/* * arch/sh/drivers/dma/dma-sh.c * * SuperH On-chip DMAC Support * * Copyright (C) 2000 Takashi YOSHII * Copyright (C) 2003, 2004 Paul Mundt * Copyright (C) 2005 Andriy Skulysh * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #if defined(DMAE1_IRQ) #define NR_DMAE 2 #else #define NR_DMAE 1 #endif static const char *dmae_name[] = { "DMAC Address Error0", "DMAC Address Error1" }; static inline unsigned int get_dmte_irq(unsigned int chan) { unsigned int irq = 0; if (chan < ARRAY_SIZE(dmte_irq_map)) irq = dmte_irq_map[chan]; #if defined(CONFIG_SH_DMA_IRQ_MULTI) if (irq > DMTE6_IRQ) return DMTE6_IRQ; return DMTE0_IRQ; #else return irq; #endif } /* * We determine the correct shift size based off of the CHCR transmit size * for the given channel. Since we know that it will take: * * info->count >> ts_shift[transmit_size] * * iterations to complete the transfer. */ static inline unsigned int calc_xmit_shift(struct dma_channel *chan) { u32 chcr = ctrl_inl(dma_base_addr[chan->chan] + CHCR); return ts_shift[(chcr & CHCR_TS_MASK)>>CHCR_TS_SHIFT]; } /* * The transfer end interrupt must read the chcr register to end the * hardware interrupt active condition. * Besides that it needs to waken any waiting process, which should handle * setting up the next transfer. */ static irqreturn_t dma_tei(int irq, void *dev_id) { struct dma_channel *chan = dev_id; u32 chcr; chcr = ctrl_inl(dma_base_addr[chan->chan] + CHCR); if (!(chcr & CHCR_TE)) return IRQ_NONE; chcr &= ~(CHCR_IE | CHCR_DE); ctrl_outl(chcr, (dma_base_addr[chan->chan] + CHCR)); wake_up(&chan->wait_queue); return IRQ_HANDLED; } static int sh_dmac_request_dma(struct dma_channel *chan) { if (unlikely(!(chan->flags & DMA_TEI_CAPABLE))) return 0; return request_irq(get_dmte_irq(chan->chan), dma_tei, #if defined(CONFIG_SH_DMA_IRQ_MULTI) IRQF_SHARED, #else IRQF_DISABLED, #endif chan->dev_id, chan); } static void sh_dmac_free_dma(struct dma_channel *chan) { free_irq(get_dmte_irq(chan->chan), chan); } static int sh_dmac_configure_channel(struct dma_channel *chan, unsigned long chcr) { if (!chcr) chcr = RS_DUAL | CHCR_IE; if (chcr & CHCR_IE) { chcr &= ~CHCR_IE; chan->flags |= DMA_TEI_CAPABLE; } else { chan->flags &= ~DMA_TEI_CAPABLE; } ctrl_outl(chcr, (dma_base_addr[chan->chan] + CHCR)); chan->flags |= DMA_CONFIGURED; return 0; } static void sh_dmac_enable_dma(struct dma_channel *chan) { int irq; u32 chcr; chcr = ctrl_inl(dma_base_addr[chan->chan] + CHCR); chcr |= CHCR_DE; if (chan->flags & DMA_TEI_CAPABLE) chcr |= CHCR_IE; ctrl_outl(chcr, (dma_base_addr[chan->chan] + CHCR)); if (chan->flags & DMA_TEI_CAPABLE) { irq = get_dmte_irq(chan->chan); enable_irq(irq); } } static void sh_dmac_disable_dma(struct dma_channel *chan) { int irq; u32 chcr; if (chan->flags & DMA_TEI_CAPABLE) { irq = get_dmte_irq(chan->chan); disable_irq(irq); } chcr = ctrl_inl(dma_base_addr[chan->chan] + CHCR); chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE); ctrl_outl(chcr, (dma_base_addr[chan->chan] + CHCR)); } static int sh_dmac_xfer_dma(struct dma_channel *chan) { /* * If we haven't pre-configured the channel with special flags, use * the defaults. */ if (unlikely(!