/* * linux/arch/alpha/kernel/sys_eb64p.c * * Copyright (C) 1995 David A Rusling * Copyright (C) 1996 Jay A Estabrook * Copyright (C) 1998, 1999 Richard Henderson * * Code supporting the EB64+ and EB66. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "proto.h" #include "irq_impl.h" #include "pci_impl.h" #include "machvec_impl.h" /* Note mask bit is true for DISABLED irqs. */ static unsigned int cached_irq_mask = -1; static inline void eb64p_update_irq_hw(unsigned int irq, unsigned long mask) { outb(mask >> (irq >= 24 ? 24 : 16), (irq >= 24 ? 0x27 : 0x26)); } static inline void eb64p_enable_irq(struct irq_data *d) { eb64p_update_irq_hw(d->irq, cached_irq_mask &= ~(1 << d->irq)); } static void eb64p_disable_irq(struct irq_data *d) { eb64p_update_irq_hw(d->irq, cached_irq_mask |= 1 << d->irq); } static struct irq_chip eb64p_irq_type = { .name = "EB64P", .irq_unmask = eb64p_enable_irq, .irq_mask = eb64p_disable_irq, .irq_mask_ack = eb64p_disable_irq, }; static void eb64p_device_interrupt(unsigned long vector) { unsigned long pld; unsigned int i; /* Read the interrupt summary registers */ pld = inb(0x26) | (inb(0x27) << 8); /* * Now, for every possible bit set, work through * them and call the appropriate interrupt handler. */ while (pld) { i = ffz(~pld); pld &= pld - 1; /* clear least bit set */ if (i == 5) { isa_device_interrupt(vector); } else { handle_irq(16 + i); } } } static void __init eb64p_init_irq(void) { long i; #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_CABRIOLET) /* * CABRIO SRM may not set variation correctly, so here we test * the high word of the interrupt summary register for the RAZ * bits, and hope that a true EB64+ would read all ones... */ if (inw(0x806) != 0xffff) { extern struct alpha_machine_vector cabriolet_mv; printk("Detected Cabriolet: correcting HWRPB.\n"); hwrpb->sys_variation |= 2L << 10; hwrpb_update_checksum(hwrpb); alpha_mv = cabriolet_mv; alpha_mv.init_irq(); return; } #endif /* GENERIC */ outb(0xff, 0x26); outb(0xff, 0x27); init_i8259a_irqs(); for (i = 16; i < 32; ++i) { irq_set_chip_and_handler(i, &eb64p_irq_type, handle_level_irq); irq_set_status_flags(i, IRQ_LEVEL); } common_init_isa_dma(); setup_irq(16+5, &isa_cascade_irqaction); } /* * PCI Fixup configuration. * * There are two 8 bit external summary registers as follows: * * Summary @ 0x26: * Bit Meaning * 0 Interrupt Line A from slot 0 * 1 Interrupt Line A from slot 1 * 2 Interrupt Line B from slot 0 * 3 Interrupt Line B from slot 1 * 4 Interrupt Line C from slot 0 * 5 Interrupt line from the two ISA PICs * 6 Tulip * 7 NCR SCSI * * Summary @ 0x27 * Bit Meaning * 0 Interrupt Line C from slot 1 * 1 Interrupt Line D from slot 0 * 2 Interrupt Line D from slot 1 * 3 RAZ * 4 RAZ * 5 RAZ * 6 RAZ * 7 RAZ * * The device to slot mapping looks like: * * Slot Device * 5 NCR SCSI controller * 6 PCI on board slot 0 * 7 PCI on board slot 1 * 8 Intel SIO PCI-ISA bridge chip * 9 Tulip - DECchip 21040 Ethernet controller * * * This two layered interrupt approach means that we allocate IRQ 16 and * above for PCI interrupts. The IRQ relates to which bit the interrupt * comes in on. This makes interrupt processing much easier. */ static int __init eb64p_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { static char irq_tab[5][5] __initdata = { /*INT INTA INTB INTC INTD */ {16+7, 16+7, 16+7, 16+7, 16+7}, /* IdSel 5, slot ?, ?? */ {16+0, 16+0, 16+2, 16+4, 16+9}, /* IdSel 6, slot ?, ?? */ {16+1, 16+1, 16+3, 16+8, 16+10}, /* IdSel 7, slot ?, ?? */ { -1, -1, -1, -1, -1}, /* IdSel 8, SIO */ {16+6, 16+6, 16+6, 16+6, 16+6}, /* IdSel 9, TULIP */ }; const long min_idsel = 5, max_idsel = 9, irqs_per_slot = 5; return COMMON_TABLE_LOOKUP; } /* * The System Vector */ #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB64P) struct alpha_machine_vector eb64p_mv __initmv = { .vector_name = "EB64+", DO_EV4_MMU, DO_DEFAULT_RTC, DO_APECS_IO, .machine_check = apecs_machine_check, .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, .min_io_address = DEFAULT_IO_BASE, .min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE, .nr_irqs = 32, .device_interrupt = eb64p_device_interrupt, .init_arch = apecs_init_arch, .init_irq = eb64p_init_irq, .init_rtc = common_init_rtc, .init_pci = common_init_pci, .kill_arch = NULL, .pci_map_irq = eb64p_map_irq, .pci_swizzle = common_swizzle, }; ALIAS_MV(eb64p) #endif #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB66) struct alpha_machine_vector eb66_mv __initmv = { .vector_name = "EB66", DO_EV4_MMU, DO_DEFAULT_RTC, DO_LCA_IO, .machine_check = lca_machine_check, .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, .min_io_address = DEFAULT_IO_BASE, .min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE, .nr_irqs = 32, .device_interrupt = eb64p_device_interrupt, .init_arch = lca_init_arch, .init_irq = eb64p_init_irq, .init_rtc = common_init_rtc, .init_pci = common_init_pci, .pci_map_irq = eb64p_map_irq, .pci_swizzle = common_swizzle, }; ALIAS_MV(eb66) #endif