/* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef __ARM_KVM_MMU_H__ #define __ARM_KVM_MMU_H__ #include #include /* * We directly use the kernel VA for the HYP, as we can directly share * the mapping (HTTBR "covers" TTBR1). */ #define HYP_PAGE_OFFSET_MASK UL(~0) #define HYP_PAGE_OFFSET PAGE_OFFSET #define KERN_TO_HYP(kva) (kva) /* * Our virtual mapping for the boot-time MMU-enable code. Must be * shared across all the page-tables. Conveniently, we use the vectors * page, where no kernel data will ever be shared with HYP. */ #define TRAMPOLINE_VA UL(CONFIG_VECTORS_BASE) /* * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels. */ #define KVM_MMU_CACHE_MIN_PAGES 2 #ifndef __ASSEMBLY__ #include #include #include int create_hyp_mappings(void *from, void *to); int create_hyp_io_mappings(void *from, void *to, phys_addr_t); void free_boot_hyp_pgd(void); void free_hyp_pgds(void); void stage2_unmap_vm(struct kvm *kvm); int kvm_alloc_stage2_pgd(struct kvm *kvm); void kvm_free_stage2_pgd(struct kvm *kvm); int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, phys_addr_t pa, unsigned long size, bool writable); int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); phys_addr_t kvm_mmu_get_httbr(void); phys_addr_t kvm_mmu_get_boot_httbr(void); phys_addr_t kvm_get_idmap_vector(void); int kvm_mmu_init(void); void kvm_clear_hyp_idmap(void); static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd) { *pmd = new_pmd; flush_pmd_entry(pmd); } static inline void kvm_set_pte(pte_t *pte, pte_t new_pte) { *pte = new_pte; /* * flush_pmd_entry just takes a void pointer and cleans the necessary * cache entries, so we can reuse the function for ptes. */ flush_pmd_entry(pte); } static inline void kvm_clean_pgd(pgd_t *pgd) { clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t)); } static inline void kvm_clean_pmd(pmd_t *pmd) { clean_dcache_area(pmd, PTRS_PER_PMD * sizeof(pmd_t)); } static inline void kvm_clean_pmd_entry(pmd_t *pmd) { clean_pmd_entry(pmd); } static inline void kvm_clean_pte(pte_t *pte) { clean_pte_table(pte); } static inline void kvm_set_s2pte_writable(pte_t *pte) { pte_val(*pte) |= L_PTE_S2_RDWR; } static inline void kvm_set_s2pmd_writable(pmd_t *pmd) { pmd_val(*pmd) |= L_PMD_S2_RDWR; } static inline void kvm_set_s2pte_readonly(pte_t *pte) { pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY; } static inline bool kvm_s2pte_readonly(pte_t *pte) { return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY; } static inline void kvm_set_s2pmd_readonly(pmd_t *pmd) { pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY; } static inline bool kvm_s2pmd_readonly(pmd_t *pmd) { return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY; } /* Open coded p*d_addr_end that can deal with 64bit addresses */ #define kvm_pgd_addr_end(addr, end) \ ({ u64 __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #define kvm_pud_addr_end(addr,end) (end) #define kvm_pmd_addr_end(addr, end) \ ({ u64 __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #define kvm_pgd_index(addr) pgd_index(addr) static inline bool kvm_page_empty(void *ptr) { struct page *ptr_page = virt_to_page(ptr); return page_count(ptr_page) == 1; } #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep) #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp) #define kvm_pud_table_empty(kvm, pudp) (0) #define KVM_PREALLOC_LEVEL 0 static inline void *kvm_get_hwpgd(struct kvm *kvm) { return kvm->arch.pgd; } static inline unsigned int kvm_get_hwpgd_size(void) { return PTRS_PER_S2_PGD * sizeof(pgd_t); } struct kvm; #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l)) static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) { return (vcpu->arch.cp15[c1_SCTLR] & 0b101) == 0b101; } static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu, pfn_t pfn, unsigned long size, bool ipa_uncached) { /* * If we are going to insert an instruction page and the icache is * either VIPT or PIPT, there is a potential problem where the host * (or another VM) may have used the same page as this guest, and we * read incorrect data from the icache. If we're using a PIPT cache, * we can invalidate just that page, but if we are using a VIPT cache * we need to invalidate the entire icache - damn shame - as written * in the ARM ARM (DDI 0406C.b - Page B3-1393). * * VIVT caches are tagged using both the ASID and the VMID and doesn't * need any kind of flushing (DDI 0406C.b - Page B3-1392). * * We need to do this through a kernel mapping (using the * user-space mapping has proved to be the wrong * solution). For that, we need to kmap one page at a time, * and iterate over the range. */ bool need_flush = !vcpu_has_cache_enabled(vcpu) || ipa_uncached; VM_BUG_ON(size & ~PAGE_MASK); if (!need_flush && !icache_is_pipt()) goto vipt_cache; while (size) { void *va = kmap_atomic_pfn(pfn); if (need_flush) kvm_flush_dcache_to_poc(va, PAGE_SIZE); if (icache_is_pipt()) __cpuc_coherent_user_range((unsigned long)va, (unsigned long)va + PAGE_SIZE); size -= PAGE_SIZE; pfn++; kunmap_atomic(va); } vipt_cache: if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) { /* any kind of VIPT cache */ __flush_icache_all(); } } static inline void __kvm_flush_dcache_pte(pte_t pte) { void *va = kmap_atomic(pte_page(pte)); kvm_flush_dcache_to_poc(va, PAGE_SIZE); kunmap_atomic(va); } static inline void __kvm_flush_dcache_pmd(pmd_t pmd) { unsigned long size = PMD_SIZE; pfn_t pfn = pmd_pfn(pmd); while (size) { void *va = kmap_atomic_pfn(pfn); kvm_flush_dcache_to_poc(va, PAGE_SIZE); pfn++; size -= PAGE_SIZE; kunmap_atomic(va); } } static inline void __kvm_flush_dcache_pud(pud_t pud) { } #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x)) void kvm_set_way_flush(struct kvm_vcpu *vcpu); void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); static inline bool __kvm_cpu_uses_extended_idmap(void) { return false; } static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, pgd_t *hyp_pgd, pgd_t *merged_hyp_pgd, unsigned long hyp_idmap_start) { } #endif /* !__ASSEMBLY__ */ #endif /* __ARM_KVM_MMU_H__ */