/* * User-space Probes (UProbes) for x86 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright (C) IBM Corporation, 2008-2011 * Authors: * Srikar Dronamraju * Jim Keniston */ #include #include #include #include #include #include #include #include /* Post-execution fixups. */ /* No fixup needed */ #define UPROBE_FIX_NONE 0x0 /* Adjust IP back to vicinity of actual insn */ #define UPROBE_FIX_IP 0x1 /* Adjust the return address of a call insn */ #define UPROBE_FIX_CALL 0x2 /* Instruction will modify TF, don't change it */ #define UPROBE_FIX_SETF 0x4 #define UPROBE_FIX_RIP_AX 0x8000 #define UPROBE_FIX_RIP_CX 0x4000 #define UPROBE_TRAP_NR UINT_MAX /* Adaptations for mhiramat x86 decoder v14. */ #define OPCODE1(insn) ((insn)->opcode.bytes[0]) #define OPCODE2(insn) ((insn)->opcode.bytes[1]) #define OPCODE3(insn) ((insn)->opcode.bytes[2]) #define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value) #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ << (row % 32)) /* * Good-instruction tables for 32-bit apps. This is non-const and volatile * to keep gcc from statically optimizing it out, as variable_test_bit makes * some versions of gcc to think only *(unsigned long*) is used. */ static volatile u32 good_insns_32[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */ W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; /* Using this for both 64-bit and 32-bit apps */ static volatile u32 good_2byte_insns[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #ifdef CONFIG_X86_64 /* Good-instruction tables for 64-bit apps */ static volatile u32 good_insns_64[256 / 32] = { /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ /* ---------------------------------------------- */ W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */ W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */ W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */ W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */ W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ /* ---------------------------------------------- */ /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ }; #endif #undef W /* * opcodes we'll probably never support: * * 6c-6d, e4-e5, ec-ed - in * 6e-6f, e6-e7, ee-ef - out * cc, cd - int3, int * cf - iret * d6 - illegal instruction * f1 - int1/icebp * f4 - hlt * fa, fb - cli, sti * 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2 * * invalid opcodes in 64-bit mode: * * 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5 * 63 - we support this opcode in x86_64 but not in i386. * * opcodes we may need to refine support for: * * 0f - 2-byte instructions: For many of these instructions, the validity * depends on the prefix and/or the reg field. On such instructions, we * just consider the opcode combination valid if it corresponds to any * valid instruction. * * 8f - Group 1 - only reg = 0 is OK * c6-c7 - Group 11 - only reg = 0 is OK * d9-df - fpu insns with some illegal encodings * f2, f3 - repnz, repz prefixes. These are also the first byte for * certain floating-point instructions, such as addsd. * * fe - Group 4 - only reg = 0 or 1 is OK * ff - Group 5 - only reg = 0-6 is OK * * others -- Do we need to support these? * * 0f - (floating-point?) prefetch instructions * 07, 17, 1f - pop es, pop ss, pop ds * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- * but 64 and 65 (fs: and gs:) seem to be used, so we support them * 67 - addr16 prefix * ce - into * f0 - lock prefix */ /* * TODO: * - Where necessary, examine the modrm byte and allow only valid instructions * in the different Groups and fpu instructions. */ static bool is_prefix_bad(struct insn *insn) { int i; for (i = 0; i < insn->prefixes.nbytes; i++) { switch (insn->prefixes.bytes[i]) { case 0x26: /* INAT_PFX_ES */ case 0x2E: /* INAT_PFX_CS */ case 0x36: /* INAT_PFX_DS */ case 0x3E: /* INAT_PFX_SS */ case 0xF0: /* INAT_PFX_LOCK */ return true; } } return false; } static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn) { insn_init(insn, auprobe->insn, false); /* Skip good instruction prefixes; reject "bad" ones. */ insn_get_opcode(insn); if (is_prefix_bad(insn)) return -ENOTSUPP; if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32)) return 0; if (insn->opcode.nbytes == 