#include #include #include #include #include #include #include #include #include #define USE_BSD #include #include #include static void die(char *fmt, ...); #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) static Elf32_Ehdr ehdr; static unsigned long reloc_count, reloc_idx; static unsigned long *relocs; static unsigned long reloc16_count, reloc16_idx; static unsigned long *relocs16; struct section { Elf32_Shdr shdr; struct section *link; Elf32_Sym *symtab; Elf32_Rel *reltab; char *strtab; }; static struct section *secs; enum symtype { S_ABS, S_REL, S_SEG, S_LIN, S_NSYMTYPES }; static const char * const sym_regex_kernel[S_NSYMTYPES] = { /* * Following symbols have been audited. There values are constant and do * not change if bzImage is loaded at a different physical address than * the address for which it has been compiled. Don't warn user about * absolute relocations present w.r.t these symbols. */ [S_ABS] = "^(xen_irq_disable_direct_reloc$|" "xen_save_fl_direct_reloc$|" "VDSO|" "__crc_)", /* * These symbols are known to be relative, even if the linker marks them * as absolute (typically defined outside any section in the linker script.) */ [S_REL] = "^(__init_(begin|end)|" "__x86_cpu_dev_(start|end)|" "(__parainstructions|__alt_instructions)(|_end)|" "(__iommu_table|__apicdrivers|__smp_locks)(|_end)|" "__(start|end)_pci_.*|" "__(start|end)_builtin_fw|" "__(start|stop)___ksymtab(|_gpl|_unused|_unused_gpl|_gpl_future)|" "__(start|stop)___kcrctab(|_gpl|_unused|_unused_gpl|_gpl_future)|" "__(start|stop)___param|" "__(start|stop)___modver|" "__(start|stop)___bug_table|" "__tracedata_(start|end)|" "__(start|stop)_notes|" "__end_rodata|" "__initramfs_start|" "(jiffies|jiffies_64)|" "_end)$" }; static const char * const sym_regex_realmode[S_NSYMTYPES] = { /* * These symbols are known to be relative, even if the linker marks them * as absolute (typically defined outside any section in the linker script.) */ [S_REL] = "^pa_", /* * These are 16-bit segment symbols when compiling 16-bit code. */ [S_SEG] = "^real_mode_seg$", /* * These are offsets belonging to segments, as opposed to linear addresses, * when compiling 16-bit code. */ [S_LIN] = "^pa_", }; static const char * const *sym_regex; static regex_t sym_regex_c[S_NSYMTYPES]; static int is_reloc(enum symtype type, const char *sym_name) { return sym_regex[type] && !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0); } static void regex_init(int use_real_mode) { char errbuf[128]; int err; int i; if (use_real_mode) sym_regex = sym_regex_realmode; else sym_regex = sym_regex_kernel; for (i = 0; i < S_NSYMTYPES; i++) { if (!sym_regex[i]) continue; err = regcomp(&sym_regex_c[i], sym_regex[i], REG_EXTENDED|REG_NOSUB); if (err) { regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf); die("%s", errbuf); } } } static void die(char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); exit(1); } static const char *sym_type(unsigned type) { static const char *type_name[] = { #define SYM_TYPE(X) [X] = #X SYM_TYPE(STT_NOTYPE), SYM_TYPE(STT_OBJECT), SYM_TYPE(STT_FUNC), SYM_TYPE(STT_SECTION), SYM_TYPE(STT_FILE), SYM_TYPE(STT_COMMON), SYM_TYPE(STT_TLS), #undef SYM_TYPE }; const char *name = "unknown sym type name"; if (type < ARRAY_SIZE(type_name)) { name = type_name[type]; } return name; } static const char *sym_bind(unsigned bind) { static const char *bind_name[] = { #define SYM_BIND(X) [X] = #X SYM_BIND(STB_LOCAL), SYM_BIND(STB_GLOBAL), SYM_BIND(STB_WEAK), #undef SYM_BIND }; const char *name = "unknown sym bind name"; if (bind < ARRAY_SIZE(bind_name)) { name = bind_name[bind]; } return name; } static const char *sym_visibility(unsigned visibility) { static const char *visibility_name[] = { #define SYM_VISIBILITY(X) [X] = #X SYM_VISIBILITY(STV_DEFAULT), SYM_VISIBILITY(STV_INTERNAL), SYM_VISIBILITY(STV_HIDDEN), SYM_VISIBILITY(STV_PROTECTED), #undef SYM_VISIBILITY }; const char *name = "unknown sym visibility name"; if (visibility < ARRAY_SIZE(visibility_name)) { name = visibility_name[visibility]; } return name; } static const char *rel_type(unsigned type) { static const char *type_name[] = { #define REL_TYPE(X) [X] = #X REL_TYPE(R_386_NONE), REL_TYPE(R_386_32), REL_TYPE(R_386_PC32), REL_TYPE(R_386_GOT32), REL_TYPE(R_386_PLT32), REL_TYPE(R_386_COPY), REL_TYPE(R_386_GLOB_DAT), REL_TYPE(R_386_JMP_SLOT), REL_TYPE(R_386_RELATIVE), REL_TYPE(R_386_GOTOFF), REL_TYPE(R_386_GOTPC), REL_TYPE(R_386_8), REL_TYPE(R_386_PC8), REL_TYPE(R_386_16), REL_TYPE(R_386_PC16), #undef REL_TYPE }; const char *name = "unknown type rel type name"; if (type < ARRAY_SIZE(type_name) && type_name[type]) { name = type_name[type]; } return name; } static const char *sec_name(unsigned shndx) { const char *sec_strtab; const char *name; sec_strtab = secs[ehdr.e_shstrndx].strtab; name = ""; if (shndx < ehdr.e_shnum) { name = sec_strtab + secs[shndx].shdr.sh_name; } else if (shndx == SHN_ABS) { name = "ABSOLUTE"; } else if (shndx == SHN_COMMON) { name = "COMMON"; } return name; } static const char *sym_name(const char *sym_strtab, Elf32_Sym *sym) { const char *name; name = ""; if (sym->st_name) { name = sym_strtab + sym->st_name; } else { name = sec_name(sym->st_shndx); } return name; } #if BYTE_ORDER == LITTLE_ENDIAN #define le16_to_cpu(val) (val) #define le32_to_cpu(val) (val) #endif #if BYTE_ORDER == BIG_ENDIAN #define le16_to_cpu(val) bswap_16(val) #define le32_to_cpu(val) bswap_32(val) #endif static uint16_t elf16_to_cpu(uint16_t val) { return le16_to_cpu(val); } static uint32_t elf32_to_cpu(uint32_t val) { return le32_to_cpu(val); } static void read_ehdr(FILE *fp) { if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) { die("Cannot read ELF header: %s\n", strerror(errno)); } if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) { die("No ELF magic\n"); } if (ehdr.e_ident[EI_CLASS] != ELFCLASS32) { die("Not a 32 bit executable\n"); } if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) { die("Not a LSB ELF executable\n"); } if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) { die("Unknown ELF version\n"); } /* Convert the fields to native endian */ ehdr.e_type = elf16_to_cpu(ehdr.e_type); ehdr.e_machine = elf16_to_cpu(ehdr.e_machine); ehdr.e_version = elf32_to_cpu(ehdr.e_version); ehdr.e_entry = elf32_to_cpu(ehdr.e_entry); ehdr.e_phoff = elf32_to_cpu(ehdr.e_phoff); ehdr.e_shoff = elf32_to_cpu(ehdr.e_shoff); ehdr.e_flags = elf32_to_cpu(ehdr.e_flags); ehdr.e_ehsize = elf16_to_cpu(ehdr.e_ehsize); ehdr.e_phentsize = elf16_to_cpu(ehdr.e_phentsize); ehdr.e_phnum = elf16_to_cpu(ehdr.e_phnum); ehdr.e_shentsize = elf16_to_cpu(ehdr.e_shentsize); ehdr.e_shnum = elf16_to_cpu(ehdr.e_shnum); ehdr.e_shstrndx = elf16_to_cpu(ehdr.e_shstrndx); if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) { die("Unsupported ELF header type\n"); } if (ehdr.e_machine != EM_386) { die("Not for x86\n"); } if (ehdr.e_version != EV_CURRENT) { die("Unknown ELF version\n"); } if (ehdr.e_ehsize != sizeof(Elf32_Ehdr)) { die("Bad Elf header size\n"); } if (ehdr.e_phentsize != sizeof(Elf32_Phdr)) { die("Bad program header entry\n"); } if (ehdr.e_shentsize != sizeof(Elf32_Shdr)) { die("Bad section header entry\n"); } if (ehdr.e_shstrndx >= ehdr.e_shnum) { die("String table index out of bounds\n"); } } static void read_shdrs(FILE *fp) { int