/* * several functions that help interpret ARC instructions * used for unaligned accesses, kprobes and kgdb * * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_MISALIGN_ACCESS) || \ defined(CONFIG_KPROBES) /* disasm_instr: Analyses instruction at addr, stores * findings in *state */ void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state, int userspace, struct pt_regs *regs, struct callee_regs *cregs) { int fieldA = 0; int fieldC = 0, fieldCisReg = 0; uint16_t word1 = 0, word0 = 0; int subopcode, is_linked, op_format; uint16_t *ins_ptr; uint16_t ins_buf[4]; int bytes_not_copied = 0; memset(state, 0, sizeof(struct disasm_state)); /* This fetches the upper part of the 32 bit instruction * in both the cases of Little Endian or Big Endian configurations. */ if (userspace) { bytes_not_copied = copy_from_user(ins_buf, (const void __user *) addr, 8); if (bytes_not_copied > 6) goto fault; ins_ptr = ins_buf; } else { ins_ptr = (uint16_t *) addr; } word1 = *((uint16_t *)addr); state->major_opcode = (word1 >> 11) & 0x1F; /* Check if the instruction is 32 bit or 16 bit instruction */ if (state->major_opcode < 0x0B) { if (bytes_not_copied > 4) goto fault; state->instr_len = 4; word0 = *((uint16_t *)(addr+2)); state->words[0] = (word1 << 16) | word0; } else { state->instr_len = 2; state->words[0] = word1; } /* Read the second word in case of limm */ word1 = *((uint16_t *)(addr + state->instr_len)); word0 = *((uint16_t *)(addr + state->instr_len + 2)); state->words[1] = (word1 << 16) | word0; switch (state->major_opcode) { case op_Bcc: state->is_branch = 1; /* unconditional branch s25, conditional branch s21 */ fieldA = (IS_BIT(state->words[0], 16)) ? FIELD_s25(state->words[0]) : FIELD_s21(state->words[0]); state->delay_slot = IS_BIT(state->words[0], 5); state->target = fieldA + (addr & ~0x3); state->flow = direct_jump; break; case op_BLcc: if (IS_BIT(state->words[0], 16)) { /* Branch and Link*/ /* unconditional branch s25, conditional branch s21 */ fieldA = (IS_BIT(state->words[0], 17)) ? (FIELD_s25(state->words[0]) & ~0x3) : FIELD_s21(state->words[0]); state->flow = direct_call; } else { /*Branch On Compare */ fieldA = FIELD_s9(state->words[0]) & ~0x3; state->flow = direct_jump; } state->delay_slot = IS_BIT(state->words[0], 5); state->target = fieldA + (addr & ~0x3); state->is_branch = 1; break; case op_LD: /* LD a,[b,s9] */ state->write = 0; state->di = BITS(state->words[0], 11, 11); if (state->di) break; state->x = BITS(state->words[0], 6, 6); state->zz = BITS(state->words[0], 7, 8); state->aa = BITS(state->words[0], 9, 10); state->wb_reg = FIELD_B(state->words[0]); if (state->wb_reg == REG_LIMM) { state->instr_len += 4; state->aa = 0; state->src1 = state->words[1]; } else { state->src1 = get_reg(state->wb_reg, regs, cregs); } state->src2 = FIELD_s9(state->words[0]); state->dest = FIELD_A(state->words[0]); state->pref = (state->dest == REG_LIMM); break; case op_ST: state->write = 1; state->di = BITS(state->words[0], 5, 5); if (state->di) break; state->aa = BITS(state->words[0], 3, 4); state->zz = BITS(state->words[0], 1, 2); state->src1 = FIELD_C(state->words[0]); if (state->src1 == REG_LIMM) { state->instr_len += 4; state->src1 = state->words[1]; } else { state->src1 = get_reg(state->src1, regs, cregs); } state->wb_reg = FIELD_B(state->words[0]); if (state->wb_reg == REG_LIMM) { state->aa = 0; state->instr_len += 4; state->src2 = state->words[1]; } else { state->src2 = get_reg(state->wb_reg, regs, cregs); } state->src3 = FIELD_s9(state->words[0]); break; case op_MAJOR_4: subopcode = MINOR_OPCODE(state->words[0]); switch (subopcode) { case 32: /* Jcc */ case 33: /* Jcc.D */ case 34: /* JLcc */ case 35: /* JLcc.D */ is_linked = 0; if (subopcode == 33 || subopcode == 35) state->delay_slot = 1; if (subopcode == 34 || subopcode == 35) is_linked = 1; fieldCisReg = 0; op_format = BITS(state->words[0], 22, 23); if (op_format == 0 || ((op_format == 3) && (!IS_BIT(state->words[0], 5)))) { fieldC = FIELD_C(state->words[0]); if (fieldC == REG_LIMM) { fieldC = state->words[1]; state->instr_len += 