/* * Copyright (C) 2007-2009 Michal Simek * Copyright (C) 2007-2009 PetaLogix * Copyright (C) 2006 Atmark Techno, Inc. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SELFMOD_TIMER #include #define TIMER_BASE BARRIER_BASE_ADDR #else static unsigned int timer_baseaddr; #define TIMER_BASE timer_baseaddr #endif static unsigned int freq_div_hz; static unsigned int timer_clock_freq; #define TCSR0 (0x00) #define TLR0 (0x04) #define TCR0 (0x08) #define TCSR1 (0x10) #define TLR1 (0x14) #define TCR1 (0x18) #define TCSR_MDT (1<<0) #define TCSR_UDT (1<<1) #define TCSR_GENT (1<<2) #define TCSR_CAPT (1<<3) #define TCSR_ARHT (1<<4) #define TCSR_LOAD (1<<5) #define TCSR_ENIT (1<<6) #define TCSR_ENT (1<<7) #define TCSR_TINT (1<<8) #define TCSR_PWMA (1<<9) #define TCSR_ENALL (1<<10) static inline void microblaze_timer0_stop(void) { out_be32(TIMER_BASE + TCSR0, in_be32(TIMER_BASE + TCSR0) & ~TCSR_ENT); } static inline void microblaze_timer0_start_periodic(unsigned long load_val) { if (!load_val) load_val = 1; out_be32(TIMER_BASE + TLR0, load_val); /* loading value to timer reg */ /* load the initial value */ out_be32(TIMER_BASE + TCSR0, TCSR_LOAD); /* see timer data sheet for detail * !ENALL - don't enable 'em all * !PWMA - disable pwm * TINT - clear interrupt status * ENT- enable timer itself * EINT - enable interrupt * !LOAD - clear the bit to let go * ARHT - auto reload * !CAPT - no external trigger * !GENT - no external signal * UDT - set the timer as down counter * !MDT0 - generate mode */ out_be32(TIMER_BASE + TCSR0, TCSR_TINT|TCSR_ENIT|TCSR_ENT|TCSR_ARHT|TCSR_UDT); } static inline void microblaze_timer0_start_oneshot(unsigned long load_val) { if (!load_val) load_val = 1; out_be32(TIMER_BASE + TLR0, load_val); /* loading value to timer reg */ /* load the initial value */ out_be32(TIMER_BASE + TCSR0, TCSR_LOAD); out_be32(TIMER_BASE + TCSR0, TCSR_TINT|TCSR_ENIT|TCSR_ENT|TCSR_ARHT|TCSR_UDT); } static int microblaze_timer_set_next_event(unsigned long delta, struct clock_event_device *dev) { pr_debug("%s: next event, delta %x\n", __func__, (u32)delta); microblaze_timer0_start_oneshot(delta); return 0; } static void microblaze_timer_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { switch (mode) { case CLOCK_EVT_MODE_PERIODIC: printk(KERN_INFO "%s: periodic\n", __func__); microblaze_timer0_start_periodic(freq_div_hz); break; case CLOCK_EVT_MODE_ONESHOT: printk(KERN_INFO "%s: oneshot\n", __func__); break; case CLOCK_EVT_MODE_UNUSED: printk(KERN_INFO "%s: unused\n", __func__); break; case CLOCK_EVT_MODE_SHUTDOWN: printk(KERN_INFO "%s: shutdown\n", __func__); microblaze_timer0_stop(); break; case CLOCK_EVT_MODE_RESUME: printk(KERN_INFO "%s: resume\n", __func__); break; } } static struct clock_event_device clockevent_microblaze_timer = { .name = "microblaze_clockevent", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .shift = 8, .rating = 300, .set_next_event = microblaze_timer_set_next_event, .set_mode = microblaze_timer_set_mode, }; static inline void timer_ack(void) { out_be32(TIMER_BASE + TCSR0, in_be32(TIMER_BASE + TCSR0)); } static irqreturn_t timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &clockevent_microblaze_timer; #ifdef CONFIG_HEART_BEAT heartbeat(); #endif timer_ack(); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction timer_irqaction = { .handler = timer_interrupt, .flags = IRQF_DISABLED | IRQF_TIMER, .name = "timer", .dev_id = &clockevent_microblaze_timer, }; static __init void microblaze_clockevent_init(void) { clockevent_microblaze_timer.mult = div_sc(timer_clock_freq, NSEC_PER_SEC, clockevent_microblaze_timer.shift); clockevent_microblaze_timer.max_delta_ns = clockevent_delta2ns((u32)~0, &clockevent_microblaze_timer); clockevent_microblaze_timer.min_delta_ns = clockevent_delta2ns(1, &clockevent_microblaze_timer); clockevent_microblaze_timer.cpumask = cpumask_of(0); clockevents_register_device(&clockevent_microblaze_timer); } static cycle_t microblaze_read(struct clocksource *cs) { /* reading actual value of timer 1 */ return (cycle_t) (in_be32(TIMER_BASE + TCR1)); } static struct timecounter microblaze_tc = { .cc = NULL, }; static cycle_t microblaze_cc_read(const struct cyclecounter *cc) { return microblaze_read(NULL); } static struct cyclecounter microblaze_cc = { .read = microblaze_cc_read, .mask = CLOCKSOURCE_MASK(32), .shift = 8, }; static int __init init_microblaze_timecounter(void) { microblaze_cc.mult = div_sc(timer_clock_freq, NSEC_PER_SEC, microblaze_cc.shift); timecounter_init(µblaze_tc, µblaze_cc, sched_clock()); return 0; } static struct clocksource clocksource_microblaze = { .name = "microblaze_clocksource", .rating = 300, .read = microblaze_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init microblaze_clocksource_init(void) { if (clocksource_register_hz(&clocksource_microblaze, timer_clock_freq)) panic("failed to register clocksource"); /* stop timer1 */ out_be32(TIMER_BASE + TCSR1, in_be32(TIMER_BASE + TCSR1) & ~TCSR_ENT); /* start timer1 - up counting without interrupt */ out_be32(TIMER_BASE + TCSR1, TCSR_TINT|TCSR_ENT|TCSR_ARHT); /* register timecounter - for ftrace support */ init_microblaze_timecounter(); return 0; } /* * We have to protect accesses before timer initialization * and return 0 for sched_clock function below. */ static int timer_initialized; void __init time_init(void) { u32 irq, i = 0; u32 timer_num = 1; struct device_node *timer = NULL; const void *prop; #ifdef CONFIG_SELFMOD_TIMER unsigned int timer_baseaddr = 0; int arr_func[] = { (int)µblaze_read, (int)&timer_interrupt, (int)µblaze_clocksource_init, (int)µblaze_timer_set_mode, (int)µblaze_timer_set_next_event, 0 }; #endif const char * const timer_list[] = { "xlnx,xps-timer-1.00.a", NULL }; for (i = 0; timer_list[i] != NULL; i++) { timer = of_find_compatible_node(NULL, NULL, timer_list[i]); if (timer) break; } BUG_ON(!timer); timer_baseaddr = be32_to_cpup(of_get_property(timer, "reg", NULL)); timer_baseaddr = (unsigned long) ioremap(timer_baseaddr, PAGE_SIZE); irq = be32_to_cpup(of_get_property(timer, "interrupts", NULL)); timer_num = be32_to_cpup(of_get_property(timer, "xlnx,one-timer-only", NULL)); if (timer_num) { eprintk(KERN_EMERG "Please enable two timers in HW\n"); BUG(); } #ifdef CONFIG_SELFMOD_TIMER selfmod_function((int *) arr_func, timer_baseaddr); #endif printk(KERN_INFO "%s #0 at 0x%08x, irq=%d\n", timer_list[i], timer_baseaddr, irq); /* If there is clock-frequency property than use it */ prop = of_get_property(timer, "clock-frequency", NULL); if (prop) timer_clock_freq = be32_to_cpup(prop); else timer_clock_freq = cpuinfo.cpu_clock_freq; freq_div_hz = timer_clock_freq / HZ; setup_irq(irq, &timer_irqaction); #ifdef CONFIG_HEART_BEAT setup_heartbeat(); #endif microblaze_clocksource_init(); microblaze_clockevent_init(); timer_initialized = 1; } unsigned long long notrace sched_clock(void) { if (timer_initialized) { struct clocksource *cs = &clocksource_microblaze; cycle_t cyc = cnt32_to_63(cs->read(NULL)) & LLONG_MAX; return clocksource_cyc2ns(cyc, cs->mult, cs->shift); } return 0; }