i; Elf32_Shdr shdr; secs = calloc(ehdr.e_shnum, sizeof(struct section)); if (!secs) { die("Unable to allocate %d section headers\n", ehdr.e_shnum); } if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) { die("Seek to %d failed: %s\n", ehdr.e_shoff, strerror(errno)); } for (i = 0; i < ehdr.e_shnum; i++) { struct section *sec = &secs[i]; if (fread(&shdr, sizeof shdr, 1, fp) != 1) die("Cannot read ELF section headers %d/%d: %s\n", i, ehdr.e_shnum, strerror(errno)); sec->shdr.sh_name = elf32_to_cpu(shdr.sh_name); sec->shdr.sh_type = elf32_to_cpu(shdr.sh_type); sec->shdr.sh_flags = elf32_to_cpu(shdr.sh_flags); sec->shdr.sh_addr = elf32_to_cpu(shdr.sh_addr); sec->shdr.sh_offset = elf32_to_cpu(shdr.sh_offset); sec->shdr.sh_size = elf32_to_cpu(shdr.sh_size); sec->shdr.sh_link = elf32_to_cpu(shdr.sh_link); sec->shdr.sh_info = elf32_to_cpu(shdr.sh_info); sec->shdr.sh_addralign = elf32_to_cpu(shdr.sh_addralign); sec->shdr.sh_entsize = elf32_to_cpu(shdr.sh_entsize); if (sec->shdr.sh_link < ehdr.e_shnum) sec->link = &secs[sec->shdr.sh_link]; } } static void read_strtabs(FILE *fp) { int i; for (i = 0; i < ehdr.e_shnum; i++) { struct section *sec = &secs[i]; if (sec->shdr.sh_type != SHT_STRTAB) { continue; } sec->strtab = malloc(sec->shdr.sh_size); if (!sec->strtab) { die("malloc of %d bytes for strtab failed\n", sec->shdr.sh_size); } if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { die("Seek to %d failed: %s\n", sec->shdr.sh_offset, strerror(errno)); } if (fread(sec->strtab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size) { die("Cannot read symbol table: %s\n", strerror(errno)); } } } static void read_symtabs(FILE *fp) { int i,j; for (i = 0; i < ehdr.e_shnum; i++) { struct section *sec = &secs[i]; if (sec->shdr.sh_type != SHT_SYMTAB) { continue; } sec->symtab = malloc(sec->shdr.sh_size); if (!sec->symtab) { die("malloc of %d bytes for symtab failed\n", sec->shdr.sh_size); } if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { die("Seek to %d failed: %s\n", sec->shdr.sh_offset, strerror(errno)); } if (fread(sec->symtab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size) { die("Cannot read symbol table: %s\n", strerror(errno)); } for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Sym); j++) { Elf32_Sym *sym = &sec->symtab[j]; sym->st_name = elf32_to_cpu(sym->st_name); sym->st_value = elf32_to_cpu(sym->st_value); sym->st_size = elf32_to_cpu(sym->st_size); sym->st_shndx = elf16_to_cpu(sym->st_shndx); } } } static void read_relocs(FILE *fp) { int i,j; for (i = 0; i < ehdr.e_shnum; i++) { struct section *sec = &secs[i]; if (sec->shdr.sh_type != SHT_REL) { continue; } sec->reltab = malloc(sec->shdr.sh_size); if (!sec->reltab) { die("malloc of %d bytes for relocs failed\n", sec->shdr.sh_size); } if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) { die("Seek to %d failed: %s\n", sec->shdr.sh_offset, strerror(errno)); } if (fread(sec->reltab, 1, sec->shdr.sh_size, fp) != sec->shdr.sh_size) { die("Cannot read symbol table: %s\n", strerror(errno)); } for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Rel); j++) { Elf32_Rel *rel = &sec->reltab[j]; rel->r_offset = elf32_to_cpu(rel->r_offset); rel->r_info = elf32_to_cpu(rel->r_info); } } } static void print_absolute_symbols(void) { int i; printf("Absolute symbols\n"); printf(" Num: Value Size Type Bind Visibility Name\n"); for (i = 0; i < ehdr.e_shnum; i++) { struct section *sec = &secs[i]; char *sym_strtab; int j; if (sec->shdr.sh_type != SHT_SYMTAB) { continue; } sym_strtab = sec->link->strtab; for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Sym); j++) { Elf32_Sym *sym; const char *name; sym = &sec->symtab[j]; name = sym_name(sym_strtab, sym); if (sym->st_shndx != SHN_ABS) { continue; } printf("%5d %08x %5d %10s %10s %12s %s\n", j, sym->st_value, sym->st_size, sym_type(ELF32_ST_TYPE(sym->st_info)), sym_bind(ELF32_ST_BIND(sym->st_info)), sym_visibility(ELF32_ST_VISIBILITY(sym->st_other)), name); } } printf("\n"); } static void print_absolute_relocs(void) { int i, printed = 0; for (i = 0; i < ehdr.e_shnum; i++) { struct section *sec = &secs[i]; struct section *sec_applies, *sec_symtab; char *sym_strtab; Elf32_Sym *sh_symtab; int j; if (sec->shdr.sh_type != SHT_REL) { continue; } sec_symtab = sec->link; sec_applies = &secs[sec->shdr.sh_info]; if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { continue; } sh_symtab = sec_symtab->symtab; sym_strtab = sec_symtab->link->strtab; for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Rel); j++) { Elf32_Rel *rel; Elf32_Sym *sym; const char *name; rel = &sec->reltab[j]; sym = &sh_symtab[ELF32_R_SYM(rel->r_info)]; name = sym_name(sym_strtab, sym); if (sym->st_shndx != SHN_ABS) { continue; } /* Absolute symbols are not relocated if bzImage is * loaded at a non-compiled address. Display a warning * to user at compile time about the absolute * relocations present. * * User need to audit the code to make sure * some symbols which should have been section * relative have not become absolute because of some * linker optimization or wrong programming usage. * * Before warning check if this absolute symbol * relocation is harmless. */ if (is_reloc(S_ABS, name) || is_reloc(S_REL, name)) continue; if (!printed) { printf("WARNING: Absolute relocations" " present\n"); printf("Offset Info Type Sym.Value " "Sym.Name\n"); printed = 1; } printf("%08x %08x %10s %08x %s\n", rel->r_offset, rel->r_info, rel_type(ELF32_R_TYPE(rel->r_info)), sym->st_value, name); } } if (printed) printf("\n"); } static void walk_relocs(void (*visit)(Elf32_Rel *rel, Elf32_Sym *sym), int use_real_mode) { int i; /* Walk through the relocations */ for (i = 0; i < ehdr.e_shnum; i++) { char *sym_strtab; Elf32_Sym *sh_symtab; struct section *sec_applies, *sec_symtab; int j; struct section *sec = &secs[i]; if (sec->shdr.sh_type != SHT_REL) { continue; } sec_symtab = sec->link; sec_applies = &secs[sec->shdr.sh_info]; if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) { continue; } sh_symtab = sec_symtab->symtab; sym_strtab = sec_symtab->link->strtab; for (j = 0; j < sec->shdr.sh_size/sizeof(Elf32_Rel); j++) { Elf32_Rel *rel; Elf32_Sym *sym; unsigned r_type; const char *symname; int shn_abs; rel = &sec->reltab[j]; sym = &sh_symtab[ELF32_R_SYM(rel->r_info)]; r_type = ELF32_R_TYPE(rel->r_info); shn_abs = sym->st_shndx == SHN_ABS; switch (r_type) { case R_386_NONE: case R_386_PC32: case R_386_PC16: case R_386_PC8: /* * NONE can be ignored and and PC relative * relocations don't need to be adjusted. */ break; case R_386_16: symname = sym_name(sym_strtab, sym); if (!use_real_mode) goto bad; if (shn_abs) { if (is_reloc(S_ABS, symname)) break; else if (!is_reloc(S_SEG, symname)) goto bad; } else { if (is_reloc(S_LIN, symname)) goto bad; else break; } visit(rel, sym); break; case R_386_32: symname = sym_name(sym_strtab, sym); if (shn_abs) { if (is_reloc(S_ABS, symname)) break; else if (!is_reloc(S_REL, symname)) goto bad; } else { if (use_real_mode && !is_reloc(S_LIN, symname)) break; } visit(rel, sym); break; default: die("Unsupported relocation type: %s (%d)\n", rel_type(r_type), r_type); break; bad: symname = sym_name(sym_strtab, sym); die("Invalid %s %s relocation: %s\n", shn_abs ? "absolute" : "relative", rel_type(r_type), symname); } } } } static void count_reloc(Elf32_Rel *rel, Elf32_Sym *sym) { if (ELF32_R_TYPE(rel->r_info) == R_386_16) reloc16_count++; else reloc_count++; } static void collect_reloc(Elf32_Rel *rel, Elf32_Sym *sym) { /* Remember the address that needs to be adjusted. */ if (ELF32_R_TYPE(rel->r_info) == R_386_16) relocs16[reloc16_idx++] = rel->r_offset; else relocs[reloc_idx++] = rel->r_offset; } static int cmp_relocs(const void *va, const void *vb) { const unsigned long *a, *b; a = va; b = vb; return (*a == *b)? 