/* * mrst.c: Intel Moorestown platform specific setup code * * (C) Copyright 2008 Intel Corporation * Author: Jacob Pan (jacob.jun.pan@intel.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #define pr_fmt(fmt) "mrst: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * the clockevent devices on Moorestown/Medfield can be APBT or LAPIC clock, * cmdline option x86_mrst_timer can be used to override the configuration * to prefer one or the other. * at runtime, there are basically three timer configurations: * 1. per cpu apbt clock only * 2. per cpu always-on lapic clocks only, this is Penwell/Medfield only * 3. per cpu lapic clock (C3STOP) and one apbt clock, with broadcast. * * by default (without cmdline option), platform code first detects cpu type * to see if we are on lincroft or penwell, then set up both lapic or apbt * clocks accordingly. * i.e. by default, medfield uses configuration #2, moorestown uses #1. * config #3 is supported but not recommended on medfield. * * rating and feature summary: * lapic (with C3STOP) --------- 100 * apbt (always-on) ------------ 110 * lapic (always-on,ARAT) ------ 150 */ __cpuinitdata enum mrst_timer_options mrst_timer_options; static u32 sfi_mtimer_usage[SFI_MTMR_MAX_NUM]; static struct sfi_timer_table_entry sfi_mtimer_array[SFI_MTMR_MAX_NUM]; enum mrst_cpu_type __mrst_cpu_chip; EXPORT_SYMBOL_GPL(__mrst_cpu_chip); int sfi_mtimer_num; struct sfi_rtc_table_entry sfi_mrtc_array[SFI_MRTC_MAX]; EXPORT_SYMBOL_GPL(sfi_mrtc_array); int sfi_mrtc_num; static void mrst_power_off(void) { } static void mrst_reboot(void) { intel_scu_ipc_simple_command(IPCMSG_COLD_BOOT, 0); } /* parse all the mtimer info to a static mtimer array */ static int __init sfi_parse_mtmr(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_timer_table_entry *pentry; struct mpc_intsrc mp_irq; int totallen; sb = (struct sfi_table_simple *)table; if (!sfi_mtimer_num) { sfi_mtimer_num = SFI_GET_NUM_ENTRIES(sb, struct sfi_timer_table_entry); pentry = (struct sfi_timer_table_entry *) sb->pentry; totallen = sfi_mtimer_num * sizeof(*pentry); memcpy(sfi_mtimer_array, pentry, totallen); } pr_debug("SFI MTIMER info (num = %d):\n", sfi_mtimer_num); pentry = sfi_mtimer_array; for (totallen = 0; totallen < sfi_mtimer_num; totallen++, pentry++) { pr_debug("timer[%d]: paddr = 0x%08x, freq = %dHz," " irq = %d\n", totallen, (u32)pentry->phys_addr, pentry->freq_hz, pentry->irq); if (!pentry->irq) continue; mp_irq.type = MP_INTSRC; mp_irq.irqtype = mp_INT; /* triggering mode edge bit 2-3, active high polarity bit 0-1 */ mp_irq.irqflag = 5; mp_irq.srcbus = MP_BUS_ISA; mp_irq.srcbusirq = pentry->irq; /* IRQ */ mp_irq.dstapic = MP_APIC_ALL; mp_irq.dstirq = pentry->irq; mp_save_irq(&mp_irq); } return 0; } struct sfi_timer_table_entry *sfi_get_mtmr(int hint) { int i; if (hint < sfi_mtimer_num) { if (!sfi_mtimer_usage[hint]) { pr_debug("hint taken for timer %d irq %d\n",\ hint, sfi_mtimer_array[hint].irq); sfi_mtimer_usage[hint] = 1; return &sfi_mtimer_array[hint]; } } /* take the first timer available */ for (i = 0; i < sfi_mtimer_num;) { if (!sfi_mtimer_usage[i]) { sfi_mtimer_usage[i] = 1; return &sfi_mtimer_array[i]; } i++; } return NULL; } void sfi_free_mtmr(struct