#include "misc.h" #include #include #include #include #include #include #include #include /* Simplified build-specific string for starting entropy. */ static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@" LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION; #define I8254_PORT_CONTROL 0x43 #define I8254_PORT_COUNTER0 0x40 #define I8254_CMD_READBACK 0xC0 #define I8254_SELECT_COUNTER0 0x02 #define I8254_STATUS_NOTREADY 0x40 static inline u16 i8254(void) { u16 status, timer; do { outb(I8254_PORT_CONTROL, I8254_CMD_READBACK | I8254_SELECT_COUNTER0); status = inb(I8254_PORT_COUNTER0); timer = inb(I8254_PORT_COUNTER0); timer |= inb(I8254_PORT_COUNTER0) << 8; } while (status & I8254_STATUS_NOTREADY); return timer; } static unsigned long rotate_xor(unsigned long hash, const void *area, size_t size) { size_t i; unsigned long *ptr = (unsigned long *)area; for (i = 0; i < size / sizeof(hash); i++) { /* Rotate by odd number of bits and XOR. */ hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7); hash ^= ptr[i]; } return hash; } /* Attempt to create a simple but unpredictable starting entropy. */ static unsigned long get_random_boot(void) { unsigned long hash = 0; hash = rotate_xor(hash, build_str, sizeof(build_str)); hash = rotate_xor(hash, real_mode, sizeof(*real_mode)); return hash; } static unsigned long get_random_long(void) { #ifdef CONFIG_X86_64 const unsigned long mix_const = 0x5d6008cbf3848dd3UL; #else const unsigned long mix_const = 0x3f39e593UL; #endif unsigned long raw, random = get_random_boot(); bool use_i8254 = true; debug_putstr("KASLR using"); if (has_cpuflag(X86_FEATURE_RDRAND)) { debug_putstr(" RDRAND"); if (rdrand_long(&raw)) { random ^= raw; use_i8254 = false; } } if (has_cpuflag(X86_FEATURE_TSC)) { debug_putstr(" RDTSC"); rdtscll(raw); random ^= raw; use_i8254 = false; } if (use_i8254) { debug_putstr(" i8254"); random ^= i8254(); } /* Circular multiply for better bit diffusion */ asm("mul %3" : "=a" (random), "=d" (raw) : "a" (random), "rm" (mix_const)); random += raw; debug_putstr("...\n"); return random; } struct mem_vector { unsigned long start; unsigned long size; }; #define MEM_AVOID_MAX 5 static struct mem_vector mem_avoid[MEM_AVOID_MAX]; static bool mem_contains(struct mem_vector *region, struct mem_vector *item) { /* Item at least partially before region. */ if (item->start < region->start) return false; /* Item at least partially after region. */ if (item->start + item->size > region->start + region->size) return false; return true; } static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two) { /* Item one is entirely before item two. */ if (one->start + one->size <= two->start) return false; /* Item one is entirely after item two. */ if (one->start >= two->start + two->size) return false; return true; } static void mem_avoid_init(unsigned long input, unsigned long input_size, unsigned long output, unsigned long output_size) { u64 initrd_start, initrd_size; u64 cmd_line, cmd_line_size; unsigned long unsafe, unsafe_len; char *ptr; /* * Avoid the region that is unsafe to overlap during * decompression (see calculations at top of misc.c). */ unsafe_len = (output_size >> 12) + 32768 + 18; unsafe = (unsigned long)input + input_size - unsafe_len; mem_avoid[0].start = unsafe; mem_avoid[0].size = unsafe_len; /* Avoid initrd. */ initrd_start = (u64)real_mode->ext_ramdisk_image << 32; initrd_start |= real_mode->hdr.ramdisk_image; initrd_size = (u64)real_mode->ext_ramdisk_size << 32; initrd_size |= real_mode->hdr.ramdisk_size; mem_avoid[1].start = initrd_start; mem_avoid[1].size = initrd_size; /* Avoid kernel command line. */ cmd_line = (u64)real_mode->ext_cmd_line_ptr << 32; cmd_line |= real_mode->hdr.cmd_line_ptr; /* Calculate size of cmd_line. */ ptr = (char *)(unsigned long)cmd_line; for (cmd_line_size = 0; ptr[cmd_line_size++]; ) ; mem_avoid[2].start = cmd_line; mem_avoid[2].size = cmd_line_size; /* Avoid heap memory. */ mem_avoid[3].start = (unsigned