0 : (*a > *b)? 1 : -1; } static int write32(unsigned int v, FILE *f) { unsigned char buf[4]; put_unaligned_le32(v, buf); return fwrite(buf, 1, 4, f) == 4 ? 0 : -1; } static void emit_relocs(int as_text, int use_real_mode) { int i; /* Count how many relocations I have and allocate space for them. */ reloc_count = 0; walk_relocs(count_reloc, use_real_mode); relocs = malloc(reloc_count * sizeof(relocs[0])); if (!relocs) { die("malloc of %d entries for relocs failed\n", reloc_count); } relocs16 = malloc(reloc16_count * sizeof(relocs[0])); if (!relocs16) { die("malloc of %d entries for relocs16 failed\n", reloc16_count); } /* Collect up the relocations */ reloc_idx = 0; walk_relocs(collect_reloc, use_real_mode); if (reloc16_count && !use_real_mode) die("Segment relocations found but --realmode not specified\n"); /* Order the relocations for more efficient processing */ qsort(relocs, reloc_count, sizeof(relocs[0]), cmp_relocs); qsort(relocs16, reloc16_count, sizeof(relocs16[0]), cmp_relocs); /* Print the relocations */ if (as_text) { /* Print the relocations in a form suitable that * gas will like. */ printf(".section \".data.reloc\",\"a\"\n"); printf(".balign 4\n"); if (use_real_mode) { printf("\t.long %lu\n", reloc16_count); for (i = 0; i < reloc16_count; i++) printf("\t.long 0x%08lx\n", relocs16[i]); printf("\t.long %lu\n", reloc_count); for (i = 0; i < reloc_count; i++) { printf("\t.long 0x%08lx\n", relocs[i]); } } else { /* Print a stop */ printf("\t.long 0x%08lx\n", (unsigned long)0); for (i = 0; i < reloc_count; i++) { printf("\t.long 0x%08lx\n", relocs[i]); } } printf("\n"); } else { if (use_real_mode) { write32(reloc16_count, stdout); for (i = 0; i < reloc16_count; i++) write32(relocs16[i], stdout); write32(reloc_count, stdout); /* Now print each relocation */ for (i = 0; i < reloc_count; i++) write32(relocs[i], stdout); } else { /* Print a stop */ write32(0, stdout); /* Now print each relocation */ for (i = 0; i < reloc_count; i++) { write32(relocs[i], stdout); } } } } static void usage(void) { die("relocs [--abs-syms|--abs-relocs|--text|--realmode] vmlinux\n"); } int main(int argc, char **argv) { int show_absolute_syms, show_absolute_relocs; int as_text, use_real_mode; const char *fname; FILE *fp; int i; show_absolute_syms = 0; show_absolute_relocs = 0; as_text = 0; use_real_mode = 0; fname = NULL; for (i = 1; i < argc; i++) { char *arg = argv[i]; if (*arg == '-') { if (strcmp(arg, "--abs-syms") == 0) { show_absolute_syms = 1; continue; } if (strcmp(arg, "--abs-relocs") == 0) { show_absolute_relocs = 1; continue; } if (strcmp(arg, "--text") == 0) { as_text = 1; continue; } if (strcmp(arg, "--realmode") == 0) { use_real_mode = 1; continue; } } else if (!fname) { fname = arg; continue; } usage(); } if (!fname) { usage(); } regex_init(use_real_mode); fp = fopen(fname, "r"); if (!fp) { die("Cannot open %s: %s\n", fname, strerror(errno)); } read_ehdr(fp); read_shdrs(fp); read_strtabs(fp); read_symtabs(fp); read_relocs(fp); if (show_absolute_syms) { print_absolute_symbols(); return 0; } if (show_absolute_relocs) { print_absolute_relocs(); return 0; } emit_relocs(as_text, use_real_mode); return 0; }