/* * misc.c * * This is a collection of several routines from gzip-1.0.3 * adapted for Linux. * * malloc by Hannu Savolainen 1993 and Matthias Urlichs 1994 * puts by Nick Holloway 1993, better puts by Martin Mares 1995 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996 */ #include "misc.h" /* WARNING!! * This code is compiled with -fPIC and it is relocated dynamically * at run time, but no relocation processing is performed. * This means that it is not safe to place pointers in static structures. */ /* * Getting to provable safe in place decompression is hard. * Worst case behaviours need to be analyzed. * Background information: * * The file layout is: * magic[2] * method[1] * flags[1] * timestamp[4] * extraflags[1] * os[1] * compressed data blocks[N] * crc[4] orig_len[4] * * resulting in 18 bytes of non compressed data overhead. * * Files divided into blocks * 1 bit (last block flag) * 2 bits (block type) * * 1 block occurs every 32K -1 bytes or when there 50% compression * has been achieved. The smallest block type encoding is always used. * * stored: * 32 bits length in bytes. * * fixed: * magic fixed tree. * symbols. * * dynamic: * dynamic tree encoding. * symbols. * * * The buffer for decompression in place is the length of the * uncompressed data, plus a small amount extra to keep the algorithm safe. * The compressed data is placed at the end of the buffer. The output * pointer is placed at the start of the buffer and the input pointer * is placed where the compressed data starts. Problems will occur * when the output pointer overruns the input pointer. * * The output pointer can only overrun the input pointer if the input * pointer is moving faster than the output pointer. A condition only * triggered by data whose compressed form is larger than the uncompressed * form. * * The worst case at the block level is a growth of the compressed data * of 5 bytes per 32767 bytes. * * The worst case internal to a compressed block is very hard to figure. * The worst case can at least be boundined by having one bit that represents * 32764 bytes and then all of the rest of the bytes representing the very * very last byte. * * All of which is enough to compute an amount of extra data that is required * to be safe. To avoid problems at the block level allocating 5 extra bytes * per 32767 bytes of data is sufficient. To avoind problems internal to a * block adding an extra 32767 bytes (the worst case uncompressed block size) * is sufficient, to ensure that in the worst case the decompressed data for * block will stop the byte before the compressed data for a block begins. * To avoid problems with the compressed data's meta information an extra 18 * bytes are needed. Leading to the formula: * * extra_bytes = (uncompressed_size >> 12) + 32768 + 18 + decompressor_size. * * Adding 8 bytes per 32K is a bit excessive but much easier to calculate. * Adding 32768 instead of 32767 just makes for round numbers. * Adding the decompressor_size is necessary as it musht live after all * of the data as well. Last I measured the decompressor is about 14K. * 10K of actual data and 4K of bss. * */ /* * gzip declarations */ #define STATIC static #undef memset #undef memcpy #define memzero(s, n) memset((s), 0, (n)) static void error(char *m); /* * This is set up by the setup-routine at boot-time */ struct boot_params *real_mode; /* Pointer to real-mode data */ void *memset(void *s, int c, size_t n); void *memcpy(void *dest, const void *src, size_t n); memptr free_mem_ptr; memptr free_mem_end_ptr; static char *vidmem; static int