/* align.c - handle alignment exceptions for the Power PC. * * Copyright (c) 1996 Paul Mackerras * Copyright (c) 1998-1999 TiVo, Inc. * PowerPC 403GCX modifications. * Copyright (c) 1999 Grant Erickson * PowerPC 403GCX/405GP modifications. * Copyright (c) 2001-2002 PPC64 team, IBM Corp * 64-bit and Power4 support * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp * * Merge ppc32 and ppc64 implementations * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include struct aligninfo { unsigned char len; unsigned char flags; }; #define IS_XFORM(inst) (((inst) >> 26) == 31) #define IS_DSFORM(inst) (((inst) >> 26) >= 56) #define INVALID { 0, 0 } #define LD 1 /* load */ #define ST 2 /* store */ #define SE 4 /* sign-extend value */ #define F 8 /* to/from fp regs */ #define U 0x10 /* update index register */ #define M 0x20 /* multiple load/store */ #define SW 0x40 /* byte swap int or ... */ #define S 0x40 /* ... single-precision fp */ #define SX 0x40 /* byte count in XER */ #define HARD 0x80 /* string, stwcx. */ #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */ #define SWAP(a, b) (t = (a), (a) = (b), (b) = t) /* * The PowerPC stores certain bits of the instruction that caused the * alignment exception in the DSISR register. This array maps those * bits to information about the operand length and what the * instruction would do. */ static struct aligninfo aligninfo[128] = { { 4, LD }, /* 00 0 0000: lwz / lwarx */ INVALID, /* 00 0 0001 */ { 4, ST }, /* 00 0 0010: stw */ INVALID, /* 00 0 0011 */ { 2, LD }, /* 00 0 0100: lhz */ { 2, LD+SE }, /* 00 0 0101: lha */ { 2, ST }, /* 00 0 0110: sth */ { 4, LD+M }, /* 00 0 0111: lmw */ { 4, LD+F+S }, /* 00 0 1000: lfs */ { 8, LD+F }, /* 00 0 1001: lfd */ { 4, ST+F+S }, /* 00 0 1010: stfs */ { 8, ST+F }, /* 00 0 1011: stfd */ INVALID, /* 00 0 1100 */ { 8, LD }, /* 00 0 1101: ld/ldu/lwa */ INVALID, /* 00 0 1110 */ { 8, ST }, /* 00 0 1111: std/stdu */ { 4, LD+U }, /* 00 1 0000: lwzu */ INVALID, /* 00 1 0001 */ { 4, ST+U }, /* 00 1 0010: stwu */ INVALID, /* 00 1 0011 */ { 2, LD+U }, /* 00 1 0100: lhzu */ { 2, LD+SE+U }, /* 00 1 0101: lhau */ { 2, ST+U }, /* 00 1 0110: sthu */ { 4, ST+M }, /* 00 1 0111: stmw */ { 4, LD+F+S+U }, /* 00 1 1000: lfsu */ { 8, LD+F+U }, /* 00 1 1001: lfdu */ { 4, ST+F+S+U }, /* 00 1 1010: stfsu */ { 8, ST+F+U }, /* 00 1 1011: stfdu */ INVALID, /* 00 1 1100 */ INVALID, /* 00 1 1101 */ INVALID, /* 00 1 1110 */ INVALID, /* 00 1 1111 */ { 8, LD }, /* 01 0 0000: ldx */ INVALID, /* 01 0 0001 */ { 8, ST }, /* 01 0 0010: stdx */ INVALID, /* 01 0 0011 */ INVALID, /* 01 0 0100 */ { 4, LD+SE }, /* 01 0 0101: lwax */ INVALID, /* 01 0 0110 */ INVALID, /* 01 0 0111 */ { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */ { 4, LD+M+HARD }, /* 01 0 1001: lswi */ { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */ { 4, ST+M+HARD }, /* 01 0 1011: stswi */ INVALID, /* 01 0 1100 */ { 8, LD+U }, /* 01 0 1101: ldu */ INVALID, /* 01 0 1110 */ { 8, ST+U }, /* 01 0 1111: stdu */ { 8, LD+U }, /* 01 1 0000: ldux */ INVALID, /* 01 1 0001 */ { 8, ST+U }, /* 01 1 0010: stdux */ INVALID, /* 01 1 0011 */ INVALID, /* 01 1 0100 */ { 4, LD+SE+U }, /* 01 1 0101: lwaux */ INVALID, /* 01 1 