sfi_timer_table_entry *mtmr) { int i; for (i = 0; i < sfi_mtimer_num;) { if (mtmr->irq == sfi_mtimer_array[i].irq) { sfi_mtimer_usage[i] = 0; return; } i++; } } /* parse all the mrtc info to a global mrtc array */ int __init sfi_parse_mrtc(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_rtc_table_entry *pentry; struct mpc_intsrc mp_irq; int totallen; sb = (struct sfi_table_simple *)table; if (!sfi_mrtc_num) { sfi_mrtc_num = SFI_GET_NUM_ENTRIES(sb, struct sfi_rtc_table_entry); pentry = (struct sfi_rtc_table_entry *)sb->pentry; totallen = sfi_mrtc_num * sizeof(*pentry); memcpy(sfi_mrtc_array, pentry, totallen); } pr_debug("SFI RTC info (num = %d):\n", sfi_mrtc_num); pentry = sfi_mrtc_array; for (totallen = 0; totallen < sfi_mrtc_num; totallen++, pentry++) { pr_debug("RTC[%d]: paddr = 0x%08x, irq = %d\n", totallen, (u32)pentry->phys_addr, pentry->irq); mp_irq.type = MP_INTSRC; mp_irq.irqtype = mp_INT; mp_irq.irqflag = 0xf; /* level trigger and active low */ mp_irq.srcbus = MP_BUS_ISA; mp_irq.srcbusirq = pentry->irq; /* IRQ */ mp_irq.dstapic = MP_APIC_ALL; mp_irq.dstirq = pentry->irq; mp_save_irq(&mp_irq); } return 0; } static unsigned long __init mrst_calibrate_tsc(void) { unsigned long fast_calibrate; u32 lo, hi, ratio, fsb; rdmsr(MSR_IA32_PERF_STATUS, lo, hi); pr_debug("IA32 perf status is 0x%x, 0x%0x\n", lo, hi); ratio = (hi >> 8) & 0x1f; pr_debug("ratio is %d\n", ratio); if (!ratio) { pr_err("read a zero ratio, should be incorrect!\n"); pr_err("force tsc ratio to 16 ...\n"); ratio = 16; } rdmsr(MSR_FSB_FREQ, lo, hi); if ((lo & 0x7) == 0x7) fsb = PENWELL_FSB_FREQ_83SKU; else fsb = PENWELL_FSB_FREQ_100SKU; fast_calibrate = ratio * fsb; pr_debug("read penwell tsc %lu khz\n", fast_calibrate); lapic_timer_frequency = fsb * 1000 / HZ; /* mark tsc clocksource as reliable */ set_cpu_cap(&boot_cpu_data, X86_FEATURE_TSC_RELIABLE); if (fast_calibrate) return fast_calibrate; return 0; } static void __init mrst_time_init(void) { sfi_table_parse(SFI_SIG_MTMR, NULL, NULL, sfi_parse_mtmr); switch (mrst_timer_options) { case MRST_TIMER_APBT_ONLY: break; case MRST_TIMER_LAPIC_APBT: x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock; x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock; break; default: if (!boot_cpu_has(X86_FEATURE_ARAT)) break; x86_init.timers.setup_percpu_clockev = setup_boot_APIC_clock; x86_cpuinit.setup_percpu_clockev = setup_secondary_APIC_clock; return; } /* we need at least one APB timer */ pre_init_apic_IRQ0(); apbt_time_init(); } static void __cpuinit mrst_arch_setup(void) { if (boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 0x27) __mrst_cpu_chip = MRST_CPU_CHIP_PENWELL; else { pr_err("Unknown Intel MID CPU (%d:%d), default to Penwell\n", boot_cpu_data.x86, boot_cpu_data.x86_model); __mrst_cpu_chip = MRST_CPU_CHIP_PENWELL; } } /* MID systems don't have i8042 controller */ static int mrst_i8042_detect(void) { return 0; } /* * Moorestown does not have external NMI source nor port 0x61 to report * NMI status. The possible NMI sources are from pmu as a result of NMI * watchdog or lock debug. Reading io port 0x61 results in 0xff which * misled NMI handler. */ static unsigned char mrst_get_nmi_reason(void) { return 