vidport; static int lines, cols; #ifdef CONFIG_KERNEL_GZIP #include "../../../../lib/decompress_inflate.c" #endif #ifdef CONFIG_KERNEL_BZIP2 #include "../../../../lib/decompress_bunzip2.c" #endif #ifdef CONFIG_KERNEL_LZMA #include "../../../../lib/decompress_unlzma.c" #endif #ifdef CONFIG_KERNEL_XZ #include "../../../../lib/decompress_unxz.c" #endif #ifdef CONFIG_KERNEL_LZO #include "../../../../lib/decompress_unlzo.c" #endif #ifdef CONFIG_KERNEL_LZ4 #include "../../../../lib/decompress_unlz4.c" #endif static void scroll(void) { int i; memcpy(vidmem, vidmem + cols * 2, (lines - 1) * cols * 2); for (i = (lines - 1) * cols * 2; i < lines * cols * 2; i += 2) vidmem[i] = ' '; } #define XMTRDY 0x20 #define TXR 0 /* Transmit register (WRITE) */ #define LSR 5 /* Line Status */ static void serial_putchar(int ch) { unsigned timeout = 0xffff; while ((inb(early_serial_base + LSR) & XMTRDY) == 0 && --timeout) cpu_relax(); outb(ch, early_serial_base + TXR); } void __putstr(const char *s) { int x, y, pos; char c; if (early_serial_base) { const char *str = s; while (*str) { if (*str == '\n') serial_putchar('\r'); serial_putchar(*str++); } } if (real_mode->screen_info.orig_video_mode == 0 && lines == 0 && cols == 0) return; x = real_mode->screen_info.orig_x; y = real_mode->screen_info.orig_y; while ((c = *s++) != '\0') { if (c == '\n') { x = 0; if (++y >= lines) { scroll(); y--; } } else { vidmem[(x + cols * y) * 2] = c; if (++x >= cols) { x = 0; if (++y >= lines) { scroll(); y--; } } } } real_mode->screen_info.orig_x = x; real_mode->screen_info.orig_y = y; pos = (x + cols * y) * 2; /* Update cursor position */ outb(14, vidport); outb(0xff & (pos >> 9), vidport+1); outb(15, vidport); outb(0xff & (pos >> 1), vidport+1); } void *memset(void *s, int c, size_t n) { int i; char *ss = s; for (i = 0; i < n; i++) ss[i] = c; return s; } #ifdef CONFIG_X86_32 void *memcpy(void *dest, const void *src, size_t n) { int d0, d1, d2; asm volatile( "rep ; movsl\n\t" "movl %4,%%ecx\n\t" "rep ; movsb\n\t" : "=&c" (d0), "=&D" (d1), "=&S" (d2) : "0" (n >> 2), "g" (n & 3), "1" (dest), "2" (src) : "memory"); return dest; } #else void *memcpy(void *dest, const void *src, size_t n) { long d0, d1, d2; asm volatile( "rep ; movsq\n\t" "movq %4,%%rcx\n\t" "rep ; movsb\n\t" : "=&c" (d0), "=&D" (d1), "=&S" (d2) : "0" (n >> 3), "g" (n & 7), "1" (dest), "2" (src) : "memory"); return dest; } #endif static void error(char *x) { error_putstr("\n\n"); error_putstr(x); error_putstr("\n\n -- System halted"); while (1) asm("hlt"); } #if CONFIG_X86_NEED_RELOCS static void handle_relocations(void *output, unsigned long output_len) { int *reloc; unsigned long delta, map, ptr; unsigned long min_addr = (unsigned long)output; unsigned long max_addr = min_addr + output_len; /* * Calculate the delta between where vmlinux was linked to load * and where it was actually loaded. */ delta = min_addr - LOAD_PHYSICAL_ADDR; if (!delta) { debug_putstr("No relocation needed... "); return; } debug_putstr("Performing relocations... "); /* * The kernel contains a table of relocation addresses. Those * addresses have the final load address of the kernel in virtual * memory. We are currently working in the self map. So we need to * create an adjustment for kernel memory addresses to the self map. * This will involve subtracting out the base address of the kernel. */ map = delta - __START_KERNEL_map; /* * Process relocations: 32 bit relocations first then 64 bit after. * Two sets of binary relocations are added to the end of the kernel * before compression. Each relocation table entry is