4; } else { fieldCisReg = 1; } } else if (op_format == 1 || ((op_format == 3) && (IS_BIT(state->words[0], 5)))) { fieldC = FIELD_C(state->words[0]); } else { /* op_format == 2 */ fieldC = FIELD_s12(state->words[0]); } if (!fieldCisReg) { state->target = fieldC; state->flow = is_linked ? direct_call : direct_jump; } else { state->target = get_reg(fieldC, regs, cregs); state->flow = is_linked ? indirect_call : indirect_jump; } state->is_branch = 1; break; case 40: /* LPcc */ if (BITS(state->words[0], 22, 23) == 3) { /* Conditional LPcc u7 */ fieldC = FIELD_C(state->words[0]); fieldC = fieldC << 1; fieldC += (addr & ~0x03); state->is_branch = 1; state->flow = direct_jump; state->target = fieldC; } /* For Unconditional lp, next pc is the fall through * which is updated */ break; case 48 ... 55: /* LD a,[b,c] */ state->di = BITS(state->words[0], 15, 15); if (state->di) break; state->x = BITS(state->words[0], 16, 16); state->zz = BITS(state->words[0], 17, 18); state->aa = BITS(state->words[0], 22, 23); state->wb_reg = FIELD_B(state->words[0]); if (state->wb_reg == REG_LIMM) { state->instr_len += 4; state->src1 = state->words[1]; } else { state->src1 = get_reg(state->wb_reg, regs, cregs); } state->src2 = FIELD_C(state->words[0]); if (state->src2 == REG_LIMM) { state->instr_len += 4; state->src2 = state->words[1]; } else { state->src2 = get_reg(state->src2, regs, cregs); } state->dest = FIELD_A(state->words[0]); if (state->dest == REG_LIMM) state->pref = 1; break; case 10: /* MOV */ /* still need to check for limm to extract instr len */ /* MOV is special case because it only takes 2 args */ switch (BITS(state->words[0], 22, 23)) { case 0: /* OP a,b,c */ if (FIELD_C(state->words[0]) == REG_LIMM) state->instr_len += 4; break; case 1: /* OP a,b,u6 */ break; case 2: /* OP b,b,s12 */ break; case 3: /* OP.cc b,b,c/u6 */ if ((!IS_BIT(state->words[0], 5)) && (FIELD_C(state->words[0]) == REG_LIMM)) state->instr_len += 4; break; } break; default: /* Not a Load, Jump or Loop instruction */ /* still need to check for limm to extract instr len */ switch (BITS(state->words[0], 22, 23)) { case 0: /* OP a,b,c */ if ((FIELD_B(state->words[0]) == REG_LIMM) || (FIELD_C(state->words[0]) == REG_LIMM)) state->instr_len += 4; break; case 1: /* OP a,b,u6 */ break; case 2: /* OP b,b,s12 */ break; case 3: /* OP.cc b,b,c/u6 */ if ((!IS_BIT(state->words[0], 5)) && ((FIELD_B(state->words[0]) == REG_LIMM) || (FIELD_C(state->words[0]) == REG_LIMM))) state->instr_len += 4; break; } break; } break; /* 16 Bit Instructions */ case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */ state->zz = BITS(state->words[0], 3, 4); state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); state->dest = FIELD_S_A(state->words[0]); break; case op_ADD_MOV_CMP: /* check for limm, ignore mov_s h,b (== mov_s 0,b) */ if ((BITS(state->words[0], 3, 4) < 3) && (FIELD_S_H(state->words[0]) == REG_LIMM)) state->instr_len += 4; break; case op_S: subopcode = BITS(state->words[0], 5, 7); switch (subopcode) { case 0: /* j_s */ case 1: /* j_s.d */ case 2: /* jl_s */ case 3: /* jl_s.d */ state->target = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->delay_slot = subopcode & 1; state->flow = (subopcode >= 2) ? direct_call : indirect_jump; break; case 7: switch (BITS(state->words[0], 8, 10)) { case 4: /* jeq_s [blink] */ case 5: /* jne_s [blink] */ case 6: /* j_s [blink] */ case 7: /* j_s.d [blink] */ state->delay_slot = (subopcode == 7); state->flow = indirect_jump; state->target = get_reg(31, regs, cregs); default: break; } default: break; } break; case op_LD_S: /* LD_S c, [b, u7] */ state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->src2 = FIELD_S_u7(state->words[0]); state->dest = FIELD_S_C(state->words[0]); break; case op_LDB_S: case op_STB_S: /* no further handling required as byte accesses should not * cause an unaligned access exception */ state->zz = 1; break; case op_LDWX_S: /* LDWX_S c, [b, u6] */ state->x = 1; /* intentional fall-through */ case op_LDW_S: /* LDW_S c, [b, u6] */ state->zz = 2; state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->src2 = FIELD_S_u6(state->words[0]); state->dest = FIELD_S_C(state->words[0]); break; case op_ST_S: /* ST_S c, [b, u7] */ state->write = 1; state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->src3 = FIELD_S_u7(state->words[0]); break; case op_STW_S: /* STW_S c,[b,u6] */ state->write = 1; state->zz = 2; state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->src3 = FIELD_S_u6(state->words[0]); break; case op_SP: /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */ /* note: we are ignoring possibility of: * ADD_S, SUB_S, PUSH_S, POP_S as these should not * cause unaliged exception anyway */ state->write = BITS(state->words[0], 6, 6); state->zz = BITS(state->words[0], 5, 5); if (state->zz) break; /* byte accesses should not come here */ if (!state->write) { state->src1 = get_reg(28, regs, cregs); state->src2 = FIELD_S_u7(state->words[0]); state->dest = FIELD_S_B(state->words[0]); } else { state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); state->src2 = get_reg(28, regs, cregs); state->src3 = FIELD_S_u7(state->words[0]); } break; case op_GP: /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */ /* note: ADD_S r0, gp, s11 is ignored */ state->zz = BITS(state->words[0], 9, 10); state->src1 = get_reg(26, regs, cregs); state->src2 = state->zz ? FIELD_S_s10(state->words[0]) : FIELD_S_s11(state->words[0]); state->dest = 0; break; case op_Pcl: /* LD_S b,[pcl,u10] */ state->src1 = regs->ret & ~3; state->src2 = FIELD_S_u10(state->words[0]); state->dest = FIELD_S_B(state->words[0]); break; case op_BR_S: state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03); state->flow = direct_jump; state->is_branch = 1; break; case op_B_S: fieldA = (BITS(state->words[0], 9, 10) == 3) ? FIELD_S_s7(state->words[0]) : FIELD_S_s10(state->words[0]); state->target = fieldA + (addr & ~0x03); state->flow = direct_jump; state->is_branch = 1; break; case op_BL_S: state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03); state->flow = direct_call; state->is_branch = 1; break; default: break; } if (bytes_not_copied <= (8 - state->instr_len)) return; fault: state->fault = 1; } long __kprobes get_reg(int reg, struct pt_regs *regs, struct callee_regs *cregs) { long *p; if (reg <= 12) { p = ®s->r0; return p[-reg]; } if (cregs && (reg <= 25)) { p = &cregs->r13; return p[13-reg]; } if (reg == 26) return regs->r26; if (reg == 27) return regs->fp; if (reg == 28) return regs->sp; if (reg == 31) return regs->blink; return 0; } void __kprobes set_reg(int reg, long val, struct pt_regs *regs, struct callee_regs *cregs) { long *p; switch (reg) { case 0 ... 12: p = ®s->r0; p[-reg] = val; break; case 13 ... 25: if (cregs) { p = &cregs->r13; p[13-reg] = val; } break; case 26: regs->r26 = val; break; case 27: regs->fp = val; break; case 28: regs->sp = val; break; case 31: regs->blink = val; break; default: break; } } /* * Disassembles the insn at @pc and sets @next_pc to next PC (which could be * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns). * * If @pc is a branch * -@tgt_if_br is set to branch target. * -If branch has delay slot, @next_pc updated with actual next PC. */ int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs, struct callee_regs *cregs, unsigned long *next_pc, unsigned long *tgt_if_br) { struct disasm_state instr; memset(&instr, 0, sizeof(struct disasm_state)); disasm_instr(pc, &instr, 0, regs, cregs); *next_pc = pc + instr.instr_len; /* Instruction with possible two targets branch, jump and loop */ if (instr.is_branch) *tgt_if_br = instr.target; /* For the instructions with delay slots, the fall through is the * instruction following the instruction in delay slot. */ if (instr.delay_slot) { struct disasm_state instr_d; disasm_instr(*next_pc, &instr_d, 0, regs, cregs); *next_pc += instr_d.instr_len; } /* Zero Overhead Loop - end of the loop */ if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end) && (regs->lp_count > 1)) { *next_pc = regs->lp_start; } return instr.is_branch; } #endif /* CONFIG_KGDB || CONFIG_ARC_MISALIGN_ACCESS || CONFIG_KPROBES */