(chan->flags & DMA_CONFIGURED))) sh_dmac_configure_channel(chan, 0); sh_dmac_disable_dma(chan); /* * Single-address mode usage note! * * It's important that we don't accidentally write any value to SAR/DAR * (this includes 0) that hasn't been directly specified by the user if * we're in single-address mode. * * In this case, only one address can be defined, anything else will * result in a DMA address error interrupt (at least on the SH-4), * which will subsequently halt the transfer. * * Channel 2 on the Dreamcast is a special case, as this is used for * cascading to the PVR2 DMAC. In this case, we still need to write * SAR and DAR, regardless of value, in order for cascading to work. */ if (chan->sar || (mach_is_dreamcast() && chan->chan == PVR2_CASCADE_CHAN)) ctrl_outl(chan->sar, (dma_base_addr[chan->chan]+SAR)); if (chan->dar || (mach_is_dreamcast() && chan->chan == PVR2_CASCADE_CHAN)) ctrl_outl(chan->dar, (dma_base_addr[chan->chan] + DAR)); ctrl_outl(chan->count >> calc_xmit_shift(chan), (dma_base_addr[chan->chan] + TCR)); sh_dmac_enable_dma(chan); return 0; } static int sh_dmac_get_dma_residue(struct dma_channel *chan) { if (!(ctrl_inl(dma_base_addr[chan->chan] + CHCR) & CHCR_DE)) return 0; return ctrl_inl(dma_base_addr[chan->chan] + TCR) << calc_xmit_shift(chan); } static inline int dmaor_reset(int no) { unsigned long dmaor = dmaor_read_reg(no); /* Try to clear the error flags first, incase they are set */ dmaor &= ~(DMAOR_NMIF | DMAOR_AE); dmaor_write_reg(no, dmaor); dmaor |= DMAOR_INIT; dmaor_write_reg(no, dmaor); /* See if we got an error again */ if ((dmaor_read_reg(no) & (DMAOR_AE | DMAOR_NMIF))) { printk(KERN_ERR "dma-sh: Can't initialize DMAOR.\n"); return -EINVAL; } return 0; } #if defined(CONFIG_CPU_SH4) static irqreturn_t dma_err(int irq, void *dummy) { #if defined(CONFIG_SH_DMA_IRQ_MULTI) int cnt = 0; switch (irq) { #if defined(DMTE6_IRQ) && defined(DMAE1_IRQ) case DMTE6_IRQ: cnt++; #endif case DMTE0_IRQ: if (dmaor_read_reg(cnt) & (DMAOR_NMIF | DMAOR_AE)) { disable_irq(irq); /* DMA multi and error IRQ */ return IRQ_HANDLED; } default: return IRQ_NONE; } #else dmaor_reset(0); #if defined(CONFIG_CPU_SUBTYPE_SH7723) || \ defined(CONFIG_CPU_SUBTYPE_SH7780) || \ defined(CONFIG_CPU_SUBTYPE_SH7785) dmaor_reset(1); #endif disable_irq(irq); return IRQ_HANDLED; #endif } #endif static struct dma_ops sh_dmac_ops = { .request = sh_dmac_request_dma, .free = sh_dmac_free_dma, .get_residue = sh_dmac_get_dma_residue, .xfer = sh_dmac_xfer_dma, .configure = sh_dmac_configure_channel, }; static struct dma_info sh_dmac_info = { .name = "sh_dmac", .nr_channels = CONFIG_NR_ONCHIP_DMA_CHANNELS, .ops = &sh_dmac_ops, .flags = DMAC_CHANNELS_TEI_CAPABLE, }; #ifdef CONFIG_CPU_SH4 static unsigned int get_dma_error_irq(int n) { #if defined(CONFIG_SH_DMA_IRQ_MULTI) return (n == 0) ? get_dmte_irq(0) : get_dmte_irq(6); #else return (n == 0) ? DMAE0_IRQ : #if defined(DMAE1_IRQ) DMAE1_IRQ; #else -1; #endif #endif } #endif static int __init sh_dmac_init(void) { struct dma_info *info = &sh_dmac_info; int i; #ifdef CONFIG_CPU_SH4 int n; for (n = 0; n < NR_DMAE; n++) { i = request_irq(get_dma_error_irq(n), dma_err, #if defined(CONFIG_SH_DMA_IRQ_MULTI) IRQF_SHARED, #else IRQF_DISABLED, #endif dmae_name[n], (void *)dmae_name[n]); if (unlikely(i < 0)) { printk(KERN_ERR "%s request_irq fail\n", dmae_name[n]); return i; } } #endif /* CONFIG_CPU_SH4 */ /* * Initialize DMAOR, and clean up any error flags that may have * been set. */ i = dmaor_reset(0); if (unlikely(i != 0)) return i; #if defined(CONFIG_CPU_SUBTYPE_SH7723) || \ defined(CONFIG_CPU_SUBTYPE_SH7780) || \ defined(CONFIG_CPU_SUBTYPE_SH7785) i = dmaor_reset(1); if (unlikely(i != 0)) return i; #endif return register_dmac(info); } static void __exit sh_dmac_exit(void) { #ifdef CONFIG_CPU_SH4 int n; for (n = 0; n < NR_DMAE; n++) { free_irq(get_dma_error_irq(n), (void *)dmae_name[n]); } #endif /* CONFIG_CPU_SH4 */ unregister_dmac(&sh_dmac_info); } subsys_initcall(sh_dmac_init); module_exit(sh_dmac_exit); MODULE_AUTHOR("Takashi YOSHII, Paul Mundt, Andriy Skulysh"); MODULE_DESCRIPTION("SuperH On-Chip DMAC Support"); MODULE_LICENSE("GPL");