2) { if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) return 0; } return -ENOTSUPP; } /* * Figure out which fixups arch_uprobe_post_xol() will need to perform, and * annotate arch_uprobe->fixups accordingly. To start with, * arch_uprobe->fixups is either zero or it reflects rip-related fixups. */ static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn) { bool fix_ip = true, fix_call = false; /* defaults */ int reg; insn_get_opcode(insn); /* should be a nop */ switch (OPCODE1(insn)) { case 0x9d: /* popf */ auprobe->fixups |= UPROBE_FIX_SETF; break; case 0xc3: /* ret/lret */ case 0xcb: case 0xc2: case 0xca: /* ip is correct */ fix_ip = false; break; case 0xe8: /* call relative - Fix return addr */ fix_call = true; break; case 0x9a: /* call absolute - Fix return addr, not ip */ fix_call = true; fix_ip = false; break; case 0xff: insn_get_modrm(insn); reg = MODRM_REG(insn); if (reg == 2 || reg == 3) { /* call or lcall, indirect */ /* Fix return addr; ip is correct. */ fix_call = true; fix_ip = false; } else if (reg == 4 || reg == 5) { /* jmp or ljmp, indirect */ /* ip is correct. */ fix_ip = false; } break; case 0xea: /* jmp absolute -- ip is correct */ fix_ip = false; break; default: break; } if (fix_ip) auprobe->fixups |= UPROBE_FIX_IP; if (fix_call) auprobe->fixups |= UPROBE_FIX_CALL; } #ifdef CONFIG_X86_64 /* * If arch_uprobe->insn doesn't use rip-relative addressing, return * immediately. Otherwise, rewrite the instruction so that it accesses * its memory operand indirectly through a scratch register. Set * arch_uprobe->fixups and arch_uprobe->rip_rela_target_address * accordingly. (The contents of the scratch register will be saved * before we single-step the modified instruction, and restored * afterward.) * * We do this because a rip-relative instruction can access only a * relatively small area (+/- 2 GB from the instruction), and the XOL * area typically lies beyond that area. At least for instructions * that store to memory, we can't execute the original instruction * and "fix things up" later, because the misdirected store could be * disastrous. * * Some useful facts about rip-relative instructions: * * - There's always a modrm byte. * - There's never a SIB byte. * - The displacement is always 4 bytes. */ static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { u8 *cursor; u8 reg; if (mm->context.ia32_compat) return; auprobe->rip_rela_target_address = 0x0; if (!insn_rip_relative(insn)) return; /* * insn_rip_relative() would have decoded rex_prefix, modrm. * Clear REX.b bit (extension of MODRM.rm field): * we want to encode rax/rcx, not r8/r9. */ if (insn->rex_prefix.nbytes) { cursor = auprobe->insn + insn_offset_rex_prefix(insn); *cursor &= 0xfe; /* Clearing REX.B bit */ } /* * Point cursor at the modrm byte. The next 4 bytes are the * displacement. Beyond the displacement, for some instructions, * is the immediate operand. */ cursor = auprobe->insn + insn_offset_modrm(insn); insn_get_length(insn); /* * Convert from rip-relative addressing to indirect addressing * via a scratch register. Change the r/m field from 0x5 (%rip) * to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field. */ reg = MODRM_REG(insn); if (reg == 0) { /* * The register operand (if any) is either the A register * (%rax, %eax, etc.) or (if the 0x4 bit is set in the * REX prefix) %r8. In any case, we know the C register * is NOT the register operand, so we use %rcx (register * #1) for the scratch register. */ auprobe->fixups = UPROBE_FIX_RIP_CX; /* Change modrm from 00 000 101 to 00 000 001. */ *cursor = 0x1; } else { /* Use %rax (register #0) for the scratch register. */ auprobe->fixups = UPROBE_FIX_RIP_AX; /* Change modrm from 00 xxx 101 to 00 xxx 000 */ *cursor = (reg << 3); } /* Target address = address of next instruction + (signed) offset */ auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value; /* Displacement field is gone; slide immediate field (if any) over. */ if (insn->immediate.nbytes) { cursor++; memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes); } return; } static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn) { insn_init(insn, auprobe->insn, true); /* Skip good instruction prefixes; reject "bad" ones. */ insn_get_opcode(insn); if (is_prefix_bad(insn)) return -ENOTSUPP; if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64)) return 0; if (insn->opcode.nbytes == 2) { if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) return 0; } return -ENOTSUPP; } static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { if (mm->context.ia32_compat) return validate_insn_32bits(auprobe, insn); return validate_insn_64bits(auprobe, insn); } #else /* 32-bit: */ static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { /* No RIP-relative addressing on 32-bit */ } static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn) { return validate_insn_32bits(auprobe, insn); } #endif /* CONFIG_X86_64 */ /** * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. * @mm: the probed address space. * @arch_uprobe: the probepoint information. * @addr: virtual address at which to install the probepoint * Return 0 on success or a -ve number on error. */ int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) { int ret; struct insn insn; auprobe->fixups = 0; ret = validate_insn_bits(auprobe, mm, &insn); if (ret != 0) return ret; handle_riprel_insn(auprobe, mm, &insn); prepare_fixups(auprobe, &insn); return 0; } #ifdef CONFIG_X86_64 /* * If we're emulating a rip-relative instruction, save the contents * of the scratch register and store the target address in that register. */ static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, struct arch_uprobe_task *autask) { if (auprobe->fixups & UPROBE_FIX_RIP_AX) { autask->saved_scratch_register = regs->ax; regs->ax = current->utask->vaddr; regs->ax += auprobe->rip_rela_target_address; } else if (auprobe->fixups & UPROBE_FIX_RIP_CX) { autask->saved_scratch_register = regs->cx; regs->cx = current->utask->vaddr; regs->cx += auprobe->rip_rela_target_address; } } #else static void pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs, struct arch_uprobe_task *autask) { /* No RIP-relative addressing on 32-bit */ } #endif /* * arch_uprobe_pre_xol - prepare to execute out of line. * @auprobe: the probepoint information. * @regs: reflects the saved user state of current task. */ int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct arch_uprobe_task *autask; autask = ¤t->utask->autask; autask->saved_trap_nr = current->thread.trap_nr; current->thread.trap_nr = UPROBE_TRAP_NR; regs->ip = current->utask->xol_vaddr; pre_xol_rip_insn(auprobe, regs, autask); autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF); regs->flags |= X86_EFLAGS_TF; if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) set_task_blockstep(current, false); return 0; } /* * This function is called by arch_uprobe_post_xol() to adjust the return * address pushed by a call instruction executed out of line. */ static int adjust_ret_addr(unsigned long sp, long correction) { int rasize, ncopied; long ra = 0; if (is_ia32_task()) rasize = 4; else rasize = 8; ncopied = copy_from_user(&ra, (void __user *)sp, rasize); if (unlikely(ncopied)) return -EFAULT; ra += correction; ncopied = copy_to_user((void __user *)sp, &ra, rasize); if (unlikely(ncopied)) return -EFAULT; return 0; } #ifdef CONFIG_X86_64 static bool is_riprel_insn(struct arch_uprobe *auprobe) { return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0); } static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction) { if (is_riprel_insn(auprobe)) { struct arch_uprobe_task *autask; autask = ¤t->utask->autask; if (auprobe->fixups & UPROBE_FIX_RIP_AX) regs->ax = autask->saved_scratch_register; else regs->cx = autask->saved_scratch_register; /* * The original instruction includes a displacement, and so * is 4 bytes longer than what we've just single-stepped. * Fall through to handle stuff like "jmpq *...(%rip)" and * "callq *...