0110 */ INVALID, /* 01 1 0111 */ INVALID, /* 01 1 1000 */ INVALID, /* 01 1 1001 */ INVALID, /* 01 1 1010 */ INVALID, /* 01 1 1011 */ INVALID, /* 01 1 1100 */ INVALID, /* 01 1 1101 */ INVALID, /* 01 1 1110 */ INVALID, /* 01 1 1111 */ INVALID, /* 10 0 0000 */ INVALID, /* 10 0 0001 */ INVALID, /* 10 0 0010: stwcx. */ INVALID, /* 10 0 0011 */ INVALID, /* 10 0 0100 */ INVALID, /* 10 0 0101 */ INVALID, /* 10 0 0110 */ INVALID, /* 10 0 0111 */ { 4, LD+SW }, /* 10 0 1000: lwbrx */ INVALID, /* 10 0 1001 */ { 4, ST+SW }, /* 10 0 1010: stwbrx */ INVALID, /* 10 0 1011 */ { 2, LD+SW }, /* 10 0 1100: lhbrx */ { 4, LD+SE }, /* 10 0 1101 lwa */ { 2, ST+SW }, /* 10 0 1110: sthbrx */ INVALID, /* 10 0 1111 */ INVALID, /* 10 1 0000 */ INVALID, /* 10 1 0001 */ INVALID, /* 10 1 0010 */ INVALID, /* 10 1 0011 */ INVALID, /* 10 1 0100 */ INVALID, /* 10 1 0101 */ INVALID, /* 10 1 0110 */ INVALID, /* 10 1 0111 */ INVALID, /* 10 1 1000 */ INVALID, /* 10 1 1001 */ INVALID, /* 10 1 1010 */ INVALID, /* 10 1 1011 */ INVALID, /* 10 1 1100 */ INVALID, /* 10 1 1101 */ INVALID, /* 10 1 1110 */ { 0, ST+HARD }, /* 10 1 1111: dcbz */ { 4, LD }, /* 11 0 0000: lwzx */ INVALID, /* 11 0 0001 */ { 4, ST }, /* 11 0 0010: stwx */ INVALID, /* 11 0 0011 */ { 2, LD }, /* 11 0 0100: lhzx */ { 2, LD+SE }, /* 11 0 0101: lhax */ { 2, ST }, /* 11 0 0110: sthx */ INVALID, /* 11 0 0111 */ { 4, LD+F+S }, /* 11 0 1000: lfsx */ { 8, LD+F }, /* 11 0 1001: lfdx */ { 4, ST+F+S }, /* 11 0 1010: stfsx */ { 8, ST+F }, /* 11 0 1011: stfdx */ INVALID, /* 11 0 1100 */ { 8, LD+M }, /* 11 0 1101: lmd */ INVALID, /* 11 0 1110 */ { 8, ST+M }, /* 11 0 1111: stmd */ { 4, LD+U }, /* 11 1 0000: lwzux */ INVALID, /* 11 1 0001 */ { 4, ST+U }, /* 11 1 0010: stwux */ INVALID, /* 11 1 0011 */ { 2, LD+U }, /* 11 1 0100: lhzux */ { 2, LD+SE+U }, /* 11 1 0101: lhaux */ { 2, ST+U }, /* 11 1 0110: sthux */ INVALID, /* 11 1 0111 */ { 4, LD+F+S+U }, /* 11 1 1000: lfsux */ { 8, LD+F+U }, /* 11 1 1001: lfdux */ { 4, ST+F+S+U }, /* 11 1 1010: stfsux */ { 8, ST+F+U }, /* 11 1 1011: stfdux */ INVALID, /* 11 1 1100 */ INVALID, /* 11 1 1101 */ INVALID, /* 11 1 1110 */ INVALID, /* 11 1 1111 */ }; /* * Create a DSISR value from the instruction */ static inline unsigned make_dsisr(unsigned instr) { unsigned dsisr; /* bits 6:15 --> 22:31 */ dsisr = (instr & 0x03ff0000) >> 16; if (IS_XFORM(instr)) { /* bits 29:30 --> 15:16 */ dsisr |= (instr & 0x00000006) << 14; /* bit 25 --> 17 */ dsisr |= (instr & 0x00000040) << 8; /* bits 21:24 --> 18:21 */ dsisr |= (instr & 0x00000780) << 3; } else { /* bit 5 --> 17 */ dsisr |= (instr & 0x04000000) >> 12; /* bits 1: 4 --> 18:21 */ dsisr |= (instr & 0x78000000) >> 17; /* bits 30:31 --> 12:13 */ if (IS_DSFORM(instr)) dsisr |= (instr & 0x00000003) << 18; } return dsisr; } /* * The dcbz (data cache block zero) instruction * gives an alignment fault if used on non-cacheable * memory. We handle the fault mainly for the * case when we are running with the cache disabled * for debugging. */ static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr) { long __user *p; int i, size; #ifdef __powerpc64__ size = ppc64_caches.dline_size; #else size = L1_CACHE_BYTES; #endif p = (long __user *) (regs->dar & -size); if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size)) return -EFAULT; for (i = 0; i < size / sizeof(long); ++i) if (__put_user(0, p+i)) return -EFAULT; return 1; } /* * Emulate load & store multiple instructions * On 64-bit machines, these instructions only affect/use the * bottom 4 bytes of each register, and the loads clear the * top 4 bytes of the affected register. */ #ifdef CONFIG_PPC64 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4) #else #define REG_BYTE(rp, i) *((u8 *)(rp) + (i)) #endif static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, unsigned int reg, unsigned int nb, unsigned int flags, unsigned int instr) { unsigned long *rptr; unsigned int nb0, i; /* * We do not try to emulate 8 bytes multiple as they aren't really * available in our operating environments and we don't try to * emulate multiples operations in kernel land as they should never * be used/generated there at least not on unaligned boundaries */ if (unlikely((nb > 4) || !user_mode(regs))) return 0; /* lmw, stmw, lswi/x, stswi/x */ nb0 = 0; if (flags & HARD) { if (flags & SX) { nb = regs->xer & 127; if (nb == 0) return 1; } else { if (__get_user(instr, (unsigned int __user *)regs->nip)) return -EFAULT; nb = (instr >> 11) & 0x1f; if (nb == 0) nb = 32; } if (nb + reg * 4 > 128) { nb0 = nb + reg * 4 - 128; nb = 128 - reg * 4; } } else { /* lwm, stmw */ nb = (32 - reg) * 4; } if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0)) return -EFAULT; /* bad address */ rptr = ®s->gpr[reg]; if (flags & LD) { /* * This zeroes the top 4 bytes of the affected registers * in 64-bit mode, and also zeroes out any remaining * bytes of the last register for lsw*. */ memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long)); if (nb0 > 0) memset(®s->gpr[0], 0, ((nb0 + 3) / 4) * sizeof(unsigned long)); for (i = 0; i < nb; ++i) if (__get_user(REG_BYTE(rptr, i), addr + i)) return -EFAULT; if (nb0 > 0) { rptr = ®s->gpr[0]; addr += nb; for (i = 0; i < nb0; ++i) if (__get_user(REG_BYTE(rptr, i), addr + i)) return -EFAULT; } } else { for (i = 0; i < nb; ++i) if (__put_user(REG_BYTE(rptr, i), addr + i)) return -EFAULT; if (nb0 > 0) { rptr = ®s->gpr[0]; addr += nb; for (i = 0; i < nb0; ++i) if (__put_user(REG_BYTE(rptr, i), addr + i)) return -EFAULT; } } return 1; } /* * Called on alignment exception. Attempts to fixup * * Return 1 on success * Return 0 if unable to handle the interrupt * Return -EFAULT if data address is bad */ int fix_alignment(struct pt_regs *regs) { unsigned int instr, nb, flags; unsigned int reg, areg; unsigned int dsisr; unsigned char __user *addr; unsigned char __user *p; int ret, t; union { u64 ll; double dd; unsigned char v[8]; struct { unsigned hi32; int low32; } x32; struct { unsigned char hi48[6]; short low16; } x16; } data; /* * We require a complete register set, if not, then our assembly * is broken */ CHECK_FULL_REGS(regs); dsisr = regs->dsisr; /* Some processors don't provide us with a DSISR we can use here, * let's make one up from the instruction */ if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) { unsigned int real_instr; if (unlikely(__get_user(real_instr, (unsigned int __user *)regs->nip))) return -EFAULT; dsisr = make_dsisr(real_instr); } /* extract the operation and registers from the dsisr */ reg = (dsisr >> 5) & 0x1f; /* source/dest register */ areg = dsisr & 0x1f; /* register to update */ instr = (dsisr >> 10) & 0x7f; instr |= (dsisr >> 13) & 0x60; /* Lookup the operation in our table */ nb = aligninfo[instr].len; flags = aligninfo[instr].flags; /* DAR has the operand effective address */ addr = (unsigned char __user *)regs->dar; /* A size of 0 indicates an instruction we don't support, with * the exception of DCBZ which is handled as a special case here */ if (instr == DCBZ) return emulate_dcbz(regs, addr); if (unlikely(nb == 0)) return 0; /* Load/Store Multiple instructions are handled in their own * function */ if (flags & M) return emulate_multiple(regs, addr, reg, nb, flags, instr); /* Verify the address of the operand */ if (unlikely(user_mode(regs) && !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), addr, nb))) return -EFAULT; /* Force the fprs into the save area so we can reference them */ if (flags & F) { /* userland only */ if (unlikely(!user_mode(regs))) return 0; flush_fp_to_thread(current); } /* If we are loading, get the data from user space, else * get it from register values */ if (flags & LD) { data.ll = 0; ret = 0; p = addr; switch (nb) { case 8: ret |= __get_user(data.v[0], p++); ret |= __get_user(data.v[1], p++); ret |= __get_user(data.v[2], p++); ret |= __get_user(data.v[3], p++); case 4: ret |= __get_user(data.v[4], p++); ret |= __get_user(data.v[5], p++); case 2: ret |= __get_user(data.v[6], p++); ret |= __get_user(data.v[7], p++); if (unlikely(ret)) return -EFAULT; } } else if (flags & F) data.dd = current->thread.fpr[reg]; else data.ll = regs->gpr[reg]; /* Perform other misc operations like sign extension, byteswap, * or floating point single precision conversion */ switch (flags & ~U) { case LD+SE: /* sign extend */ if ( nb == 2 ) data.ll = data.x16.low16; else /* nb must be 4 */ data.ll = data.x32.low32; break; case LD+S: /* byte-swap */ case ST+S: if (nb == 2) { SWAP(data.v[6], data.v[7]); } else { SWAP(data.v[4], data.v[7]); SWAP(data.v[5], data.v[6]); } break; /* Single-precision FP load and store require conversions... */ case LD+F+S: #ifdef CONFIG_PPC_FPU preempt_disable(); enable_kernel_fp(); cvt_fd((float *)&data.v[4], &data.dd, ¤t->thread); preempt_enable(); #else return 0; #endif break; case ST+F+S: #ifdef CONFIG_PPC_FPU preempt_disable(); enable_kernel_fp(); cvt_df(&data.dd, (float *)&data.v[4], ¤t->thread); preempt_enable(); #else return 0; #endif break; } /* Store result to memory or update registers */ if (flags & ST) { ret = 0; p = addr; switch (nb) { case 8: ret |= __put_user(data.v[0], p++); ret |= __put_user(data.v[1], p++); ret |= __put_user(data.v[2], p++); ret |= __put_user(data.v[3], p++); case 4: ret |= __put_user(data.v[4], p++); ret |= __put_user(data.v[5], p++); case 2: ret |= __put_user(data.v[6], p++); ret |= __put_user(data.v[7], p++); } if (unlikely(ret)) return -EFAULT; } else if (flags & F) current->thread.fpr[reg] = data.dd; else regs->gpr[reg] = data.ll; /* Update RA as needed */ if (flags & U) regs->gpr[areg] = regs->dar; return 1; }