the kernel * address of the location which needs to be updated stored as a * 32-bit value which is sign extended to 64 bits. * * Format is: * * kernel bits... * 0 - zero terminator for 64 bit relocations * 64 bit relocation repeated * 0 - zero terminator for 32 bit relocations * 32 bit relocation repeated * * So we work backwards from the end of the decompressed image. */ for (reloc = output + output_len - sizeof(*reloc); *reloc; reloc--) { int extended = *reloc; extended += map; ptr = (unsigned long)extended; if (ptr < min_addr || ptr > max_addr) error("32-bit relocation outside of kernel!\n"); *(uint32_t *)ptr += delta; } #ifdef CONFIG_X86_64 for (reloc--; *reloc; reloc--) { long extended = *reloc; extended += map; ptr = (unsigned long)extended; if (ptr < min_addr || ptr > max_addr) error("64-bit relocation outside of kernel!\n"); *(uint64_t *)ptr += delta; } #endif } #else static inline void handle_relocations(void *output, unsigned long output_len) { } #endif static void parse_elf(void *output) { #ifdef CONFIG_X86_64 Elf64_Ehdr ehdr; Elf64_Phdr *phdrs, *phdr; #else Elf32_Ehdr ehdr; Elf32_Phdr *phdrs, *phdr; #endif void *dest; int i; memcpy(&ehdr, output, sizeof(ehdr)); if (ehdr.e_ident[EI_MAG0] != ELFMAG0 || ehdr.e_ident[EI_MAG1] != ELFMAG1 || ehdr.e_ident[EI_MAG2] != ELFMAG2 || ehdr.e_ident[EI_MAG3] != ELFMAG3) { error("Kernel is not a valid ELF file"); return; } debug_putstr("Parsing ELF... "); phdrs = malloc(sizeof(*phdrs) * ehdr.e_phnum); if (!phdrs) error("Failed to allocate space for phdrs"); memcpy(phdrs, output + ehdr.e_phoff, sizeof(*phdrs) * ehdr.e_phnum); for (i = 0; i < ehdr.e_phnum; i++) { phdr = &phdrs[i]; switch (phdr->p_type) { case PT_LOAD: #ifdef CONFIG_RELOCATABLE dest = output; dest += (phdr->p_paddr - LOAD_PHYSICAL_ADDR); #else dest = (void *)(phdr->p_paddr); #endif memcpy(dest, output + phdr->p_offset, phdr->p_filesz); break; default: /* Ignore other PT_* */ break; } } free(phdrs); } asmlinkage void *decompress_kernel(void *rmode, memptr heap, unsigned char *input_data, unsigned long input_len, unsigned char *output, unsigned long output_len, unsigned long run_size) { real_mode = rmode; sanitize_boot_params(real_mode); if (real_mode->screen_info.orig_video_mode == 7) { vidmem = (char *) 0xb0000; vidport = 0x3b4; } else { vidmem = (char *) 0xb8000; vidport = 0x3d4; } lines = real_mode->screen_info.orig_video_lines; cols = real_mode->screen_info.orig_video_cols; console_init(); debug_putstr("early console in decompress_kernel\n"); free_mem_ptr = heap; /* Heap */ free_mem_end_ptr = heap + BOOT_HEAP_SIZE; /* * The memory hole needed for the kernel is the larger of either * the entire decompressed kernel plus relocation table, or the * entire decompressed kernel plus .bss and .brk sections. */ output = choose_kernel_location(input_data, input_len, output, output_len > run_size ? output_len : run_size); /* Validate memory location choices. */ if ((unsigned long)output & (MIN_KERNEL_ALIGN - 1)) error("Destination address inappropriately aligned"); #ifdef CONFIG_X86_64 if (heap > 0x3fffffffffffUL) error("Destination address too large"); #else if (heap > ((-__PAGE_OFFSET-(128<<20)-1) & 0x7fffffff)) error("Destination address too large"); #endif #ifndef CONFIG_RELOCATABLE if ((unsigned long)output != LOAD_PHYSICAL_ADDR) error("Wrong destination address"); #endif debug_putstr("\nDecompressing Linux... "); decompress(input_data, input_len, NULL, NULL, output, NULL, error); parse_elf(output); handle_relocations(output, output_len); debug_putstr("done.\nBooting the kernel.\n"); return output; }