(%rip)". */ if (correction) *correction += 4; } } #else static void handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction) { /* No RIP-relative addressing on 32-bit */ } #endif /* * If xol insn itself traps and generates a signal(Say, * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped * instruction jumps back to its own address. It is assumed that anything * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. * * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). */ bool arch_uprobe_xol_was_trapped(struct task_struct *t) { if (t->thread.trap_nr != UPROBE_TRAP_NR) return true; return false; } /* * Called after single-stepping. To avoid the SMP problems that can * occur when we temporarily put back the original opcode to * single-step, we single-stepped a copy of the instruction. * * This function prepares to resume execution after the single-step. * We have to fix things up as follows: * * Typically, the new ip is relative to the copied instruction. We need * to make it relative to the original instruction (FIX_IP). Exceptions * are return instructions and absolute or indirect jump or call instructions. * * If the single-stepped instruction was a call, the return address that * is atop the stack is the address following the copied instruction. We * need to make it the address following the original instruction (FIX_CALL). * * If the original instruction was a rip-relative instruction such as * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent * instruction using a scratch register -- e.g., "movl %edx,(%rax)". * We need to restore the contents of the scratch register and adjust * the ip, keeping in mind that the instruction we executed is 4 bytes * shorter than the original instruction (since we squeezed out the offset * field). (FIX_RIP_AX or FIX_RIP_CX) */ int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask; long correction; int result = 0; WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); utask = current->utask; current->thread.trap_nr = utask->autask.saved_trap_nr; correction = (long)(utask->vaddr - utask->xol_vaddr); handle_riprel_post_xol(auprobe, regs, &correction); if (auprobe->fixups & UPROBE_FIX_IP) regs->ip += correction; if (auprobe->fixups & UPROBE_FIX_CALL) result = adjust_ret_addr(regs->sp, correction); /* * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP * so we can get an extra SIGTRAP if we do not clear TF. We need * to examine the opcode to make it right. */ if (utask->autask.saved_tf) send_sig(SIGTRAP, current, 0); else if (!(auprobe->fixups & UPROBE_FIX_SETF)) regs->flags &= ~X86_EFLAGS_TF; return result; } /* callback routine for handling exceptions. */ int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) { struct die_args *args = data; struct pt_regs *regs = args->regs; int ret = NOTIFY_DONE; /* We are only interested in userspace traps */ if (regs && !user_mode_vm(regs)) return NOTIFY_DONE; switch (val) { case DIE_INT3: if (uprobe_pre_sstep_notifier(regs)) ret = NOTIFY_STOP; break; case DIE_DEBUG: if (uprobe_post_sstep_notifier(regs)) ret = NOTIFY_STOP; default: break; } return ret; } /* * This function gets called when XOL instruction either gets trapped or * the thread has a fatal signal, so reset the instruction pointer to its * probed address. */ void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) { struct uprobe_task *utask = current->utask; current->thread.trap_nr = utask->autask.saved_trap_nr; handle_riprel_post_xol(auprobe, regs, NULL); instruction_pointer_set(regs, utask->vaddr); /* clear TF if it was set by us in arch_uprobe_pre_xol() */ if (!utask->autask.saved_tf) regs->flags &= ~X86_EFLAGS_TF; } /* * Skip these instructions as per the currently known x86 ISA. * rep=0x66*; nop=0x90 */ static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) { int i; for (i = 0; i < MAX_UINSN_BYTES; i++) { if (auprobe->insn[i] == 0x66) continue; if (auprobe->insn[i] == 0x90) { regs->ip += i + 1; return true; } break; } return false; } bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) { bool ret = __skip_sstep(auprobe, regs); if (ret && (regs->flags & X86_EFLAGS_TF)) send_sig(SIGTRAP, current, 0); return ret; } unsigned long arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) { int rasize, ncopied; unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ rasize = is_ia32_task() ? 4 : 8; ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize); if (unlikely(ncopied)) return -1; /* check whether address has been already hijacked */ if (orig_ret_vaddr == trampoline_vaddr) return orig_ret_vaddr; ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); if (likely(!ncopied)) return orig_ret_vaddr; if (ncopied != rasize) { pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, " "%%ip=%#lx\n", current->pid, regs->sp, regs->ip); force_sig_info(SIGSEGV, SEND_SIG_FORCED, current); } return -1; }