long)free_mem_ptr; mem_avoid[3].size = BOOT_HEAP_SIZE; /* Avoid stack memory. */ mem_avoid[4].start = (unsigned long)free_mem_end_ptr; mem_avoid[4].size = BOOT_STACK_SIZE; } /* Does this memory vector overlap a known avoided area? */ static bool mem_avoid_overlap(struct mem_vector *img) { int i; struct setup_data *ptr; for (i = 0; i < MEM_AVOID_MAX; i++) { if (mem_overlaps(img, &mem_avoid[i])) return true; } /* Avoid all entries in the setup_data linked list. */ ptr = (struct setup_data *)(unsigned long)real_mode->hdr.setup_data; while (ptr) { struct mem_vector avoid; avoid.start = (unsigned long)ptr; avoid.size = sizeof(*ptr) + ptr->len; if (mem_overlaps(img, &avoid)) return true; ptr = (struct setup_data *)(unsigned long)ptr->next; } return false; } static unsigned long slots[CONFIG_RANDOMIZE_BASE_MAX_OFFSET / CONFIG_PHYSICAL_ALIGN]; static unsigned long slot_max; static void slots_append(unsigned long addr) { /* Overflowing the slots list should be impossible. */ if (slot_max >= CONFIG_RANDOMIZE_BASE_MAX_OFFSET / CONFIG_PHYSICAL_ALIGN) return; slots[slot_max++] = addr; } static unsigned long slots_fetch_random(void) { /* Handle case of no slots stored. */ if (slot_max == 0) return 0; return slots[get_random_long() % slot_max]; } static void process_e820_entry(struct e820entry *entry, unsigned long minimum, unsigned long image_size) { struct mem_vector region, img; /* Skip non-RAM entries. */ if (entry->type != E820_RAM) return; /* Ignore entries entirely above our maximum. */ if (entry->addr >= CONFIG_RANDOMIZE_BASE_MAX_OFFSET) return; /* Ignore entries entirely below our minimum. */ if (entry->addr + entry->size < minimum) return; region.start = entry->addr; region.size = entry->size; /* Potentially raise address to minimum location. */ if (region.start < minimum) region.start = minimum; /* Potentially raise address to meet alignment requirements. */ region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN); /* Did we raise the address above the bounds of this e820 region? */ if (region.start > entry->addr + entry->size) return; /* Reduce size by any delta from the original address. */ region.size -= region.start - entry->addr; /* Reduce maximum size to fit end of image within maximum limit. */ if (region.start + region.size > CONFIG_RANDOMIZE_BASE_MAX_OFFSET) region.size = CONFIG_RANDOMIZE_BASE_MAX_OFFSET - region.start; /* Walk each aligned slot and check for avoided areas. */ for (img.start = region.start, img.size = image_size ; mem_contains(®ion, &img) ; img.start += CONFIG_PHYSICAL_ALIGN) { if (mem_avoid_overlap(&img)) continue; slots_append(img.start); } } static unsigned long find_random_addr(unsigned long minimum, unsigned long size) { int i; unsigned long addr; /* Make sure minimum is aligned. */ minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN); /* Verify potential e820 positions, appending to slots list. */ for (i = 0; i < real_mode->e820_entries; i++) { process_e820_entry(&real_mode->e820_map[i], minimum, size); } return slots_fetch_random(); } unsigned char *choose_kernel_location(struct boot_params *boot_params, unsigned char *input, unsigned long input_size, unsigned char *output, unsigned long output_size) { unsigned long choice = (unsigned long)output; unsigned long random; #ifdef CONFIG_HIBERNATION if (!cmdline_find_option_bool("kaslr")) { debug_putstr("KASLR disabled by default...\n"); goto out; } #else if (cmdline_find_option_bool("nokaslr")) { debug_putstr("KASLR disabled by cmdline...\n"); goto out; } #endif boot_params->hdr.loadflags |= KASLR_FLAG; /* Record the various known unsafe memory ranges. */ mem_avoid_init((unsigned long)input, input_size, (unsigned long)output, output_size); /* Walk e820 and find a random address. */ random = find_random_addr(choice, output_size); if (!random) { debug_putstr("KASLR could not find suitable E820 region...\n"); goto out; } /* Always enforce the minimum. */ if (random < choice) goto out; choice = random; out: return (unsigned char *)choice; }