0; } /* * Moorestown specific x86_init function overrides and early setup * calls. */ void __init x86_mrst_early_setup(void) { x86_init.resources.probe_roms = x86_init_noop; x86_init.resources.reserve_resources = x86_init_noop; x86_init.timers.timer_init = mrst_time_init; x86_init.timers.setup_percpu_clockev = x86_init_noop; x86_init.irqs.pre_vector_init = x86_init_noop; x86_init.oem.arch_setup = mrst_arch_setup; x86_cpuinit.setup_percpu_clockev = apbt_setup_secondary_clock; x86_platform.calibrate_tsc = mrst_calibrate_tsc; x86_platform.i8042_detect = mrst_i8042_detect; x86_init.timers.wallclock_init = mrst_rtc_init; x86_platform.get_nmi_reason = mrst_get_nmi_reason; x86_init.pci.init = pci_mrst_init; x86_init.pci.fixup_irqs = x86_init_noop; legacy_pic = &null_legacy_pic; /* Moorestown specific power_off/restart method */ pm_power_off = mrst_power_off; machine_ops.emergency_restart = mrst_reboot; /* Avoid searching for BIOS MP tables */ x86_init.mpparse.find_smp_config = x86_init_noop; x86_init.mpparse.get_smp_config = x86_init_uint_noop; set_bit(MP_BUS_ISA, mp_bus_not_pci); } /* * if user does not want to use per CPU apb timer, just give it a lower rating * than local apic timer and skip the late per cpu timer init. */ static inline int __init setup_x86_mrst_timer(char *arg) { if (!arg) return -EINVAL; if (strcmp("apbt_only", arg) == 0) mrst_timer_options = MRST_TIMER_APBT_ONLY; else if (strcmp("lapic_and_apbt", arg) == 0) mrst_timer_options = MRST_TIMER_LAPIC_APBT; else { pr_warning("X86 MRST timer option %s not recognised" " use x86_mrst_timer=apbt_only or lapic_and_apbt\n", arg); return -EINVAL; } return 0; } __setup("x86_mrst_timer=", setup_x86_mrst_timer); /* * Parsing GPIO table first, since the DEVS table will need this table * to map the pin name to the actual pin. */ static struct sfi_gpio_table_entry *gpio_table; static int gpio_num_entry; static int __init sfi_parse_gpio(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_gpio_table_entry *pentry; int num, i; if (gpio_table) return 0; sb = (struct sfi_table_simple *)table; num = SFI_GET_NUM_ENTRIES(sb, struct sfi_gpio_table_entry); pentry = (struct sfi_gpio_table_entry *)sb->pentry; gpio_table = (struct sfi_gpio_table_entry *) kmalloc(num * sizeof(*pentry), GFP_KERNEL); if (!gpio_table) return -1; memcpy(gpio_table, pentry, num * sizeof(*pentry)); gpio_num_entry = num; pr_debug("GPIO pin info:\n"); for (i = 0; i < num; i++, pentry++) pr_debug("info[%2d]: controller = %16.16s, pin_name = %16.16s," " pin = %d\n", i, pentry->controller_name, pentry->pin_name, pentry->pin_no); return 0; } static int get_gpio_by_name(const char *name) { struct sfi_gpio_table_entry *pentry = gpio_table; int i; if (!pentry) return -1; for (i = 0; i < gpio_num_entry; i++, pentry++) { if (!strncmp(name, pentry->pin_name, SFI_NAME_LEN)) return pentry->pin_no; } return -1; } /* * Here defines the array of devices platform data that IAFW would export * through SFI "DEVS" table, we use name and type to match the device and * its platform data. */ struct devs_id { char name[SFI_NAME_LEN + 1]; u8 type; u8 delay; void *(*get_platform_data)(void *info); }; /* the offset for the mapping of global gpio pin to