/* bpf_jit_comp.c : BPF JIT compiler * * Copyright (C) 2011 Eric Dumazet (eric.dumazet@gmail.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include #include #include #include /* * Conventions : * EAX : BPF A accumulator * EBX : BPF X accumulator * RDI : pointer to skb (first argument given to JIT function) * RBP : frame pointer (even if CONFIG_FRAME_POINTER=n) * ECX,EDX,ESI : scratch registers * r9d : skb->len - skb->data_len (headlen) * r8 : skb->data * -8(RBP) : saved RBX value * -16(RBP)..-80(RBP) : BPF_MEMWORDS values */ int bpf_jit_enable __read_mostly; /* * assembly code in arch/x86/net/bpf_jit.S */ extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[]; extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[]; extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[]; extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[]; extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[]; static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) { if (len == 1) *ptr = bytes; else if (len == 2) *(u16 *)ptr = bytes; else { *(u32 *)ptr = bytes; barrier(); } return ptr + len; } #define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0) #define EMIT1(b1) EMIT(b1, 1) #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) #define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0) #define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */ #define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */ static inline bool is_imm8(int value) { return value <= 127 && value >= -128; } static inline bool is_near(int offset) { return offset <= 127 && offset >= -128; } #define EMIT_JMP(offset) \ do { \ if (offset) { \ if (is_near(offset)) \ EMIT2(0xeb, offset); /* jmp .+off8 */ \ else \ EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \ } \ } while (0) /* list of x86 cond jumps opcodes (. + s8) * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) */ #define X86_JB 0x72 #define X86_JAE 0x73 #define X86_JE 0x74 #define X86_JNE 0x75 #define X86_JBE 0x76 #define X86_JA 0x77 #define EMIT_COND_JMP(op, offset) \ do { \ if (is_near(offset)) \ EMIT2(op, offset); /* jxx .+off8 */ \ else { \ EMIT2(0x0f, op + 0x10); \ EMIT(offset, 4); /* jxx .+off32 */ \ } \ } while (0) #define COND_SEL(CODE, TOP, FOP) \ case CODE: \ t_op = TOP; \ f_op = FOP; \ goto cond_branch #define SEEN_DATAREF 1 /* might call external helpers */ #define SEEN_XREG 2 /* ebx is used */ #define SEEN_MEM 4 /* use mem[] for temporary storage */ static inline void bpf_flush_icache(void *start, void *end) { mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); smp_wmb(); flush_icache_range((unsigned long)start, (unsigned long)end); set_fs(old_fs); } #define CHOOSE_LOAD_FUNC(K, func) \ ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset) void bpf_jit_compile(struct sk_filter *fp) { u8 temp[64]; u8 *prog; unsigned int proglen, oldproglen = 0; int ilen, i; int t_offset, f_offset; u8 t_op, f_op, seen = 0, pass; u8 *image = NULL; u8 *func; int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */ unsigned int cleanup_addr; /* epilogue code offset */ unsigned int *addrs; const struct sock_filter *filter = fp->insns; int flen = fp->len; if (!bpf_jit_enable) return; addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL); if (addrs == NULL) return; /* Before first pass, make a rough estimation of addrs[] * each bpf instruction is translated to less than 64 bytes */ for (proglen = 0, i = 0; i < flen; i++) { proglen += 64; addrs[i] = proglen; } cleanup_addr = proglen; /* epilogue address */ for (pass = 0; pass < 10; pass++) { u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen; /* no prologue/epilogue for trivial filters (RET something) */ proglen = 0; prog = temp; if (seen_or_pass0) { EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */ EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */ /* note : must save %rbx in case bpf_error is hit */ if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF)) EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */ if (seen_or_pass0 & SEEN_XREG) CLEAR_X(); /* make sure we dont leek kernel memory */ /* * If this filter needs to access