#ifndef __ASM_SH_BITOPS_OP32_H #define __ASM_SH_BITOPS_OP32_H /* * The bit modifying instructions on SH-2A are only capable of working * with a 3-bit immediate, which signifies the shift position for the bit * being worked on. */ #if defined(__BIG_ENDIAN) #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) #define BYTE_NUMBER(nr) ((nr ^ BITOP_LE_SWIZZLE) / BITS_PER_BYTE) #define BYTE_OFFSET(nr) ((nr ^ BITOP_LE_SWIZZLE) % BITS_PER_BYTE) #else #define BYTE_NUMBER(nr) ((nr) / BITS_PER_BYTE) #define BYTE_OFFSET(nr) ((nr) % BITS_PER_BYTE) #endif #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr)) static inline void __set_bit(int nr, volatile unsigned long *addr) { if (IS_IMMEDIATE(nr)) { __asm__ __volatile__ ( "bset.b %1, @(%O2,%0) ! __set_bit\n\t" : "+r" (addr) : "i" (BYTE_OFFSET(nr)), "i" (BYTE_NUMBER(nr)) : "t", "memory" ); } else { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p |= mask; } } static inline void __clear_bit(int nr, volatile unsigned long *addr) { if (IS_IMMEDIATE(nr)) { __asm__ __volatile__ ( "bclr.b %1, @(%O2,%0) ! __clear_bit\n\t" : "+r" (addr) : "i" (BYTE_OFFSET(nr)), "i" (BYTE_NUMBER(nr)) : "t", "memory" ); } else { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p &= ~mask; } } /** * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */ static inline void __change_bit(int nr, volatile unsigned long *addr) { if (IS_IMMEDIATE(nr)) { __asm__ __volatile__ ( "bxor.b %1, @(%O2,%0) ! __change_bit\n\t" : "+r" (addr) : "i" (BYTE_OFFSET(nr)), "i" (BYTE_NUMBER(nr)) : "t", "memory" ); } else { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); *p ^= mask; } } /** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old | mask; return (old & mask) != 0; } /** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */ static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old & ~mask; return (old & mask) != 0; } /* WARNING: non atomic and it can be reordered! */ static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) { unsigned long mask = BIT_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr); unsigned long old = *p; *p = old ^ mask; return (old & mask) != 0; } /** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */ static inline int test_bit(int nr, const volatile unsigned long *addr) { return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); } #endif /* __ASM_SH_BITOPS_OP32_H */