irq */ #define MRST_IRQ_OFFSET 0x100 static void __init *pmic_gpio_platform_data(void *info) { static struct intel_pmic_gpio_platform_data pmic_gpio_pdata; int gpio_base = get_gpio_by_name("pmic_gpio_base"); if (gpio_base == -1) gpio_base = 64; pmic_gpio_pdata.gpio_base = gpio_base; pmic_gpio_pdata.irq_base = gpio_base + MRST_IRQ_OFFSET; pmic_gpio_pdata.gpiointr = 0xffffeff8; return &pmic_gpio_pdata; } static void __init *max3111_platform_data(void *info) { struct spi_board_info *spi_info = info; int intr = get_gpio_by_name("max3111_int"); spi_info->mode = SPI_MODE_0; if (intr == -1) return NULL; spi_info->irq = intr + MRST_IRQ_OFFSET; return NULL; } /* we have multiple max7315 on the board ... */ #define MAX7315_NUM 2 static void __init *max7315_platform_data(void *info) { static struct pca953x_platform_data max7315_pdata[MAX7315_NUM]; static int nr; struct pca953x_platform_data *max7315 = &max7315_pdata[nr]; struct i2c_board_info *i2c_info = info; int gpio_base, intr; char base_pin_name[SFI_NAME_LEN + 1]; char intr_pin_name[SFI_NAME_LEN + 1]; if (nr == MAX7315_NUM) { pr_err("too many max7315s, we only support %d\n", MAX7315_NUM); return NULL; } /* we have several max7315 on the board, we only need load several * instances of the same pca953x driver to cover them */ strcpy(i2c_info->type, "max7315"); if (nr++) { sprintf(base_pin_name, "max7315_%d_base", nr); sprintf(intr_pin_name, "max7315_%d_int", nr); } else { strcpy(base_pin_name, "max7315_base"); strcpy(intr_pin_name, "max7315_int"); } gpio_base = get_gpio_by_name(base_pin_name); intr = get_gpio_by_name(intr_pin_name); if (gpio_base == -1) return NULL; max7315->gpio_base = gpio_base; if (intr != -1) { i2c_info->irq = intr + MRST_IRQ_OFFSET; max7315->irq_base = gpio_base + MRST_IRQ_OFFSET; } else { i2c_info->irq = -1; max7315->irq_base = -1; } return max7315; } static void *tca6416_platform_data(void *info) { static struct pca953x_platform_data tca6416; struct i2c_board_info *i2c_info = info; int gpio_base, intr; char base_pin_name[SFI_NAME_LEN + 1]; char intr_pin_name[SFI_NAME_LEN + 1]; strcpy(i2c_info->type, "tca6416"); strcpy(base_pin_name, "tca6416_base"); strcpy(intr_pin_name, "tca6416_int"); gpio_base = get_gpio_by_name(base_pin_name); intr = get_gpio_by_name(intr_pin_name); if (gpio_base == -1) return NULL; tca6416.gpio_base = gpio_base; if (intr != -1) { i2c_info->irq = intr + MRST_IRQ_OFFSET; tca6416.irq_base = gpio_base + MRST_IRQ_OFFSET; } else { i2c_info->irq = -1; tca6416.irq_base = -1; } return &tca6416; } static void *mpu3050_platform_data(void *info) { struct i2c_board_info *i2c_info = info; int intr = get_gpio_by_name("mpu3050_int"); if (intr == -1) return NULL; i2c_info->irq = intr + MRST_IRQ_OFFSET; return NULL; } static void __init *emc1403_platform_data(void *info) { static short intr2nd_pdata; struct i2c_board_info *i2c_info = info; int intr = get_gpio_by_name("thermal_int"); int intr2nd = get_gpio_by_name("thermal_alert"); if (intr == -1 || intr2nd == -1) return NULL; i2c_info->irq = intr + MRST_IRQ_OFFSET; intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET; return &intr2nd_pdata; } static void __init *lis331dl_platform_data(void *info) { static short