/* * Extract CPU cache information and expose them via sysfs. * * Copyright IBM Corp. 2012 * Author(s): Heiko Carstens */ #include #include #include #include #include #include #include struct cache { unsigned long size; unsigned int line_size; unsigned int associativity; unsigned int nr_sets; unsigned int level : 3; unsigned int type : 2; unsigned int private : 1; struct list_head list; }; struct cache_dir { struct kobject *kobj; struct cache_index_dir *index; }; struct cache_index_dir { struct kobject kobj; int cpu; struct cache *cache; struct cache_index_dir *next; }; enum { CACHE_SCOPE_NOTEXISTS, CACHE_SCOPE_PRIVATE, CACHE_SCOPE_SHARED, CACHE_SCOPE_RESERVED, }; enum { CACHE_TYPE_SEPARATE, CACHE_TYPE_DATA, CACHE_TYPE_INSTRUCTION, CACHE_TYPE_UNIFIED, }; enum { EXTRACT_TOPOLOGY, EXTRACT_LINE_SIZE, EXTRACT_SIZE, EXTRACT_ASSOCIATIVITY, }; enum { CACHE_TI_UNIFIED = 0, CACHE_TI_DATA = 0, CACHE_TI_INSTRUCTION, }; struct cache_info { unsigned char : 4; unsigned char scope : 2; unsigned char type : 2; }; #define CACHE_MAX_LEVEL 8 union cache_topology { struct cache_info ci[CACHE_MAX_LEVEL]; unsigned long long raw; }; static const char * const cache_type_string[] = { "Data", "Instruction", "Unified", }; static struct cache_dir *cache_dir_cpu[NR_CPUS]; static LIST_HEAD(cache_list); void show_cacheinfo(struct seq_file *m) { struct cache *cache; int index = 0; list_for_each_entry(cache, &cache_list, list) { seq_printf(m, "cache%-11d: ", index); seq_printf(m, "level=%d ", cache->level); seq_printf(m, "type=%s ", cache_type_string[cache->type]); seq_printf(m, "scope=%s ", cache->private ? "Private" : "Shared"); seq_printf(m, "size=%luK ", cache->size >> 10); seq_printf(m, "line_size=%u ", cache->line_size); seq_printf(m, "associativity=%d", cache->associativity); seq_puts(m, "\n"); index++; } } static inline unsigned long ecag(int ai, int li, int ti) { unsigned long cmd, val; cmd = ai << 4 | li << 1 | ti; asm volatile(".insn rsy,0xeb000000004c,%0,0,0(%1)" /* ecag */ : "=d" (val) : "a" (cmd)); return val; } static int __init cache_add(int level, int private, int type) { struct cache *cache; int ti; cache = kzalloc(sizeof(*cache), GFP_KERNEL); if (!cache) return -ENOMEM; if (type == CACHE_TYPE_INSTRUCTION) ti = CACHE_TI_INSTRUCTION; else ti = CACHE_TI_UNIFIED; cache->size = ecag(EXTRACT_SIZE, level, ti); cache->line_size = ecag(EXTRACT_LINE_SIZE, level, ti); cache->associativity = ecag(EXTRACT_ASSOCIATIVITY, level, ti); cache->nr_sets = cache->size / cache->associativity; cache->nr_sets /= cache->line_size; cache->private = private; cache->level = level + 1; cache->type = type - 1; list_add_tail(&cache->list, &cache_list); return 0; } static void __init cache_build_info(void) { struct cache *cache, *next; union cache_topology ct; int level, private, rc; ct.raw = ecag(EXTRACT_TOPOLOGY, 0, 0); for (level = 0; level < CACHE_MAX_LEVEL; level++) { switch (ct.ci[level].scope) { case CACHE_SCOPE_SHARED: private = 0; break; case CACHE_SCOPE_PRIVATE: private = 1; break; default: return; } if (ct.ci[level].type == CACHE_TYPE_SEPARATE) { rc = cache_add(level, private, CACHE_TYPE_DATA); rc |= cache_add(level, private, CACHE_TYPE_INSTRUCTION); } else { rc = cache_add(level, private, ct.ci[level].type); } if (rc) goto error; } return; error: list_for_each_entry_safe(cache, next, &cache_list, list) { list_del(&cache->list); kfree(cache); } } static struct cache_dir *cache_create_cache_dir(int cpu) { struct cache_dir *cache_dir; struct kobject *kobj = NULL; struct device *dev; dev = get_cpu_device(cpu); if (!dev) goto out; kobj = kobject_create_and_add("cache", &dev->kobj); if (!kobj) goto out; cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL); if (!cache_dir) goto out; cache_dir->kobj = kobj; cache_dir_cpu[cpu] = cache_dir; return cache_dir; out: kobject_put(kobj); return NULL; } static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *kobj) { return container_of(kobj, struct cache_index_dir, kobj); } static void cache_index_release(struct kobject *kobj) { struct cache_index_dir *index; index = kobj_to_cache_index_dir(kobj); kfree(index); } static ssize_t cache_index_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct kobj_attribute *kobj_attr; kobj_attr = container_of(attr, struct kobj_attribute, attr); return kobj_attr->show(kobj, kobj_attr, buf); } #define DEFINE_CACHE_ATTR(_name, _format, _value) \ static ssize_t cache_##_name##_show(struct kobject *kobj, \ struct kobj_attribute *attr, \ char *buf) \ { \ struct cache_index_dir *index; \ \ index = kobj_to_cache_index_dir(kobj); \ return sprintf(buf, _format, _value); \ } \ static struct kobj_attribute cache_##_name##_attr = \ __ATTR(_name, 0444, cache_##_name##_show, NULL); DEFINE_CACHE_ATTR(size, "%luK\n", index->cache->size >> 10); DEFINE_CACHE_ATTR(coherency_line_size, "%u\n", index->cache->line_size); DEFINE_CACHE_ATTR(number_of_sets, "%u\n", index->cache->nr_sets); DEFINE_CACHE_ATTR(ways_of_associativity, "%u\n", index->cache->associativity); DEFINE_CACHE_ATTR(type, "%s\n", cache_type_string[index->cache->type]); DEFINE_CACHE_ATTR(level, "%d\n", index->cache->level); static ssize_t shared_cpu_map_func(struct kobject *kobj, int type, char *buf) { struct cache_index_dir *index; int len; index = kobj_to_cache_index_dir(kobj); len = type ? cpulist_scnprintf(buf, PAGE_SIZE - 2, cpumask_of(index->cpu)) : cpumask_scnprintf(buf, PAGE_SIZE - 2, cpumask_of(index->cpu)); len += sprintf(&buf[len], "\n"); return len; } static ssize_t shared_cpu_map_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return shared_cpu_map_func(kobj, 0, buf); } static struct kobj_attribute cache_shared_cpu_map_attr = __ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL); static ssize_t shared_cpu_list_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { return shared_cpu_map_func(kobj, 1, buf); } static struct kobj_attribute cache_shared_cpu_list_attr = __ATTR(shared_cpu_list, 0444, shared_cpu_list_show, NULL); static struct attribute *cache_index_default_attrs[] = { &cache_type_attr.attr, &cache_size_attr.attr, &cache_number_of_sets_attr.attr, &cache_ways_of_associativity_attr.attr, &cache_level_attr.attr, &cache_coherency_line_size_attr.attr, &cache_shared_cpu_map_attr.attr, &cache_shared_cpu_list_attr.attr, NULL, }; static const struct sysfs_ops cache_index_ops = { .show = cache_index_show, }; static struct kobj_type cache_index_type = { .sysfs_ops = &cache_index_ops, .release = cache_index_release, .default_attrs = cache_index_default_attrs, }; static int cache_create_index_dir(struct cache_dir *cache_dir, struct cache *cache, int index, int cpu) { struct cache_index_dir *index_dir; int rc; index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL); if (!index_dir) return -ENOMEM; index_dir->cache = cache; index_dir->cpu = cpu; rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type, cache_dir->kobj, "index%d", index); if (rc) goto out; index_dir->next = cache_dir->index; cache_dir->index = index_dir; return 0; out: kfree(index_dir); return rc; } static int cache_add_cpu(int cpu) { struct cache_dir *cache_dir; struct cache *cache; int rc, index = 0; if (list_empty(&cache_list)) return 0; cache_dir = cache_create_cache_dir(cpu); if (!cache_dir) return -ENOMEM; list_for_each_entry(cache, &cache_list, list) { if (!cache->private) break; rc = cache_create_index_dir(cache_dir, cache, index, cpu); if (rc) return rc; index++; } return 0; } static void cache_remove_cpu(int cpu) { struct cache_index_dir *index, *next; struct cache_dir *cache_dir; cache_dir = cache_dir_cpu[cpu]; if (!cache_dir) return; index = cache_dir->index; while (index) { next = index->next; kobject_put(&index->kobj); index = next; } kobject_put(cache_dir->kobj); kfree(cache_dir); cache_dir_cpu[cpu] = NULL; } static int cache_hotplug(struct notifier_block *nfb, unsigned long action, void *hcpu) { int cpu = (long)hcpu; int rc = 0; switch (action & ~CPU_TASKS_FROZEN) { case CPU_ONLINE: rc = cache_add_cpu(cpu); if (rc) cache_remove_cpu(cpu); break; case CPU_DEAD: cache_remove_cpu(cpu); break; } return rc ? NOTIFY_BAD : NOTIFY_OK; } static int __init cache_init(void) { int cpu; if (!test_facility(34)) return 0; cache_build_info(); cpu_notifier_register_begin(); for_each_online_cpu(cpu) cache_add_cpu(cpu); __hotcpu_notifier(cache_hotplug, 0); cpu_notifier_register_done(); return 0; } device_initcall(cache_init);