skb data, * loads r9 and r8 with : * r9 = skb->len - skb->data_len * r8 = skb->data */ if (seen_or_pass0 & SEEN_DATAREF) { if (offsetof(struct sk_buff, len) <= 127) /* mov off8(%rdi),%r9d */ EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len)); else { /* mov off32(%rdi),%r9d */ EMIT3(0x44, 0x8b, 0x8f); EMIT(offsetof(struct sk_buff, len), 4); } if (is_imm8(offsetof(struct sk_buff, data_len))) /* sub off8(%rdi),%r9d */ EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len)); else { EMIT3(0x44, 0x2b, 0x8f); EMIT(offsetof(struct sk_buff, data_len), 4); } if (is_imm8(offsetof(struct sk_buff, data))) /* mov off8(%rdi),%r8 */ EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data)); else { /* mov off32(%rdi),%r8 */ EMIT3(0x4c, 0x8b, 0x87); EMIT(offsetof(struct sk_buff, data), 4); } } } switch (filter[0].code) { case BPF_S_RET_K: case BPF_S_LD_W_LEN: case BPF_S_ANC_PROTOCOL: case BPF_S_ANC_IFINDEX: case BPF_S_ANC_MARK: case BPF_S_ANC_RXHASH: case BPF_S_ANC_CPU: case BPF_S_ANC_QUEUE: case BPF_S_LD_W_ABS: case BPF_S_LD_H_ABS: case BPF_S_LD_B_ABS: /* first instruction sets A register (or is RET 'constant') */ break; default: /* make sure we dont leak kernel information to user */ CLEAR_A(); /* A = 0 */ } for (i = 0; i < flen; i++) { unsigned int K = filter[i].k; switch (filter[i].code) { case BPF_S_ALU_ADD_X: /* A += X; */ seen |= SEEN_XREG; EMIT2(0x01, 0xd8); /* add %ebx,%eax */ break; case BPF_S_ALU_ADD_K: /* A += K; */ if (!K) break; if (is_imm8(K)) EMIT3(0x83, 0xc0, K); /* add imm8,%eax */ else EMIT1_off32(0x05, K); /* add imm32,%eax */ break; case BPF_S_ALU_SUB_X: /* A -= X; */ seen |= SEEN_XREG; EMIT2(0x29, 0xd8); /* sub %ebx,%eax */ break; case BPF_S_ALU_SUB_K: /* A -= K */ if (!K) break; if (is_imm8(K)) EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */ else EMIT1_off32(0x2d, K); /* sub imm32,%eax */ break; case BPF_S_ALU_MUL_X: /* A *= X; */ seen |= SEEN_XREG; EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */ break; case BPF_S_ALU_MUL_K: /* A *= K */ if (is_imm8(K)) EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */ else { EMIT2(0x69, 0xc0); /* imul imm32,%eax */ EMIT(K, 4); } break; case BPF_S_ALU_DIV_X: /* A /= X; */ seen |= SEEN_XREG; EMIT2(0x85, 0xdb); /* test %ebx,%ebx */ if (pc_ret0 > 0) { /* addrs[pc_ret0 - 1] is start address of target * (addrs[i] - 4) is the address following this jmp * ("xor %edx,%edx; div %ebx" being 4 bytes long) */ EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] - (addrs[i] - 4)); } else { EMIT_COND_JMP(X86_JNE, 2 + 5); CLEAR_A(); EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */ } EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */ break; case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */ EMIT3(0x48, 0x69, 0xc0); /* imul imm32,%rax,%rax */ EMIT(K, 4); EMIT4(0x48, 0xc1, 0xe8, 0x20); /* shr $0x20,%rax */ break; case BPF_S_ALU_AND_X: seen |= SEEN_XREG; EMIT2(0x21, 0xd8); /* and %ebx,%eax */ break; case BPF_S_ALU_AND_K: if (K >= 0xFFFFFF00) { EMIT2(0x24, K & 0xFF); /* and imm8,%al */ } else if (K >= 0xFFFF0000) { EMIT2(0x66, 0x25); /* and imm16,%ax */ EMIT(K, 2); } else { EMIT1_off32(0x25, K); /* and imm32,%eax */ } break; case BPF_S_ALU_OR_X: seen |= SEEN_XREG; EMIT2(0x09, 0xd8); /* or %ebx,%eax */ break; case BPF_S_ALU_OR_K: if (is_imm8(K)) EMIT3(0x83, 0xc8, K); /* or imm8,%eax */ else EMIT1_off32(0x0d, K); /* or imm32,%eax */ break; case BPF_S_ALU_LSH_X: /* A <<= X; */ seen |= SEEN_XREG; EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */ break; case BPF_S_ALU_LSH_K: if (K == 0) break; else if (K == 1) EMIT2(0xd1, 0xe0); /* shl %eax */ else EMIT3(0xc1, 0xe0, K); break; case BPF_S_ALU_RSH_X: /* A >>= X; */ seen |= SEEN_XREG; EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */ break; case BPF_S_ALU_RSH_K: /* A >>= K; */ if (K == 0) break; else if (K == 1) EMIT2(0xd1, 0xe8); /* shr %eax */ else EMIT3(0xc1, 0xe8, K); break; case BPF_S_ALU_NEG: EMIT2(0xf7, 0xd8); /* neg %eax */ break; case BPF_S_RET_K: if (!K) { if (pc_ret0 == -1) pc_ret0 = i; CLEAR_A(); } else { EMIT1_off32(0xb8, K); /* mov $imm32,%eax */ } /* fallinto */ case BPF_S_RET_A: if (seen_or_pass0) { if (i != flen - 1) { EMIT_JMP(cleanup_addr - addrs[i]); break; } if (seen_or_pass0 & SEEN_XREG) EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */ EMIT1(0xc9); /* leaveq */ } EMIT1(0xc3); /* ret */ break; case BPF_S_MISC_TAX: /* X = A */ seen |= SEEN_XREG; EMIT2(0x89, 0xc3); /* mov %eax,%ebx */ break; case BPF_S_MISC_TXA: /* A = X */ seen |= SEEN_XREG; EMIT2(0x89, 0xd8); /* mov %ebx,%eax */ break; case BPF_S_LD_IMM: /* A = K */ if (!K) CLEAR_A(); else EMIT1_off32(0xb8, K); /* mov $imm32,%eax */ break; case BPF_S_LDX_IMM: /* X = K */ seen |= SEEN_XREG; if (!K) CLEAR_X(); else EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */ break; case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */ seen |= SEEN_MEM; EMIT3(0x8b, 0x45, 0xf0 - K*4); break; case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */ seen |= SEEN_XREG | SEEN_MEM; EMIT3(0x8b, 0x5d, 0xf0 - K*4); break; case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */ seen |= SEEN_MEM; EMIT3(0x89, 0x45, 0xf0 - K*4); break; case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */ seen |= SEEN_XREG | SEEN_MEM; EMIT3(0x89, 0x5d, 0xf0 - K*4); break; case BPF_S_LD_W_LEN: /* A = skb->len; */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); if (is_imm8(offsetof(struct sk_buff, len))) /* mov off8(%rdi),%eax */ EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len)); else { EMIT2(0x8b, 0x87); EMIT(offsetof(struct sk_buff, len), 4); } break; case BPF_S_LDX_W_LEN: /* X = skb->len; */ seen |= SEEN_XREG; if (is_imm8(offsetof(struct sk_buff, len))) /* mov off8(%rdi),%ebx */ EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len)); else { EMIT2(0x8b, 0x9f); EMIT(offsetof(struct sk_buff, len), 4); } break; case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); if (is_imm8(offsetof(struct sk_buff, protocol))) { /* movzwl off8(%rdi),%eax */ EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol)); } else { EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */ EMIT(offsetof(struct sk_buff, protocol), 4); } EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */ break; case BPF_S_ANC_IFINDEX: if (is_imm8(offsetof(struct sk_buff, dev))) { /* movq off8(%rdi),%rax */ EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev)); } else { EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */ EMIT(offsetof(struct sk_buff, dev), 4); } EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */ EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6)); BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */ EMIT(offsetof(struct net_device, ifindex), 4); break; case BPF_S_ANC_MARK: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); if (is_imm8(offsetof(struct sk_buff, mark))) { /* mov off8(%rdi),%eax */ EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark)); } else { EMIT2(0x8b, 0x87); EMIT(offsetof(struct sk_buff, mark), 4); } break; case BPF_S_ANC_RXHASH: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4); if (is_imm8(offsetof(struct sk_buff, rxhash))) { /* mov off8(%rdi),%eax */ EMIT3(0x8b, 0x47, offsetof(struct sk_buff, rxhash)); } else { EMIT2(0x8b, 0x87); EMIT(offsetof(struct sk_buff, rxhash), 4); } break; case BPF_S_ANC_QUEUE: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); if (is_imm8(offsetof(struct sk_buff, queue_mapping))) { /* movzwl off8(%rdi),%eax */ EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping)); } else { EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */ EMIT(offsetof(struct sk_buff, queue_mapping), 4); } break; case BPF_S_ANC_CPU: #ifdef CONFIG_SMP EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */ EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */ #else CLEAR_A(); #endif break; case BPF_S_LD_W_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_word); common_load: seen |= SEEN_DATAREF; t_offset = func - (image + addrs[i]); EMIT1_off32(0xbe, K); /* mov imm32,%esi */ EMIT1_off32(0xe8, t_offset); /* call */ break; case BPF_S_LD_H_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_half); goto common_load; case BPF_S_LD_B_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_byte); goto common_load; case BPF_S_LDX_B_MSH: func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh); seen |= SEEN_DATAREF | SEEN_XREG; t_offset = func - (image + addrs[i]); EMIT1_off32(0xbe, K); /* mov imm32,%esi */ EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */ break; case BPF_S_LD_W_IND: func = sk_load_word; common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG; t_offset = func - (image + addrs[i]); if (K) { if (is_imm8(K)) { EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */ } else { EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */ EMIT(K, 4); } } else { EMIT2(0x89,0xde); /* mov %ebx,%esi */ } EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */ break; case BPF_S_LD_H_IND: func = sk_load_half; goto common_load_ind; case BPF_S_LD_B_IND: func = sk_load_byte; goto common_load_ind; case BPF_S_JMP_JA: t_offset = addrs[i + K] - addrs[i]; EMIT_JMP(t_offset); break; COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE); COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB); COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE); COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE); COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE); COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB); COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE); COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE); cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i]; t_offset = addrs[i + filter[i].jt] - addrs[i]; /* same targets, can avoid doing the test :) */ if (filter[i].jt == filter[i].jf) { EMIT_JMP(t_offset); break; } switch (filter[i].code) { case BPF_S_JMP_JGT_X: case BPF_S_JMP_JGE_X: case BPF_S_JMP_JEQ_X: seen |= SEEN_XREG; EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */ break; case BPF_S_JMP_JSET_X: seen |= SEEN_XREG; EMIT2(0x85, 0xd8); /* test %ebx,%eax */ break; case BPF_S_JMP_JEQ_K: if (K == 0) { EMIT2(0x85, 0xc0); /* test %eax,%eax */ break; } case BPF_S_JMP_JGT_K: case BPF_S_JMP_JGE_K: if (K <= 127) EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */ else EMIT1_off32(0x3d, K); /* cmp imm32,%eax */ break; case BPF_S_JMP_JSET_K: if (K <= 0xFF) EMIT2(0xa8, K); /* test imm8,%al */ else if (!(K & 0xFFFF00FF)) EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */ else if (K <= 0xFFFF) { EMIT2(0x66, 0xa9); /* test imm16,%ax */ EMIT(K, 2); } else { EMIT1_off32(0xa9, K); /* test imm32,%eax */ } break; } if (filter[i].jt != 0) { if (filter[i].jf && f_offset) t_offset += is_near(f_offset) ? 2 : 5; EMIT_COND_JMP(t_op, t_offset); if (filter[i].jf) EMIT_JMP(f_offset); break; } EMIT_COND_JMP(f_op, f_offset); break; default: /* hmm, too complex filter, give up with jit compiler */ goto out; } ilen = prog - temp; if (image) { if (unlikely(proglen + ilen > oldproglen)) { pr_err("bpb_jit_compile fatal error\n"); kfree(addrs); module_free(NULL, image); return; } memcpy(image + proglen, temp, ilen); } proglen += ilen; addrs[i] = proglen; prog = temp; } /* last bpf instruction is always a RET : * use it to give the cleanup instruction(s) addr */ cleanup_addr = proglen - 1; /* ret */ if (seen_or_pass0) cleanup_addr -= 1; /* leaveq */ if (seen_or_pass0 & SEEN_XREG) cleanup_addr -= 4; /* mov -8(%rbp),%rbx */ if (image) { if (proglen != oldproglen) pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen); break; } if (proglen == oldproglen) { image = module_alloc(max_t(unsigned int, proglen, sizeof(struct work_struct))); if (!image) goto out; } oldproglen = proglen; } if (bpf_jit_enable > 1) pr_err("flen=%d proglen=%u pass=%d image=%p\n", flen, proglen, pass, image); if (image) { if (bpf_jit_enable > 1) print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS, 16, 1, image, proglen, false); bpf_flush_icache(image, image + proglen); fp->bpf_func = (void *)image; } out: kfree(addrs); return; } static void jit_free_defer(struct work_struct *arg) { module_free(NULL, arg); } /* run from softirq, we must use a work_struct to call * module_free() from process context */ void bpf_jit_free(struct sk_filter *fp) { if (fp->bpf_func != sk_run_filter) { struct work_struct *work = (struct work_struct *)fp->bpf_func; INIT_WORK(work, jit_free_defer); schedule_work(work); } }