intr2nd_pdata; struct i2c_board_info *i2c_info = info; int intr = get_gpio_by_name("accel_int"); int intr2nd = get_gpio_by_name("accel_2"); if (intr == -1 || intr2nd == -1) return NULL; i2c_info->irq = intr + MRST_IRQ_OFFSET; intr2nd_pdata = intr2nd + MRST_IRQ_OFFSET; return &intr2nd_pdata; } static void __init *no_platform_data(void *info) { return NULL; } static struct resource msic_resources[] = { { .start = INTEL_MSIC_IRQ_PHYS_BASE, .end = INTEL_MSIC_IRQ_PHYS_BASE + 64 - 1, .flags = IORESOURCE_MEM, }, }; static struct intel_msic_platform_data msic_pdata; static struct platform_device msic_device = { .name = "intel_msic", .id = -1, .dev = { .platform_data = &msic_pdata, }, .num_resources = ARRAY_SIZE(msic_resources), .resource = msic_resources, }; static inline bool mrst_has_msic(void) { return mrst_identify_cpu() == MRST_CPU_CHIP_PENWELL; } static int msic_scu_status_change(struct notifier_block *nb, unsigned long code, void *data) { if (code == SCU_DOWN) { platform_device_unregister(&msic_device); return 0; } return platform_device_register(&msic_device); } static int __init msic_init(void) { static struct notifier_block msic_scu_notifier = { .notifier_call = msic_scu_status_change, }; /* * We need to be sure that the SCU IPC is ready before MSIC device * can be registered. */ if (mrst_has_msic()) intel_scu_notifier_add(&msic_scu_notifier); return 0; } arch_initcall(msic_init); /* * msic_generic_platform_data - sets generic platform data for the block * @info: pointer to the SFI device table entry for this block * @block: MSIC block * * Function sets IRQ number from the SFI table entry for given device to * the MSIC platform data. */ static void *msic_generic_platform_data(void *info, enum intel_msic_block block) { struct sfi_device_table_entry *entry = info; BUG_ON(block < 0 || block >= INTEL_MSIC_BLOCK_LAST); msic_pdata.irq[block] = entry->irq; return no_platform_data(info); } static void *msic_battery_platform_data(void *info) { return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_BATTERY); } static void *msic_gpio_platform_data(void *info) { static struct intel_msic_gpio_pdata pdata; int gpio = get_gpio_by_name("msic_gpio_base"); if (gpio < 0) return NULL; pdata.gpio_base = gpio; msic_pdata.gpio = &pdata; return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_GPIO); } static void *msic_audio_platform_data(void *info) { struct platform_device *pdev; pdev = platform_device_register_simple("sst-platform", -1, NULL, 0); if (IS_ERR(pdev)) { pr_err("failed to create audio platform device\n"); return NULL; } return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_AUDIO); } static void *msic_power_btn_platform_data(void *info) { return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_POWER_BTN); } static void *msic_ocd_platform_data(void *info) { static struct intel_msic_ocd_pdata pdata; int gpio = get_gpio_by_name("ocd_gpio"); if (gpio < 0) return NULL; pdata.gpio = gpio; msic_pdata.ocd = &pdata; return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_OCD); } static void *msic_thermal_platform_data(void *info) { return msic_generic_platform_data(info, INTEL_MSIC_BLOCK_THERMAL); } /* tc35876x DSI-LVDS bridge chip and panel platform