioc - @q pair from @ioc. Must be called * with @q->queue_lock held. */ struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q) { struct io_cq *icq; lockdep_assert_held(q->queue_lock); /* * icq's are indexed from @ioc using radix tree and hint pointer, * both of which are protected with RCU. All removals are done * holding both q and ioc locks, and we're holding q lock - if we * find a icq which points to us, it's guaranteed to be valid. */ rcu_read_lock(); icq = rcu_dereference(ioc->icq_hint); if (icq && icq->q == q) goto out; icq = radix_tree_lookup(&ioc->icq_tree, q->id); if (icq && icq->q == q) rcu_assign_pointer(ioc->icq_hint, icq); /* allowed to race */ else icq = NULL; out: rcu_read_unlock(); return icq; } EXPORT_SYMBOL(ioc_lookup_icq); /** * ioc_create_icq - create and link io_cq * @q: request_queue of interest * @gfp_mask: allocation mask * * Make sure io_cq linking %current->io_context and @q exists. If either * io_context and/or icq don't exist, they will be created using @gfp_mask. * * The caller is responsible for ensuring @ioc won't go away and @q is * alive and will stay alive until this function returns. */ struct io_cq *ioc_create_icq(struct request_queue *q, gfp_t gfp_mask) { struct elevator_type *et = q->elevator->type; struct io_context *ioc; struct io_cq *icq; /* allocate stuff */ ioc = create_io_context(current, gfp_mask, q->node); if (!ioc) return NULL; icq = kmem_cache_alloc_node(et->icq_cache, gfp_mask | __GFP_ZERO, q->node); if (!icq) return NULL; if (radix_tree_preload(gfp_mask) < 0) { kmem_cache_free(et->icq_cache, icq); return NULL; } icq->ioc = ioc; icq->q = q; INIT_LIST_HEAD(&icq->q_node); INIT_HLIST_NODE(&icq->ioc_node); /* lock both q and ioc and try to link @icq */ spin_lock_irq(q->queue_lock); spin_lock(&ioc->lock); if (likely(!radix_tree_insert(&ioc->icq_tree, q->id, icq))) { hlist_add_head(&icq->ioc_node, &ioc->icq_list); list_add(&icq->q_node, &q->icq_list); if (et->ops.elevator_init_icq_fn) et->ops.elevator_init_icq_fn(icq); } else { kmem_cache_free(et->icq_cache, icq); icq = ioc_lookup_icq(ioc, q); if (!icq) printk(KERN_ERR "cfq: icq link failed!\n"); } spin_unlock(&ioc->lock); spin_unlock_irq(q->queue_lock); radix_tree_preload_end(); return icq; } void ioc_set_changed(struct io_context *ioc, int which) { struct io_cq *icq; struct hlist_node *n; hlist_for_each_entry(icq, n, &ioc->icq_list, ioc_node) set_bit(which, &icq->changed); } /** * ioc_ioprio_changed - notify ioprio change * @ioc: io_context of interest * @ioprio: new ioprio * * @ioc's ioprio has changed to @ioprio. Set %ICQ_IOPRIO_CHANGED for all * icq's. iosched is responsible for checking the bit and applying it on * request issue path. */ void ioc_ioprio_changed(struct io_context *ioc, int ioprio) { unsigned long flags; spin_lock_irqsave(&ioc->lock, flags); ioc->ioprio = ioprio; ioc_set_changed(ioc, ICQ_IOPRIO_CHANGED); spin_unlock_irqrestore(&ioc->lock, flags); } /** * ioc_cgroup_changed - notify cgroup change * @ioc: io_context of interest * * @ioc's cgroup has changed. Set %ICQ_CGROUP_CHANGED for all icq's. * iosched is responsible for checking the bit and applying it on request * issue path. */ void ioc_cgroup_changed(struct io_context *ioc) { unsigned long flags; spin_lock_irqsave(&ioc->lock, flags); ioc_set_changed(ioc, ICQ_CGROUP_CHANGED); spin_unlock_irqrestore(&ioc->lock, flags); } EXPORT_SYMBOL(ioc_cgroup_changed); static int __init blk_ioc_init(void) { iocontext_cachep = kmem_cache_create("blkdev_ioc", sizeof(struct io_context), 0, SLAB_PANIC, NULL); return 0; } subsys_initcall(blk_ioc_init);