data */ static void *tc35876x_platform_data(void *data) { static struct tc35876x_platform_data pdata; /* gpio pins set to -1 will not be used by the driver */ pdata.gpio_bridge_reset = get_gpio_by_name("LCMB_RXEN"); pdata.gpio_panel_bl_en = get_gpio_by_name("6S6P_BL_EN"); pdata.gpio_panel_vadd = get_gpio_by_name("EN_VREG_LCD_V3P3"); return &pdata; } static const struct devs_id __initconst device_ids[] = { {"bma023", SFI_DEV_TYPE_I2C, 1, &no_platform_data}, {"pmic_gpio", SFI_DEV_TYPE_SPI, 1, &pmic_gpio_platform_data}, {"pmic_gpio", SFI_DEV_TYPE_IPC, 1, &pmic_gpio_platform_data}, {"spi_max3111", SFI_DEV_TYPE_SPI, 0, &max3111_platform_data}, {"i2c_max7315", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data}, {"i2c_max7315_2", SFI_DEV_TYPE_I2C, 1, &max7315_platform_data}, {"tca6416", SFI_DEV_TYPE_I2C, 1, &tca6416_platform_data}, {"emc1403", SFI_DEV_TYPE_I2C, 1, &emc1403_platform_data}, {"i2c_accel", SFI_DEV_TYPE_I2C, 0, &lis331dl_platform_data}, {"pmic_audio", SFI_DEV_TYPE_IPC, 1, &no_platform_data}, {"mpu3050", SFI_DEV_TYPE_I2C, 1, &mpu3050_platform_data}, {"i2c_disp_brig", SFI_DEV_TYPE_I2C, 0, &tc35876x_platform_data}, /* MSIC subdevices */ {"msic_battery", SFI_DEV_TYPE_IPC, 1, &msic_battery_platform_data}, {"msic_gpio", SFI_DEV_TYPE_IPC, 1, &msic_gpio_platform_data}, {"msic_audio", SFI_DEV_TYPE_IPC, 1, &msic_audio_platform_data}, {"msic_power_btn", SFI_DEV_TYPE_IPC, 1, &msic_power_btn_platform_data}, {"msic_ocd", SFI_DEV_TYPE_IPC, 1, &msic_ocd_platform_data}, {"msic_thermal", SFI_DEV_TYPE_IPC, 1, &msic_thermal_platform_data}, {}, }; #define MAX_IPCDEVS 24 static struct platform_device *ipc_devs[MAX_IPCDEVS]; static int ipc_next_dev; #define MAX_SCU_SPI 24 static struct spi_board_info *spi_devs[MAX_SCU_SPI]; static int spi_next_dev; #define MAX_SCU_I2C 24 static struct i2c_board_info *i2c_devs[MAX_SCU_I2C]; static int i2c_bus[MAX_SCU_I2C]; static int i2c_next_dev; static void __init intel_scu_device_register(struct platform_device *pdev) { if(ipc_next_dev == MAX_IPCDEVS) pr_err("too many SCU IPC devices"); else ipc_devs[ipc_next_dev++] = pdev; } static void __init intel_scu_spi_device_register(struct spi_board_info *sdev) { struct spi_board_info *new_dev; if (spi_next_dev == MAX_SCU_SPI) { pr_err("too many SCU SPI devices"); return; } new_dev = kzalloc(sizeof(*sdev), GFP_KERNEL); if (!new_dev) { pr_err("failed to alloc mem for delayed spi dev %s\n", sdev->modalias); return; } memcpy(new_dev, sdev, sizeof(*sdev)); spi_devs[spi_next_dev++] = new_dev; } static void __init intel_scu_i2c_device_register(int bus, struct i2c_board_info *idev) { struct i2c_board_info *new_dev; if (i2c_next_dev == MAX_SCU_I2C) { pr_err("too many SCU I2C devices"); return; } new_dev = kzalloc(sizeof(*idev), GFP_KERNEL); if (!new_dev) { pr_err("failed to alloc mem for delayed i2c dev %s\n", idev->type); return; } memcpy(new_dev, idev, sizeof(*idev)); i2c_bus[i2c_next_dev] = bus; i2c_devs[i2c_next_dev++] = new_dev; } BLOCKING_NOTIFIER_HEAD(intel_scu_notifier); EXPORT_SYMBOL_GPL(intel_scu_notifier); /* Called by IPC driver */ void __devinit intel_scu_devices_create(void) { int i; for (i = 0; i < ipc_next_dev; i++) platform_device_add(ipc_devs[i]); for (i = 0; i < spi_next_dev; i++) spi_register_board_info(spi_devs[i], 1); for (i = 0; i < i2c_next_dev; i++) { struct i2c_adapter *adapter; struct i2c_client *client; adapter = i2c_get_adapter(i2c_bus[i]); if (adapter) { client = i2c_new_device(adapter, i2c_devs[i]); if (!client) pr_err("can't create i2c device %s\n", i2c_devs[i]->type); } else i2c_register_board_info(i2c_bus[i], i2c_devs[i], 1); } intel_scu_notifier_post(SCU_AVAILABLE, NULL); } EXPORT_SYMBOL_GPL(intel_scu_devices_create); /* Called by IPC driver */ void intel_scu_devices_destroy(void) { int i; intel_scu_notifier_post(SCU_DOWN, NULL); for (i = 0; i < ipc_next_dev; i++) platform_device_del(ipc_devs[i]); } EXPORT_SYMBOL_GPL(intel_scu_devices_destroy); static void __init install_irq_resource(struct platform_device *pdev, int irq) { /* Single threaded */ static struct resource __initdata res = { .name = "IRQ", .flags = IORESOURCE_IRQ, }; res.start = irq; platform_device_add_resources(pdev, &res, 1); } static void __init sfi_handle_ipc_dev(struct sfi_device_table_entry *entry) { const struct devs_id *dev = device_ids; struct platform_device *pdev; void *pdata = NULL; while (dev->name[0]) { if (dev->type == SFI_DEV_TYPE_IPC && !strncmp(dev->name, entry->name, SFI_NAME_LEN)) { pdata = dev->get_platform_data(entry); break; } dev++; } /* * On Medfield the platform device creation is handled by the MSIC * MFD driver so we don't need to do it here. */ if (mrst_has_msic()) return; pdev = platform_device_alloc(entry->name, 0); if (pdev == NULL) { pr_err("out of memory for SFI platform device '%s'.\n", entry->name); return; } install_irq_resource(pdev, entry->irq); pdev->dev.platform_data = pdata; intel_scu_device_register(pdev); } static void __init sfi_handle_spi_dev(struct spi_board_info *spi_info) { const struct devs_id *dev = device_ids; void *pdata = NULL; while (dev->name[0]) { if (dev->type == SFI_DEV_TYPE_SPI && !strncmp(dev->name, spi_info->modalias, SFI_NAME_LEN)) { pdata = dev->get_platform_data(spi_info); break; } dev++; } spi_info->platform_data = pdata; if (dev->delay) intel_scu_spi_device_register(spi_info); else spi_register_board_info(spi_info, 1); } static void __init sfi_handle_i2c_dev(int bus, struct i2c_board_info *i2c_info) { const struct devs_id *dev = device_ids; void *pdata = NULL; while (dev->name[0]) { if (dev->type == SFI_DEV_TYPE_I2C && !strncmp(dev->name, i2c_info->type, SFI_NAME_LEN)) { pdata = dev->get_platform_data(i2c_info); break; } dev++; } i2c_info->platform_data = pdata; if (dev->delay) intel_scu_i2c_device_register(bus, i2c_info); else i2c_register_board_info(bus, i2c_info, 1); } static int __init sfi_parse_devs(struct sfi_table_header *table) { struct sfi_table_simple *sb; struct sfi_device_table_entry *pentry; struct spi_board_info spi_info; struct i2c_board_info i2c_info; int num, i, bus; int ioapic; struct io_apic_irq_attr irq_attr; sb = (struct sfi_table_simple *)table; num = SFI_GET_NUM_ENTRIES(sb, struct sfi_device_table_entry); pentry = (struct sfi_device_table_entry *)sb->pentry; for (i = 0; i < num; i++, pentry++) { int irq = pentry->irq; if (irq != (u8)0xff) { /* native RTE case */ /* these SPI2 devices are not exposed to system as PCI * devices, but they have separate RTE entry in IOAPIC * so we have to enable them one by one here */ ioapic = mp_find_ioapic(irq); irq_attr.ioapic = ioapic; irq_attr.ioapic_pin = irq; irq_attr.trigger = 1; irq_attr.polarity = 1; io_apic_set_pci_routing(NULL, irq, &irq_attr); } else irq = 0; /* No irq */ switch (pentry->type) { case SFI_DEV_TYPE_IPC: pr_debug("info[%2d]: IPC bus, name = %16.16s, " "irq = 0x%2x\n", i, pentry->name, pentry->irq); sfi_handle_ipc_dev(pentry); break; case SFI_DEV_TYPE_SPI: memset(&spi_info, 0, sizeof(spi_info)); strncpy(spi_info.modalias, pentry->name, SFI_NAME_LEN); spi_info.irq = irq; spi_info.bus_num = pentry->host_num; spi_info.chip_select = pentry->addr; spi_info.max_speed_hz = pentry->max_freq; pr_debug("info[%2d]: SPI bus = %d, name = %16.16s, " "irq = 0x%2x, max_freq = %d, cs = %d\n", i, spi_info.bus_num, spi_info.modalias, spi_info.irq, spi_info.max_speed_hz, spi_info.chip_select); sfi_handle_spi_dev(&spi_info); break; case SFI_DEV_TYPE_I2C: memset(&i2c_info, 0, sizeof(i2c_info)); bus = pentry->host_num; strncpy(i2c_info.type, pentry->name, SFI_NAME_LEN); i2c_info.irq = irq; i2c_info.addr = pentry->addr; pr_debug("info[%2d]: I2C bus = %d, name = %16.16s, " "irq = 0x%2x, addr = 0x%x\n", i, bus, i2c_info.type, i2c_info.irq, i2c_info.addr); sfi_handle_i2c_dev(bus, &i2c_info); break; case SFI_DEV_TYPE_UART: case SFI_DEV_TYPE_HSI: default: ; } } return 0; } static int __init mrst_platform_init(void) { sfi_table_parse(SFI_SIG_GPIO, NULL, NULL, sfi_parse_gpio); sfi_table_parse(SFI_SIG_DEVS, NULL, NULL, sfi_parse_devs); return 0; } arch_initcall(mrst_platform_init); /* * we will search these buttons in SFI GPIO table (by name) * and register them dynamically. Please add all possible * buttons here, we will shrink them if no GPIO found. */ static struct gpio_keys_button gpio_button[] = { {KEY_POWER, -1, 1, "power_btn", EV_KEY, 0, 3000}, {KEY_PROG1, -1, 1, "prog_btn1", EV_KEY, 0, 20}, {KEY_PROG2, -1, 1, "prog_btn2", EV_KEY, 0, 20}, {SW_LID, -1, 1, "lid_switch", EV_SW, 0, 20}, {KEY_VOLUMEUP, -1, 1, "vol_up", EV_KEY, 0, 20}, {KEY_VOLUMEDOWN, -1, 1, "vol_down", EV_KEY, 0, 20}, {KEY_CAMERA, -1, 1, "camera_full", EV_KEY, 0, 20}, {KEY_CAMERA_FOCUS, -1, 1, "camera_half", EV_KEY, 0, 20}, {SW_KEYPAD_SLIDE, -1, 1, "MagSw1", EV_SW, 0, 20}, {SW_KEYPAD_SLIDE, -1, 1, "MagSw2", EV_SW, 0, 20}, }; static struct gpio_keys_platform_data mrst_gpio_keys = { .buttons = gpio_button, .rep = 1, .nbuttons = -1, /* will fill it after search */ }; static struct platform_device pb_device = { .name = "gpio-keys", .id = -1, .dev = { .platform_data = &mrst_gpio_keys, }, }; /* * Shrink the non-existent buttons, register the gpio button * device if there is some */ static int __init pb_keys_init(void) { struct gpio_keys_button *gb = gpio_button; int i, num, good = 0; num = sizeof(gpio_button) / sizeof(struct gpio_keys_button); for (i = 0; i < num; i++) { gb[i].gpio = get_gpio_by_name(gb[i].desc); pr_debug("info[%2d]: name = %s, gpio = %d\n", i, gb[i].desc, gb[i].gpio); if (gb[i].gpio == -1) continue; if (i != good) gb[good] = gb[i]; good++; } if (good) { mrst_gpio_keys.nbuttons = good; return platform_device_register(&pb_device); } return 0; } late_initcall(pb_keys_init);